Squashed commit of the following:

commit 8a6b52a97c
Author: Primoz <sisko.primoz@gmail.com>
Date:   Tue Nov 29 11:35:49 2022 +0000

    Switch to 30_before ERS with corresponding targets.

commit 244a053730
Author: Primoz <sisko.primoz@gmail.com>
Date:   Tue Nov 29 11:19:43 2022 +0000

    Change output files settings to nonstandardized.

commit be0324fd01
Author: Primoz <sisko.primoz@gmail.com>
Date:   Mon Nov 28 12:44:25 2022 +0000

    Fix some bugs and set categorical columns as categories dtypes.

commit 99c2fab8f9
Author: Primoz <sisko.primoz@gmail.com>
Date:   Wed Nov 16 09:50:18 2022 +0000

    Fix a bug in the making of the individual model (when there is no target in the participants columns).

commit 286de93bfd
Author: Primoz <sisko.primoz@gmail.com>
Date:   Tue Nov 15 11:21:51 2022 +0000

    Fix some bugs and extend ERS and cleaning scripts with multiple stress event targets logic.

commit ab803ee49c
Author: Primoz <sisko.primoz@gmail.com>
Date:   Tue Nov 15 10:14:07 2022 +0000

    Add additional appraisal targets.

commit 621f11b2d9
Author: Primoz <sisko.primoz@gmail.com>
Date:   Tue Nov 15 09:53:31 2022 +0000

    Fix a bug related to wrong user input (duplicated events).

commit bd41f42a5d
Author: Primoz <sisko.primoz@gmail.com>
Date:   Mon Nov 14 15:07:36 2022 +0000

    Rename target_ to segmenting_ method.

commit a543ce372f
Author: Primoz <sisko.primoz@gmail.com>
Date:   Mon Nov 14 15:04:16 2022 +0000

    Add comments for event_related_script understanding.

commit 74b454b07b
Author: Primoz <sisko.primoz@gmail.com>
Date:   Fri Nov 11 09:15:12 2022 +0000

    Apply changes to string answers to make them language-generic.

commit 6ebe83e47e
Author: Primoz <sisko.primoz@gmail.com>
Date:   Thu Nov 10 12:42:52 2022 +0000

    Improve the ERS extract method with a couple of validations.

commit 00350ef8ca
Author: Primoz <sisko.primoz@gmail.com>
Date:   Thu Nov 10 10:32:58 2022 +0000

    Change config for stressfulness event target method.

commit e4985c9121
Author: Primoz <sisko.primoz@gmail.com>
Date:   Thu Nov 10 10:29:11 2022 +0000

    Override stressfulness event target with extracted values from csv.

commit a668b6e8da
Author: Primoz <sisko.primoz@gmail.com>
Date:   Thu Nov 10 09:37:27 2022 +0000

    Extract ERS and stress event targets to csv files (completed).

commit 9199b53ded
Author: Primoz <sisko.primoz@gmail.com>
Date:   Wed Nov 9 15:11:51 2022 +0000

    Get, join and start processing required ERS stress event data.

commit f3c6a66da9
Author: Primoz <sisko.primoz@gmail.com>
Date:   Tue Nov 8 15:53:43 2022 +0000

    Begin with stress events in the ERS script.

commit 0b3e9226b3
Author: Primoz <sisko.primoz@gmail.com>
Date:   Tue Nov 8 14:44:24 2022 +0000

    Make small corrections in ERS file.

commit 2d83f7ddec
Author: Primoz <sisko.primoz@gmail.com>
Date:   Tue Nov 8 11:32:05 2022 +0000

    Begin the ERS logic for 90-minutes events.

commit 1da72a7cbe
Author: Primoz <sisko.primoz@gmail.com>
Date:   Tue Nov 8 09:45:37 2022 +0000

    Rename targets method in config.

commit 9f441afc16
Author: Primoz <sisko.primoz@gmail.com>
Date:   Fri Nov 4 15:09:04 2022 +0000

    Begin ERS logic for 90-minutes events.

commit c1c9f4d05a
Merge: 62f46ea3 7ab0280d
Author: Primoz <sisko.primoz@gmail.com>
Date:   Fri Nov 4 09:11:58 2022 +0000

    Merge branch 'imputation_and_cleaning' of https://repo.ijs.si/junoslukan/rapids into imputation_and_cleaning

commit 62f46ea376
Author: Primoz <sisko.primoz@gmail.com>
Date:   Fri Nov 4 09:11:53 2022 +0000

    Prepare method-based logic for ERS generating.

commit 7ab0280d7e
Author: Primoz <sisko.primoz@gmail.com>
Date:   Fri Nov 4 08:58:08 2022 +0000

    Correctly rename stressful event target variable.

commit eefa9f3f4d
Author: Primoz <sisko.primoz@gmail.com>
Date:   Thu Nov 3 14:49:54 2022 +0000

    Add new target: stressfulness_event.

commit 5e8174dd41
Author: Primoz <sisko.primoz@gmail.com>
Date:   Thu Nov 3 13:52:45 2022 +0000

    Add new target: stressfulness_period.

commit 35c1a762e7
Author: Primoz <sisko.primoz@gmail.com>
Date:   Thu Nov 3 13:51:18 2022 +0000

    Improve filtering by esm_session and device_id.

commit 02264b21fd
Author: Primoz <sisko.primoz@gmail.com>
Date:   Thu Nov 3 09:30:12 2022 +0000

    Add logic for target selection in ERS processing.

commit 0ce8723bdb
Author: Primoz <sisko.primoz@gmail.com>
Date:   Wed Nov 2 14:01:21 2022 +0000

    Extend imputation logic within the cleaning script.

commit 30b38bfc02
Author: Primoz <sisko.primoz@gmail.com>
Date:   Fri Oct 28 09:00:13 2022 +0000

    Fix the generating procedure of ERS file for participants with multiple devices.

commit cd137af15a
Author: Primoz <sisko.primoz@gmail.com>
Date:   Thu Oct 27 14:20:15 2022 +0000

    Config for 30 minute EMA segments.

commit 3c0585a566
Author: Primoz <sisko.primoz@gmail.com>
Date:   Thu Oct 27 14:12:56 2022 +0000

    Remove obsolete comments.

commit 6b487fcf7b
Author: Primoz <sisko.primoz@gmail.com>
Date:   Thu Oct 27 14:11:42 2022 +0000

    Set E4 data yield to 1 if it is over 1. Optimize E4 data_yield script.

commit 5d17c92e54
Merge: a31fdd14 0d143e6a
Author: Primoz <sisko.primoz@gmail.com>
Date:   Wed Oct 26 14:18:20 2022 +0000

    Merge branch 'imputation_and_cleaning' of https://repo.ijs.si/junoslukan/rapids into imputation_and_cleaning

commit a31fdd1479
Author: Primoz <sisko.primoz@gmail.com>
Date:   Wed Oct 26 14:18:08 2022 +0000

    Start to test empatica_data_yield precieved error.

commit 936324d234
Author: Primoz <sisko.primoz@gmail.com>
Date:   Wed Oct 26 14:17:27 2022 +0000

    Switch config for 30 minutes event related segments.

commit da0a4596f8
Author: Primoz <sisko.primoz@gmail.com>
Date:   Wed Oct 26 14:16:25 2022 +0000

    Add additional ESM processing logic for ERS csv extraction.

commit d4d74818e6
Author: Primoz <sisko.primoz@gmail.com>
Date:   Wed Oct 26 14:14:32 2022 +0000

    Fix a bug - missing time_segment column when df is empty

commit 14ff59914b
Author: Primoz <sisko.primoz@gmail.com>
Date:   Wed Oct 26 09:59:46 2022 +0000

    Fix to correct dtypes.

commit 6ab0ac5329
Author: Primoz <sisko.primoz@gmail.com>
Date:   Wed Oct 26 09:57:26 2022 +0000

    Optimize memory consumption with dtype definition while reading csv file.

commit 0d143e6aad
Merge: 8acac501 b92a3aa3
Author: Primoz <sisko.primoz@gmail.com>
Date:   Tue Oct 25 15:28:27 2022 +0000

    Merge branch 'imputation_and_cleaning' of https://repo.ijs.si/junoslukan/rapids into imputation_and_cleaning

commit 8acac50125
Author: Primoz <sisko.primoz@gmail.com>
Date:   Tue Oct 25 15:26:43 2022 +0000

    Add safenet when features dataframe is empty.

commit b92a3aa37a
Author: Primoz <sisko.primoz@gmail.com>
Date:   Tue Oct 25 15:25:22 2022 +0000

    Remove unwanted output or other error producing code.

commit bfd637eb9c
Author: Primoz <sisko.primoz@gmail.com>
Date:   Tue Oct 25 08:53:44 2022 +0000

    Improve strings formatting in straw_events file.

commit 0d81ad5756
Author: Primoz <sisko.primoz@gmail.com>
Date:   Wed Oct 19 13:35:04 2022 +0000

    Debug assignment of segments to rows

commit cea451d344
Merge: e88bbd54 cf38d9f1
Author: Primoz <sisko.primoz@gmail.com>
Date:   Tue Oct 18 09:15:06 2022 +0000

    Merge branch 'imputation_and_cleaning' of https://repo.ijs.si/junoslukan/rapids into imputation_and_cleaning

commit e88bbd548f
Author: Primoz <sisko.primoz@gmail.com>
Date:   Tue Oct 18 09:15:00 2022 +0000

    Add new daily segment and filter by segment in the cleaning script.

commit cf38d9f175
Author: Primoz <sisko.primoz@gmail.com>
Date:   Mon Oct 17 15:07:33 2022 +0000

    Implement ERS generating logic.

commit f3ca56cdbf
Author: Primoz <sisko.primoz@gmail.com>
Date:   Fri Oct 14 14:46:28 2022 +0000

    Start with ERS logic integration within Snakemake.

commit 797aa98f4f
Author: Primoz <sisko.primoz@gmail.com>
Date:   Wed Oct 12 15:51:50 2022 +0000

    Config for ERS testing.

commit 9baff159cd
Author: Primoz <sisko.primoz@gmail.com>
Date:   Wed Oct 12 15:51:23 2022 +0000

    Changes needed for testing and starting of the Event-Related Segments.

commit 0f21273508
Author: Primoz <sisko.primoz@gmail.com>
Date:   Wed Oct 12 12:32:51 2022 +0000

    Bugs fix

commit 55517eb737
Author: Primoz <sisko.primoz@gmail.com>
Date:   Wed Oct 12 12:23:11 2022 +0000

    Necessary commit before proceeding.

commit de15a52dba
Author: Primoz <sisko.primoz@gmail.com>
Date:   Tue Oct 11 08:36:23 2022 +0000

    Bug fix

commit 1ad25bb572
Author: Primoz <sisko.primoz@gmail.com>
Date:   Tue Oct 11 08:26:17 2022 +0000

    Few modifications of some imputation values in cleaning script and feature extraction.

commit 9884b383cf
Author: Primoz <sisko.primoz@gmail.com>
Date:   Mon Oct 10 16:45:38 2022 +0000

    Testing new data with AutoML.

commit 2dc89c083c
Author: Primoz <sisko.primoz@gmail.com>
Date:   Fri Oct 7 08:52:12 2022 +0000

    Small changes in cleaning overall

commit 001d400729
Author: Primoz <sisko.primoz@gmail.com>
Date:   Thu Oct 6 14:28:12 2022 +0000

    Clean features and create input files based on all possible targets.

commit 1e38d9bf1e
Author: Primoz <sisko.primoz@gmail.com>
Date:   Thu Oct 6 13:27:38 2022 +0000

    Standardization and correlation visualization in overall cleaning script.

commit a34412a18d
Author: Primoz <sisko.primoz@gmail.com>
Date:   Wed Oct 5 14:16:55 2022 +0000

    E4 data yield corrections. Changes in overal cs - standardization.

commit 437459648f
Author: Primoz <sisko.primoz@gmail.com>
Date:   Wed Oct 5 13:35:05 2022 +0000

    Errors fix: individual script - treat participants missing data.

commit 53f6cc60d5
Author: Primoz <sisko.primoz@gmail.com>
Date:   Mon Oct 3 13:06:39 2022 +0000

    Config and cleaning script necessary changes ...

commit bbeabeee6f
Author: Primoz <sisko.primoz@gmail.com>
Date:   Mon Oct 3 12:53:31 2022 +0000

    Last changes before processing on the server.

commit 44531c6d94
Author: Primoz <sisko.primoz@gmail.com>
Date:   Fri Sep 30 10:04:07 2022 +0000

    Code cleaning, reworking cleaning individual based on changes in overall script. Changes in thresholds.

commit 7ac7cd5a37
Author: Primoz <sisko.primoz@gmail.com>
Date:   Thu Sep 29 14:33:21 2022 +0000

    Preparation of the overall cleaning script.

commit 68fd69dada
Author: Primoz <sisko.primoz@gmail.com>
Date:   Thu Sep 29 11:55:25 2022 +0000

    Cleaning script for individuals: corrections and comments.

commit a4f0d056a0
Author: Primoz <sisko.primoz@gmail.com>
Date:   Thu Sep 29 11:44:27 2022 +0000

    Fillna for app foreground and activity recognition

commit 6286e7a44c
Author: Primoz <sisko.primoz@gmail.com>
Date:   Wed Sep 28 12:47:08 2022 +0000

    firstuseafter column removed from contextual imputation

commit 9b3447febd
Author: Primoz <sisko.primoz@gmail.com>
Date:   Wed Sep 28 12:40:05 2022 +0000

    Contextual imputation correction

commit d6adda30cf
Author: Primoz <sisko.primoz@gmail.com>
Date:   Wed Sep 28 12:37:51 2022 +0000

    Contextual imputation on time(first/last) features.

commit 8af4ef11dc
Author: Primoz <sisko.primoz@gmail.com>
Date:   Wed Sep 28 10:02:47 2022 +0000

    Contextual imputation by feature type.

commit 536b9494cd
Author: Primoz <sisko.primoz@gmail.com>
Date:   Tue Sep 27 14:12:08 2022 +0000

    Cleaning script corrections

commit f0b87c9dd0
Author: Primoz <sisko.primoz@gmail.com>
Date:   Tue Sep 27 09:54:15 2022 +0000

    Debugging of the empatica data yield integration.

commit 7fcdb873fe
Merge: 5c7bb0f4 bd53dc16
Author: Primoz <sisko.primoz@gmail.com>
Date:   Tue Sep 27 07:50:29 2022 +0000

    Merge branch 'imputation_and_cleaning' of https://repo.ijs.si/junoslukan/rapids into imputation_and_cleaning

commit 5c7bb0f4c1
Author: Primoz <sisko.primoz@gmail.com>
Date:   Tue Sep 27 07:48:32 2022 +0000

    Config changes

commit bd53dc1684
Author: Primoz <sisko.primoz@gmail.com>
Date:   Mon Sep 26 15:54:00 2022 +0000

    Empatica data yield usage in the cleaning script.

commit d9a574c550
Author: Primoz <sisko.primoz@gmail.com>
Date:   Fri Sep 23 13:24:50 2022 +0000

    Changes in the cleaning script and preparation of empatica data yield method.

commit 19aa8707c0
Author: Primoz <sisko.primoz@gmail.com>
Date:   Thu Sep 22 13:45:51 2022 +0000

    Redefined cleaning steps after revision

commit 247d758cb7
Merge: 90ee99e4 7493aaa6
Author: Primoz <sisko.primoz@gmail.com>
Date:   Wed Sep 21 07:18:01 2022 +0000

    Merge branch 'imputation_and_cleaning' of https://repo.ijs.si/junoslukan/rapids into imputation_and_cleaning

commit 90ee99e4b9
Author: Primoz <sisko.primoz@gmail.com>
Date:   Wed Sep 21 07:16:00 2022 +0000

    Remove TODO comments

commit 7493aaa643
Author: Primoz <sisko.primoz@gmail.com>
Date:   Tue Sep 20 12:57:55 2022 +0000

    Small changes in cleaning scrtipt and missing vals testing.

commit eaf4340afd
Author: Primoz <sisko.primoz@gmail.com>
Date:   Tue Sep 20 08:03:48 2022 +0000

    Small imputation and cleaning corrections.

commit a96ea508c6
Author: Primoz <sisko.primoz@gmail.com>
Date:   Mon Sep 19 07:34:02 2022 +0000

    Fill NaN of Empatica's SD second order feature (must be tested).

commit 52e11cdcab
Author: Primoz <sisko.primoz@gmail.com>
Date:   Mon Sep 19 07:25:54 2022 +0000

    Configurations for new standardization path.

commit 92aff93e65
Author: Primoz <sisko.primoz@gmail.com>
Date:   Mon Sep 19 07:25:16 2022 +0000

    Remove standardization script.

commit 18b63127de
Author: Primoz <sisko.primoz@gmail.com>
Date:   Mon Sep 19 06:16:26 2022 +0000

    Removed all standardizaton rules and configurations.

commit 62982866cd
Author: Primoz <sisko.primoz@gmail.com>
Date:   Fri Sep 16 13:24:21 2022 +0000

    Phone wifi visible inspection (WIP)

commit 0ce6da5444
Author: Primoz <sisko.primoz@gmail.com>
Date:   Fri Sep 16 11:30:08 2022 +0000

    kNN imputation relocation and execution only on specific columns.

commit e3b78c8a85
Author: Primoz <sisko.primoz@gmail.com>
Date:   Fri Sep 16 10:58:57 2022 +0000

    Impute selected phone features with 0.
    Wifi visible, screen, and light.

commit 7d85f75d21
Author: Primoz <sisko.primoz@gmail.com>
Date:   Fri Sep 16 09:03:30 2022 +0000

    Changes in phone features NaN values script.

commit 385e21409d
Author: Primoz <sisko.primoz@gmail.com>
Date:   Thu Sep 15 14:16:58 2022 +0000

    Changes in NaN values testing script.

commit 18002f59e1
Author: Primoz <sisko.primoz@gmail.com>
Date:   Thu Sep 15 10:48:59 2022 +0000

    Doryab bluetooth and locations features fill in NaN values.

commit 3cf7ca41aa
Merge: d27a4a71 d5ab5a03
Author: Primoz <sisko.primoz@gmail.com>
Date:   Wed Sep 14 15:38:32 2022 +0000

    Merge branch 'imputation_and_cleaning' of https://repo.ijs.si/junoslukan/rapids into imputation_and_cleaning

commit d5ab5a0394
Author: Primoz <sisko.primoz@gmail.com>
Date:   Wed Sep 14 14:13:03 2022 +0000

    Writing testing scripts to determine the point of manual imputation.

commit dfbb758902
Author: Primoz <sisko.primoz@gmail.com>
Date:   Tue Sep 13 13:54:06 2022 +0000

    Changes in AutoML params and environment.yml

commit 4ec371ed96
Author: Primoz <sisko.primoz@gmail.com>
Date:   Tue Sep 13 09:51:03 2022 +0000

    Testing auto-sklearn

commit d27a4a71c8
Author: Primoz <sisko.primoz@gmail.com>
Date:   Mon Sep 12 13:44:17 2022 +0000

    Reorganisation and reordering of the cleaning script.

commit 15d792089d
Author: Primoz <sisko.primoz@gmail.com>
Date:   Thu Sep 1 10:33:36 2022 +0000

    Changes in cleaning script:
    - target extracted from config to remove rows where target is nan
    - prepared sns.heatmap for further missing values analysis
    - necessary changes in config and participant p01
    - picture of heatmap which shows the values state after cleaning

commit cb351e0ff6
Author: Primoz <sisko.primoz@gmail.com>
Date:   Thu Sep 1 10:06:57 2022 +0000

    Unnecessary line (rows with no target value will be removed in cleaning script).

commit 86299d346b
Author: Primoz <sisko.primoz@gmail.com>
Date:   Thu Sep 1 09:57:21 2022 +0000

    Impute phone and sms NAs with 0

commit 3f7ec80c18
Author: Primoz <sisko.primoz@gmail.com>
Date:   Wed Aug 31 10:18:50 2022 +0000

    Preparation a) phone_calls 0 imputation b) remove rows with NaN target
sociality-task
Primoz 2022-12-08 16:04:39 +00:00
parent f78aa3e7b3
commit 87e5209a9f
44 changed files with 1547 additions and 580 deletions

130
Snakefile
View File

@ -33,12 +33,6 @@ for provider in config["PHONE_DATA_YIELD"]["PROVIDERS"].keys():
files_to_compute.extend(expand("data/processed/features/{pid}/phone_data_yield.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
if provider in config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["LIST"] and config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["COMPUTE"] \
and config["PHONE_DATA_YIELD"]["PROVIDERS"][provider]["STANDARDIZE_FEATURES"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_phone_data_yield.csv", pid=config["PIDS"]))
if config["STANDARDIZATION"]["MERGE_ALL"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/z_all_sensor_features.csv")
for provider in config["PHONE_MESSAGES"]["PROVIDERS"].keys():
if config["PHONE_MESSAGES"]["PROVIDERS"][provider]["COMPUTE"]:
@ -48,12 +42,6 @@ for provider in config["PHONE_MESSAGES"]["PROVIDERS"].keys():
files_to_compute.extend(expand("data/processed/features/{pid}/phone_messages.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
if provider in config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["LIST"] and config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["COMPUTE"] \
and config["PHONE_MESSAGES"]["PROVIDERS"][provider]["STANDARDIZE_FEATURES"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_phone_messages.csv", pid=config["PIDS"]))
if config["STANDARDIZATION"]["MERGE_ALL"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/z_all_sensor_features.csv")
for provider in config["PHONE_CALLS"]["PROVIDERS"].keys():
if config["PHONE_CALLS"]["PROVIDERS"][provider]["COMPUTE"]:
@ -68,12 +56,6 @@ for provider in config["PHONE_CALLS"]["PROVIDERS"].keys():
files_to_compute.extend(expand("data/processed/features/{pid}/phone_calls.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
if provider in config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["LIST"] and config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["COMPUTE"] \
and config["PHONE_CALLS"]["PROVIDERS"][provider]["STANDARDIZE_FEATURES"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_phone_calls.csv", pid=config["PIDS"]))
if config["STANDARDIZATION"]["MERGE_ALL"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/z_all_sensor_features.csv")
for provider in config["PHONE_BLUETOOTH"]["PROVIDERS"].keys():
if config["PHONE_BLUETOOTH"]["PROVIDERS"][provider]["COMPUTE"]:
@ -83,12 +65,6 @@ for provider in config["PHONE_BLUETOOTH"]["PROVIDERS"].keys():
files_to_compute.extend(expand("data/processed/features/{pid}/phone_bluetooth.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
if provider in config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["LIST"] and config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["COMPUTE"] \
and config["PHONE_BLUETOOTH"]["PROVIDERS"][provider]["STANDARDIZE_FEATURES"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_phone_bluetooth.csv", pid=config["PIDS"]))
if config["STANDARDIZATION"]["MERGE_ALL"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/z_all_sensor_features.csv")
for provider in config["PHONE_ACTIVITY_RECOGNITION"]["PROVIDERS"].keys():
if config["PHONE_ACTIVITY_RECOGNITION"]["PROVIDERS"][provider]["COMPUTE"]:
@ -101,12 +77,6 @@ for provider in config["PHONE_ACTIVITY_RECOGNITION"]["PROVIDERS"].keys():
files_to_compute.extend(expand("data/processed/features/{pid}/phone_activity_recognition.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
if provider in config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["LIST"] and config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["COMPUTE"] \
and config["PHONE_ACTIVITY_RECOGNITION"]["PROVIDERS"][provider]["STANDARDIZE_FEATURES"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_phone_activity_recognition.csv", pid=config["PIDS"]))
if config["STANDARDIZATION"]["MERGE_ALL"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/z_all_sensor_features.csv")
for provider in config["PHONE_BATTERY"]["PROVIDERS"].keys():
if config["PHONE_BATTERY"]["PROVIDERS"][provider]["COMPUTE"]:
@ -118,12 +88,6 @@ for provider in config["PHONE_BATTERY"]["PROVIDERS"].keys():
files_to_compute.extend(expand("data/processed/features/{pid}/phone_battery.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
if provider in config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["LIST"] and config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["COMPUTE"] \
and config["PHONE_BATTERY"]["PROVIDERS"][provider]["STANDARDIZE_FEATURES"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_phone_battery.csv", pid=config["PIDS"]))
if config["STANDARDIZATION"]["MERGE_ALL"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/z_all_sensor_features.csv")
for provider in config["PHONE_SCREEN"]["PROVIDERS"].keys():
if config["PHONE_SCREEN"]["PROVIDERS"][provider]["COMPUTE"]:
@ -140,12 +104,6 @@ for provider in config["PHONE_SCREEN"]["PROVIDERS"].keys():
files_to_compute.extend(expand("data/processed/features/{pid}/phone_screen.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
if provider in config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["LIST"] and config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["COMPUTE"] \
and config["PHONE_SCREEN"]["PROVIDERS"][provider]["STANDARDIZE_FEATURES"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_phone_screen.csv", pid=config["PIDS"]))
if config["STANDARDIZATION"]["MERGE_ALL"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/z_all_sensor_features.csv")
for provider in config["PHONE_LIGHT"]["PROVIDERS"].keys():
if config["PHONE_LIGHT"]["PROVIDERS"][provider]["COMPUTE"]:
@ -155,12 +113,6 @@ for provider in config["PHONE_LIGHT"]["PROVIDERS"].keys():
files_to_compute.extend(expand("data/processed/features/{pid}/phone_light.csv", pid=config["PIDS"],))
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
if provider in config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["LIST"] and config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["COMPUTE"] \
and config["PHONE_LIGHT"]["PROVIDERS"][provider]["STANDARDIZE_FEATURES"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_phone_light.csv", pid=config["PIDS"]))
if config["STANDARDIZATION"]["MERGE_ALL"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/z_all_sensor_features.csv")
for provider in config["PHONE_ACCELEROMETER"]["PROVIDERS"].keys():
if config["PHONE_ACCELEROMETER"]["PROVIDERS"][provider]["COMPUTE"]:
@ -184,12 +136,6 @@ for provider in config["PHONE_APPLICATIONS_FOREGROUND"]["PROVIDERS"].keys():
files_to_compute.extend(expand("data/processed/features/{pid}/phone_applications_foreground.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
if provider in config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["LIST"] and config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["COMPUTE"] \
and config["PHONE_APPLICATIONS_FOREGROUND"]["PROVIDERS"][provider]["STANDARDIZE_FEATURES"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_phone_applications_foreground.csv", pid=config["PIDS"]))
if config["STANDARDIZATION"]["MERGE_ALL"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/z_all_sensor_features.csv")
for provider in config["PHONE_WIFI_VISIBLE"]["PROVIDERS"].keys():
if config["PHONE_WIFI_VISIBLE"]["PROVIDERS"][provider]["COMPUTE"]:
@ -199,12 +145,6 @@ for provider in config["PHONE_WIFI_VISIBLE"]["PROVIDERS"].keys():
files_to_compute.extend(expand("data/processed/features/{pid}/phone_wifi_visible.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
if provider in config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["LIST"] and config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["COMPUTE"] \
and config["PHONE_WIFI_VISIBLE"]["PROVIDERS"][provider]["STANDARDIZE_FEATURES"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_phone_wifi_visible.csv", pid=config["PIDS"]))
if config["STANDARDIZATION"]["MERGE_ALL"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/z_all_sensor_features.csv")
for provider in config["PHONE_WIFI_CONNECTED"]["PROVIDERS"].keys():
if config["PHONE_WIFI_CONNECTED"]["PROVIDERS"][provider]["COMPUTE"]:
@ -233,12 +173,6 @@ for provider in config["PHONE_ESM"]["PROVIDERS"].keys():
files_to_compute.extend(expand("data/processed/features/{pid}/phone_esm.csv", pid=config["PIDS"]))
# files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv",pid=config["PIDS"]))
# files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
if provider in config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["LIST"] and config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["COMPUTE"] \
and config["PHONE_ESM"]["PROVIDERS"][provider]["STANDARDIZE_FEATURES"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_phone_esm.csv", pid=config["PIDS"]))
if config["STANDARDIZATION"]["MERGE_ALL"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/z_all_sensor_features.csv")
# We can delete these if's as soon as we add feature PROVIDERS to any of these sensors
if isinstance(config["PHONE_APPLICATIONS_CRASHES"]["PROVIDERS"], dict):
@ -304,12 +238,6 @@ for provider in config["PHONE_LOCATIONS"]["PROVIDERS"].keys():
files_to_compute.extend(expand("data/processed/features/{pid}/phone_locations.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
if provider in config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["LIST"] and config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["COMPUTE"] \
and config["PHONE_LOCATIONS"]["PROVIDERS"][provider]["STANDARDIZE_FEATURES"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_phone_locations.csv", pid=config["PIDS"]))
if config["STANDARDIZATION"]["MERGE_ALL"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/z_all_sensor_features.csv")
for provider in config["FITBIT_CALORIES_INTRADAY"]["PROVIDERS"].keys():
if config["FITBIT_CALORIES_INTRADAY"]["PROVIDERS"][provider]["COMPUTE"]:
@ -400,13 +328,6 @@ for provider in config["EMPATICA_ACCELEROMETER"]["PROVIDERS"].keys():
files_to_compute.extend(expand("data/processed/features/{pid}/empatica_accelerometer.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
if provider in config["STANDARDIZATION"]["PROVIDERS"] and config["STANDARDIZATION"]["PROVIDERS"][provider]["COMPUTE"] \
and config["EMPATICA_ACCELEROMETER"]["PROVIDERS"][provider]["WINDOWS"]["STANDARDIZE_FEATURES"]:
files_to_compute.extend(expand("data/interim/{pid}/empatica_accelerometer_features/z_empatica_accelerometer_{language}_{provider_key}_windows.csv", pid=config["PIDS"], language=get_script_language(config["STANDARDIZATION"]["PROVIDERS"][provider]["SRC_SCRIPT"]), provider_key=provider.lower()))
files_to_compute.extend(expand("data/processed/features/{pid}/z_empatica_accelerometer.csv", pid=config["PIDS"]))
if config["STANDARDIZATION"]["MERGE_ALL"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/z_all_sensor_features.csv")
for provider in config["EMPATICA_HEARTRATE"]["PROVIDERS"].keys():
if config["EMPATICA_HEARTRATE"]["PROVIDERS"][provider]["COMPUTE"]:
@ -426,13 +347,6 @@ for provider in config["EMPATICA_TEMPERATURE"]["PROVIDERS"].keys():
files_to_compute.extend(expand("data/processed/features/{pid}/empatica_temperature.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
if provider in config["STANDARDIZATION"]["PROVIDERS"] and config["STANDARDIZATION"]["PROVIDERS"][provider]["COMPUTE"] \
and config["EMPATICA_TEMPERATURE"]["PROVIDERS"][provider]["WINDOWS"]["STANDARDIZE_FEATURES"]:
files_to_compute.extend(expand("data/interim/{pid}/empatica_temperature_features/z_empatica_temperature_{language}_{provider_key}_windows.csv", pid=config["PIDS"], language=get_script_language(config["STANDARDIZATION"]["PROVIDERS"][provider]["SRC_SCRIPT"]), provider_key=provider.lower()))
files_to_compute.extend(expand("data/processed/features/{pid}/z_empatica_temperature.csv", pid=config["PIDS"]))
if config["STANDARDIZATION"]["MERGE_ALL"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/z_all_sensor_features.csv")
for provider in config["EMPATICA_ELECTRODERMAL_ACTIVITY"]["PROVIDERS"].keys():
if config["EMPATICA_ELECTRODERMAL_ACTIVITY"]["PROVIDERS"][provider]["COMPUTE"]:
@ -442,13 +356,6 @@ for provider in config["EMPATICA_ELECTRODERMAL_ACTIVITY"]["PROVIDERS"].keys():
files_to_compute.extend(expand("data/processed/features/{pid}/empatica_electrodermal_activity.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
if provider in config["STANDARDIZATION"]["PROVIDERS"] and config["STANDARDIZATION"]["PROVIDERS"][provider]["COMPUTE"] \
and config["EMPATICA_ELECTRODERMAL_ACTIVITY"]["PROVIDERS"][provider]["WINDOWS"]["STANDARDIZE_FEATURES"]:
files_to_compute.extend(expand("data/interim/{pid}/empatica_electrodermal_activity_features/z_empatica_electrodermal_activity_{language}_{provider_key}_windows.csv", pid=config["PIDS"], language=get_script_language(config["STANDARDIZATION"]["PROVIDERS"][provider]["SRC_SCRIPT"]), provider_key=provider.lower()))
files_to_compute.extend(expand("data/processed/features/{pid}/z_empatica_electrodermal_activity.csv", pid=config["PIDS"]))
if config["STANDARDIZATION"]["MERGE_ALL"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/z_all_sensor_features.csv")
for provider in config["EMPATICA_BLOOD_VOLUME_PULSE"]["PROVIDERS"].keys():
if config["EMPATICA_BLOOD_VOLUME_PULSE"]["PROVIDERS"][provider]["COMPUTE"]:
@ -458,13 +365,6 @@ for provider in config["EMPATICA_BLOOD_VOLUME_PULSE"]["PROVIDERS"].keys():
files_to_compute.extend(expand("data/processed/features/{pid}/empatica_blood_volume_pulse.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
if provider in config["STANDARDIZATION"]["PROVIDERS"] and config["STANDARDIZATION"]["PROVIDERS"][provider]["COMPUTE"] \
and config["EMPATICA_BLOOD_VOLUME_PULSE"]["PROVIDERS"][provider]["WINDOWS"]["STANDARDIZE_FEATURES"]:
files_to_compute.extend(expand("data/interim/{pid}/empatica_blood_volume_pulse_features/z_empatica_blood_volume_pulse_{language}_{provider_key}_windows.csv", pid=config["PIDS"], language=get_script_language(config["STANDARDIZATION"]["PROVIDERS"][provider]["SRC_SCRIPT"]), provider_key=provider.lower()))
files_to_compute.extend(expand("data/processed/features/{pid}/z_empatica_blood_volume_pulse.csv", pid=config["PIDS"]))
if config["STANDARDIZATION"]["MERGE_ALL"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/z_all_sensor_features.csv")
for provider in config["EMPATICA_INTER_BEAT_INTERVAL"]["PROVIDERS"].keys():
if config["EMPATICA_INTER_BEAT_INTERVAL"]["PROVIDERS"][provider]["COMPUTE"]:
@ -474,13 +374,6 @@ for provider in config["EMPATICA_INTER_BEAT_INTERVAL"]["PROVIDERS"].keys():
files_to_compute.extend(expand("data/processed/features/{pid}/empatica_inter_beat_interval.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
if provider in config["STANDARDIZATION"]["PROVIDERS"] and config["STANDARDIZATION"]["PROVIDERS"][provider]["COMPUTE"] \
and config["EMPATICA_INTER_BEAT_INTERVAL"]["PROVIDERS"][provider]["WINDOWS"]["STANDARDIZE_FEATURES"]:
files_to_compute.extend(expand("data/interim/{pid}/empatica_inter_beat_interval_features/z_empatica_inter_beat_interval_{language}_{provider_key}_windows.csv", pid=config["PIDS"], language=get_script_language(config["STANDARDIZATION"]["PROVIDERS"][provider]["SRC_SCRIPT"]), provider_key=provider.lower()))
files_to_compute.extend(expand("data/processed/features/{pid}/z_empatica_inter_beat_interval.csv", pid=config["PIDS"]))
if config["STANDARDIZATION"]["MERGE_ALL"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/z_all_sensor_features.csv")
if isinstance(config["EMPATICA_TAGS"]["PROVIDERS"], dict):
for provider in config["EMPATICA_TAGS"]["PROVIDERS"].keys():
@ -517,24 +410,16 @@ for provider in config["ALL_CLEANING_INDIVIDUAL"]["PROVIDERS"].keys():
if config["ALL_CLEANING_INDIVIDUAL"]["PROVIDERS"][provider]["COMPUTE"]:
if provider == "STRAW":
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features_cleaned_" + provider.lower() + "_py.csv", pid=config["PIDS"]))
if config["ALL_CLEANING_INDIVIDUAL"]["CLEAN_STANDARDIZED"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_all_sensor_features_cleaned_" + provider.lower() + "_py.csv", pid=config["PIDS"]))
else:
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features_cleaned_" + provider.lower() + "_R.csv", pid=config["PIDS"]))
if config["ALL_CLEANING_INDIVIDUAL"]["CLEAN_STANDARDIZED"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_all_sensor_features_cleaned_" + provider.lower() + "_R.csv", pid=config["PIDS"]))
for provider in config["ALL_CLEANING_OVERALL"]["PROVIDERS"].keys():
if config["ALL_CLEANING_OVERALL"]["PROVIDERS"][provider]["COMPUTE"]:
if provider == "STRAW":
files_to_compute.extend(expand("data/processed/features/all_participants/all_sensor_features_cleaned_" + provider.lower() +"_py.csv"))
if config["ALL_CLEANING_OVERALL"]["CLEAN_STANDARDIZED"]:
files_to_compute.extend(expand("data/processed/features/all_participants/z_all_sensor_features_cleaned_" + provider.lower() +"_py.csv"))
for target in config["PARAMS_FOR_ANALYSIS"]["TARGET"]["ALL_LABELS"]:
files_to_compute.extend(expand("data/processed/features/all_participants/all_sensor_features_cleaned_" + provider.lower() +"_py_(" + target + ").csv"))
else:
files_to_compute.extend(expand("data/processed/features/all_participants/all_sensor_features_cleaned_" + provider.lower() +"_R.csv"))
if config["ALL_CLEANING_OVERALL"]["CLEAN_STANDARDIZED"]:
files_to_compute.extend(expand("data/processed/features/all_participants/z_all_sensor_features_cleaned_" + provider.lower() +"_R.csv"))
files_to_compute.extend(expand("data/processed/features/all_participants/all_sensor_features_cleaned_" + provider.lower() +"_R.csv"))
# Baseline features
if config["PARAMS_FOR_ANALYSIS"]["BASELINE"]["COMPUTE"]:
@ -545,12 +430,9 @@ if config["PARAMS_FOR_ANALYSIS"]["BASELINE"]["COMPUTE"]:
# Targets (labels)
if config["PARAMS_FOR_ANALYSIS"]["TARGET"]["COMPUTE"]:
# files_to_compute.extend(expand("data/processed/models/individual_model/{pid}/input.csv", pid=config["PIDS"]))
# files_to_compute.extend(expand("data/processed/models/population_model/input.csv"))
files_to_compute.extend(expand("data/processed/models/individual_model/{pid}/z_input.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/processed/models/population_model/z_input.csv"))
#files_to_compute.extend(expand("data/processed/models/individual_model/{pid}/output_{cv_method}/baselines.csv", pid=config["PIDS"], cv_method=config["PARAMS_FOR_ANALYSIS"]["CV_METHODS"]))
files_to_compute.extend(expand("data/processed/models/individual_model/{pid}/input.csv", pid=config["PIDS"]))
for target in config["PARAMS_FOR_ANALYSIS"]["TARGET"]["ALL_LABELS"]:
files_to_compute.extend(expand("data/processed/models/population_model/input_" + target + ".csv"))
rule all:
input:

57
automl_test.py 100644
View File

@ -0,0 +1,57 @@
from pprint import pprint
import sklearn.metrics
import autosklearn.regression
import datetime
import importlib
import os
import sys
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import yaml
from sklearn import linear_model, svm, kernel_ridge, gaussian_process
from sklearn.model_selection import LeaveOneGroupOut, cross_val_score, train_test_split
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.impute import SimpleImputer
model_input = pd.read_csv("data/processed/models/population_model/input_PANAS_negative_affect_mean.csv") # Standardizirani podatki
model_input.dropna(axis=1, how="all", inplace=True)
model_input.dropna(axis=0, how="any", subset=["target"], inplace=True)
categorical_feature_colnames = ["gender", "startlanguage"]
categorical_feature_colnames += [col for col in model_input.columns if "mostcommonactivity" in col or "homelabel" in col]
categorical_features = model_input[categorical_feature_colnames].copy()
mode_categorical_features = categorical_features.mode().iloc[0]
categorical_features = categorical_features.fillna(mode_categorical_features)
categorical_features = categorical_features.apply(lambda col: col.astype("category"))
if not categorical_features.empty:
categorical_features = pd.get_dummies(categorical_features)
numerical_features = model_input.drop(categorical_feature_colnames, axis=1)
model_in = pd.concat([numerical_features, categorical_features], axis=1)
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
model_in.set_index(index_columns, inplace=True)
X_train, X_test, y_train, y_test = train_test_split(model_in.drop(["target", "pid"], axis=1), model_in["target"], test_size=0.30)
automl = autosklearn.regression.AutoSklearnRegressor(
time_left_for_this_task=7200,
per_run_time_limit=120
)
automl.fit(X_train, y_train, dataset_name='straw')
print(automl.leaderboard())
pprint(automl.show_models(), indent=4)
train_predictions = automl.predict(X_train)
print("Train R2 score:", sklearn.metrics.r2_score(y_train, train_predictions))
test_predictions = automl.predict(X_test)
print("Test R2 score:", sklearn.metrics.r2_score(y_test, test_predictions))
import sys
sys.exit()

View File

@ -21,9 +21,12 @@ CREATE_PARTICIPANT_FILES:
# See https://www.rapids.science/latest/setup/configuration/#time-segments
TIME_SEGMENTS: &time_segments
TYPE: PERIODIC # FREQUENCY, PERIODIC, EVENT
FILE: "data/external/timesegments_daily.csv"
TYPE: EVENT # FREQUENCY, PERIODIC, EVENT
FILE: "data/external/straw_events.csv"
INCLUDE_PAST_PERIODIC_SEGMENTS: TRUE # Only relevant if TYPE=PERIODIC, see docs
TAILORED_EVENTS: # Only relevant if TYPE=EVENT
COMPUTE: True
SEGMENTING_METHOD: "30_before" # 30_before, 90_before, stress_event
# See https://www.rapids.science/latest/setup/configuration/#timezone-of-your-study
TIMEZONE:
@ -70,7 +73,6 @@ PHONE_ACCELEROMETER:
COMPUTE: False
FEATURES: ["maxmagnitude", "minmagnitude", "avgmagnitude", "medianmagnitude", "stdmagnitude"]
SRC_SCRIPT: src/features/phone_accelerometer/rapids/main.py
PANDA:
COMPUTE: False
VALID_SENSED_MINUTES: False
@ -93,7 +95,6 @@ PHONE_ACTIVITY_RECOGNITION:
STATIONARY: ["still", "tilting"]
MOBILE: ["on_foot", "walking", "running", "on_bicycle"]
VEHICLE: ["in_vehicle"]
STANDARDIZE_FEATURES: True
SRC_SCRIPT: src/features/phone_activity_recognition/rapids/main.py
# See https://www.rapids.science/latest/features/phone-applications-crashes/
@ -134,7 +135,6 @@ PHONE_APPLICATIONS_FOREGROUND:
APP_EPISODES: ["countepisode", "minduration", "maxduration", "meanduration", "sumduration"]
IGNORE_EPISODES_SHORTER_THAN: 0 # in minutes, set to 0 to disable
IGNORE_EPISODES_LONGER_THAN: 300 # in minutes, set to 0 to disable
STANDARDIZE_FEATURES: True
SRC_SCRIPT: src/features/phone_applications_foreground/rapids/main.py
# See https://www.rapids.science/latest/features/phone-applications-notifications/
@ -155,7 +155,6 @@ PHONE_BATTERY:
RAPIDS:
COMPUTE: True
FEATURES: ["countdischarge", "sumdurationdischarge", "countcharge", "sumdurationcharge", "avgconsumptionrate", "maxconsumptionrate"]
STANDARDIZE_FEATURES: True
SRC_SCRIPT: src/features/phone_battery/rapids/main.py
# See https://www.rapids.science/latest/features/phone-bluetooth/
@ -163,9 +162,8 @@ PHONE_BLUETOOTH:
CONTAINER: bluetooth
PROVIDERS:
RAPIDS:
COMPUTE: True
COMPUTE: False
FEATURES: ["countscans", "uniquedevices", "countscansmostuniquedevice"]
STANDARDIZE_FEATURES: True
SRC_SCRIPT: src/features/phone_bluetooth/rapids/main.R
DORYAB:
@ -183,7 +181,6 @@ PHONE_BLUETOOTH:
DEVICES: ["countscans", "uniquedevices", "meanscans", "stdscans"]
SCANS_MOST_FREQUENT_DEVICE: ["withinsegments", "acrosssegments", "acrossdataset"]
SCANS_LEAST_FREQUENT_DEVICE: ["withinsegments", "acrosssegments", "acrossdataset"]
STANDARDIZE_FEATURES: True
SRC_SCRIPT: src/features/phone_bluetooth/doryab/main.py
# See https://www.rapids.science/latest/features/phone-calls/
@ -198,7 +195,6 @@ PHONE_CALLS:
missed: [count, distinctcontacts, timefirstcall, timelastcall, countmostfrequentcontact]
incoming: [count, distinctcontacts, meanduration, sumduration, minduration, maxduration, stdduration, modeduration, entropyduration, timefirstcall, timelastcall, countmostfrequentcontact]
outgoing: [count, distinctcontacts, meanduration, sumduration, minduration, maxduration, stdduration, modeduration, entropyduration, timefirstcall, timelastcall, countmostfrequentcontact]
STANDARDIZE_FEATURES: True
SRC_SCRIPT: src/features/phone_calls/rapids/main.R
# See https://www.rapids.science/latest/features/phone-conversation/
@ -238,7 +234,6 @@ PHONE_DATA_YIELD:
COMPUTE: True
FEATURES: [ratiovalidyieldedminutes, ratiovalidyieldedhours]
MINUTE_RATIO_THRESHOLD_FOR_VALID_YIELDED_HOURS: 0.5 # 0 to 1, minimum percentage of valid minutes in an hour to be considered valid.
STANDARDIZE_FEATURES: True
SRC_SCRIPT: src/features/phone_data_yield/rapids/main.R
PHONE_ESM:
@ -246,9 +241,9 @@ PHONE_ESM:
PROVIDERS:
STRAW:
COMPUTE: True
SCALES: ["PANAS_positive_affect", "PANAS_negative_affect", "JCQ_job_demand", "JCQ_job_control", "JCQ_supervisor_support", "JCQ_coworker_support"]
SCALES: ["PANAS_positive_affect", "PANAS_negative_affect", "JCQ_job_demand", "JCQ_job_control", "JCQ_supervisor_support", "JCQ_coworker_support",
"appraisal_stressfulness_period", "appraisal_stressfulness_event", "appraisal_threat", "appraisal_challenge"]
FEATURES: [mean]
STANDARDIZE_FEATURES: True
SRC_SCRIPT: src/features/phone_esm/straw/main.py
# See https://www.rapids.science/latest/features/phone-keyboard/
@ -267,7 +262,6 @@ PHONE_LIGHT:
RAPIDS:
COMPUTE: True
FEATURES: ["count", "maxlux", "minlux", "avglux", "medianlux", "stdlux"]
STANDARDIZE_FEATURES: True
SRC_SCRIPT: src/features/phone_light/rapids/main.py
# See https://www.rapids.science/latest/features/phone-locations/
@ -292,7 +286,6 @@ PHONE_LOCATIONS:
MINIMUM_DAYS_TO_DETECT_HOME_CHANGES: 3
CLUSTERING_ALGORITHM: DBSCAN # DBSCAN, OPTICS
RADIUS_FOR_HOME: 100
STANDARDIZE_FEATURES: True
SRC_SCRIPT: src/features/phone_locations/doryab/main.py
BARNETT:
@ -300,7 +293,6 @@ PHONE_LOCATIONS:
FEATURES: ["hometime","disttravelled","rog","maxdiam","maxhomedist","siglocsvisited","avgflightlen","stdflightlen","avgflightdur","stdflightdur","probpause","siglocentropy","circdnrtn","wkenddayrtn"]
IF_MULTIPLE_TIMEZONES: USE_MOST_COMMON
MINUTES_DATA_USED: False # Use this for quality control purposes, how many minutes of data (location coordinates gruped by minute) were used to compute features
STANDARDIZE_FEATURES: True
SRC_SCRIPT: src/features/phone_locations/barnett/main.R
# See https://www.rapids.science/latest/features/phone-log/
@ -320,7 +312,6 @@ PHONE_MESSAGES:
FEATURES:
received: [count, distinctcontacts, timefirstmessage, timelastmessage, countmostfrequentcontact]
sent: [count, distinctcontacts, timefirstmessage, timelastmessage, countmostfrequentcontact]
STANDARDIZE_FEATURES: True
SRC_SCRIPT: src/features/phone_messages/rapids/main.R
# See https://www.rapids.science/latest/features/phone-screen/
@ -334,7 +325,6 @@ PHONE_SCREEN:
IGNORE_EPISODES_LONGER_THAN: 360 # in minutes, set to 0 to disable
FEATURES: ["countepisode", "sumduration", "maxduration", "minduration", "avgduration", "stdduration", "firstuseafter"] # "episodepersensedminutes" needs to be added later
EPISODE_TYPES: ["unlock"]
STANDARDIZE_FEATURES: True
SRC_SCRIPT: src/features/phone_screen/rapids/main.py
# See https://www.rapids.science/latest/features/phone-wifi-connected/
@ -353,7 +343,6 @@ PHONE_WIFI_VISIBLE:
RAPIDS:
COMPUTE: True
FEATURES: ["countscans", "uniquedevices", "countscansmostuniquedevice"]
STANDARDIZE_FEATURES: True
SRC_SCRIPT: src/features/phone_wifi_visible/rapids/main.R
@ -455,7 +444,6 @@ FITBIT_SLEEP_INTRADAY:
UNIFIED: [awake, asleep]
SLEEP_TYPES: [main, nap, all]
SRC_SCRIPT: src/features/fitbit_sleep_intraday/rapids/main.py
PRICE:
COMPUTE: False
FEATURES: [avgduration, avgratioduration, avgstarttimeofepisodemain, avgendtimeofepisodemain, avgmidpointofepisodemain, stdstarttimeofepisodemain, stdendtimeofepisodemain, stdmidpointofepisodemain, socialjetlag, rmssdmeanstarttimeofepisodemain, rmssdmeanendtimeofepisodemain, rmssdmeanmidpointofepisodemain, rmssdmedianstarttimeofepisodemain, rmssdmedianendtimeofepisodemain, rmssdmedianmidpointofepisodemain]
@ -528,7 +516,6 @@ EMPATICA_ACCELEROMETER:
COMPUTE: True
WINDOW_LENGTH: 15 # specify window length in seconds
SECOND_ORDER_FEATURES: ['mean', 'median', 'sd', 'nlargest', 'nsmallest', 'count_windows']
STANDARDIZE_FEATURES: True
SRC_SCRIPT: src/features/empatica_accelerometer/cr/main.py
@ -557,7 +544,6 @@ EMPATICA_TEMPERATURE:
COMPUTE: True
WINDOW_LENGTH: 300 # specify window length in seconds
SECOND_ORDER_FEATURES: ['mean', 'median', 'sd', 'nlargest', 'nsmallest', 'count_windows']
STANDARDIZE_FEATURES: True
SRC_SCRIPT: src/features/empatica_temperature/cr/main.py
# See https://www.rapids.science/latest/features/empatica-electrodermal-activity/
@ -579,7 +565,6 @@ EMPATICA_ELECTRODERMAL_ACTIVITY:
COMPUTE: True
WINDOW_LENGTH: 60 # specify window length in seconds
SECOND_ORDER_FEATURES: ['mean', 'median', 'sd', 'nlargest', 'nsmallest', count_windows, eda_num_peaks_non_zero]
STANDARDIZE_FEATURES: True
IMPUTE_NANS: True
SRC_SCRIPT: src/features/empatica_electrodermal_activity/cr/main.py
@ -599,7 +584,6 @@ EMPATICA_BLOOD_VOLUME_PULSE:
COMPUTE: True
WINDOW_LENGTH: 300 # specify window length in seconds
SECOND_ORDER_FEATURES: ['mean', 'median', 'sd', 'nlargest', 'nsmallest', 'count_windows', 'hrv_num_windows_non_nan']
STANDARDIZE_FEATURES: True
SRC_SCRIPT: src/features/empatica_blood_volume_pulse/cr/main.py
# See https://www.rapids.science/latest/features/empatica-inter-beat-interval/
@ -619,7 +603,6 @@ EMPATICA_INTER_BEAT_INTERVAL:
COMPUTE: True
WINDOW_LENGTH: 300 # specify window length in seconds
SECOND_ORDER_FEATURES: ['mean', 'median', 'sd', 'nlargest', 'nsmallest', 'count_windows', 'hrv_num_windows_non_nan']
STANDARDIZE_FEATURES: True
SRC_SCRIPT: src/features/empatica_inter_beat_interval/cr/main.py
# See https://www.rapids.science/latest/features/empatica-tags/
@ -667,10 +650,9 @@ HEATMAP_FEATURE_CORRELATION_MATRIX:
########################################################################################################################
ALL_CLEANING_INDIVIDUAL:
CLEAN_STANDARDIZED: True
PROVIDERS:
RAPIDS:
COMPUTE: True
COMPUTE: False
IMPUTE_SELECTED_EVENT_FEATURES:
COMPUTE: False
MIN_DATA_YIELDED_MINUTES_TO_IMPUTE: 0.33
@ -684,28 +666,25 @@ ALL_CLEANING_INDIVIDUAL:
MIN_OVERLAP_FOR_CORR_THRESHOLD: 0.5
CORR_THRESHOLD: 0.95
SRC_SCRIPT: src/features/all_cleaning_individual/rapids/main.R
STRAW: # currently the same as RAPIDS provider with a change in selecting the imputation type
STRAW:
COMPUTE: True
IMPUTE_PHONE_SELECTED_EVENT_FEATURES:
COMPUTE: False
TYPE: median # options: zero, mean, median or k-nearest
MIN_DATA_YIELDED_MINUTES_TO_IMPUTE: 0.33
COLS_NAN_THRESHOLD: 1 # set to 1 to disable
PHONE_DATA_YIELD_FEATURE: RATIO_VALID_YIELDED_MINUTES # RATIO_VALID_YIELDED_HOURS or RATIO_VALID_YIELDED_MINUTES
PHONE_DATA_YIELD_RATIO_THRESHOLD: 0.5 # set to 0 to disable
EMPATICA_DATA_YIELD_RATIO_THRESHOLD: 0.5 # set to 0 to disable
ROWS_NAN_THRESHOLD: 0.33 # set to 1 to disable
COLS_NAN_THRESHOLD: 0.9 # set to 1 to remove only columns that contains all (100% of) NaN
COLS_VAR_THRESHOLD: True
ROWS_NAN_THRESHOLD: 1 # set to 1 to disable
DATA_YIELD_FEATURE: RATIO_VALID_YIELDED_HOURS # RATIO_VALID_YIELDED_HOURS or RATIO_VALID_YIELDED_MINUTES
DATA_YIELD_RATIO_THRESHOLD: 0 # set to 0 to disable
DROP_HIGHLY_CORRELATED_FEATURES:
COMPUTE: True
MIN_OVERLAP_FOR_CORR_THRESHOLD: 0.5
CORR_THRESHOLD: 0.95
STANDARDIZATION: True
SRC_SCRIPT: src/features/all_cleaning_individual/straw/main.py
ALL_CLEANING_OVERALL:
CLEAN_STANDARDIZED: True
PROVIDERS:
RAPIDS:
COMPUTE: True
COMPUTE: False
IMPUTE_SELECTED_EVENT_FEATURES:
COMPUTE: False
MIN_DATA_YIELDED_MINUTES_TO_IMPUTE: 0.33
@ -719,40 +698,22 @@ ALL_CLEANING_OVERALL:
MIN_OVERLAP_FOR_CORR_THRESHOLD: 0.5
CORR_THRESHOLD: 0.95
SRC_SCRIPT: src/features/all_cleaning_overall/rapids/main.R
STRAW: # currently the same as RAPIDS provider with a change in selecting the imputation type
STRAW:
COMPUTE: True
IMPUTE_PHONE_SELECTED_EVENT_FEATURES:
COMPUTE: False
TYPE: median # options: zero, mean, median or k-nearest
MIN_DATA_YIELDED_MINUTES_TO_IMPUTE: 0.33
COLS_NAN_THRESHOLD: 1 # set to 1 to disable
PHONE_DATA_YIELD_FEATURE: RATIO_VALID_YIELDED_MINUTES # RATIO_VALID_YIELDED_HOURS or RATIO_VALID_YIELDED_MINUTES
PHONE_DATA_YIELD_RATIO_THRESHOLD: 0.5 # set to 0 to disable
EMPATICA_DATA_YIELD_RATIO_THRESHOLD: 0.5 # set to 0 to disable
ROWS_NAN_THRESHOLD: 0.33 # set to 1 to disable
COLS_NAN_THRESHOLD: 0.8 # set to 1 to remove only columns that contains all (100% of) NaN
COLS_VAR_THRESHOLD: True
ROWS_NAN_THRESHOLD: 1 # set to 1 to disable
DATA_YIELD_FEATURE: RATIO_VALID_YIELDED_HOURS # RATIO_VALID_YIELDED_HOURS or RATIO_VALID_YIELDED_MINUTES
DATA_YIELD_RATIO_THRESHOLD: 0 # set to 0 to disable
DROP_HIGHLY_CORRELATED_FEATURES:
COMPUTE: True
MIN_OVERLAP_FOR_CORR_THRESHOLD: 0.5
CORR_THRESHOLD: 0.95
STANDARDIZATION: False
SRC_SCRIPT: src/features/all_cleaning_overall/straw/main.py
########################################################################################################################
# Z-score standardization #
########################################################################################################################
STANDARDIZATION: # Standardization for both providers is executed if only one of two providers is marked COMPUTE: TRUE
MERGE_ALL: True # Creates the joint standardized file for each participant and all participants. Similar to merge_sensor_features_for_all_participants rule
PROVIDERS:
CR:
COMPUTE: True
SRC_SCRIPT: src/features/standardization/main.py
OTHER:
COMPUTE: True
LIST: [RAPIDS, DORYAB, BARNETT, STRAW]
SRC_SCRIPT: src/features/standardization/main.py
########################################################################################################################
# Baseline #
########################################################################################################################
@ -771,4 +732,8 @@ PARAMS_FOR_ANALYSIS:
TARGET:
COMPUTE: True
LABEL: PANAS_negative_affect_mean
LABEL: appraisal_stressfulness_event_mean
ALL_LABELS: [PANAS_positive_affect_mean, PANAS_negative_affect_mean, JCQ_job_demand_mean, JCQ_job_control_mean, JCQ_supervisor_support_mean,
JCQ_coworker_support_mean, appraisal_stressfulness_period_mean, appraisal_stressfulness_event_mean, appraisal_threat_mean, appraisal_challenge_mean]
# PANAS_positive_affect_mean, PANAS_negative_affect_mean, JCQ_job_demand_mean, JCQ_job_control_mean, JCQ_supervisor_support_mean,
# JCQ_coworker_support_mean, appraisal_stressfulness_period_mean, appraisal_stressfulness_event_mean, appraisal_threat_mean, appraisal_challenge_mean

View File

@ -1,11 +1,11 @@
PHONE:
DEVICE_IDS: [a748ee1a-1d0b-4ae9-9074-279a2b6ba524] # the participant's AWARE device id
PLATFORMS: [android] # or ios
LABEL: MyTestP01 # any string
START_DATE: 2020-01-01 # this can also be empty
END_DATE: 2021-01-01 # this can also be empty
DEVICE_IDS: [4b62a655-cbf0-4ac0-a448-06726f45b56a]
PLATFORMS: [android]
LABEL: uploader_53573
START_DATE: 2021-05-21 09:21:24
END_DATE: 2021-07-12 17:32:07
EMPATICA:
DEVICE_IDS: [empatica1]
LABEL: test01
START_DATE:
END_DATE:
DEVICE_IDS: [uploader_53573]
LABEL: uploader_53573
START_DATE: 2021-05-21 09:21:24
END_DATE: 2021-07-12 17:32:07

View File

@ -1,2 +1,3 @@
label,start_time,length,repeats_on,repeats_value
daily,04:00:00,23H 59M 59S,every_day,0
working_day,04:00:00,18H 00M 00S,every_day,0

1 label start_time length repeats_on repeats_value
2 daily 04:00:00 23H 59M 59S every_day 0
3 working_day 04:00:00 18H 00M 00S every_day 0

View File

@ -86,8 +86,6 @@ dependencies:
- readline=8.0
- requests=2.25.0
- retrying=1.3.3
- scikit-learn=0.23.2
- scipy=1.5.2
- setuptools=51.0.0
- six=1.15.0
- smmap=3.0.4
@ -107,34 +105,61 @@ dependencies:
- zlib=1.2.11
- pip:
- amply==0.1.4
- auto-sklearn==0.14.7
- bidict==0.22.0
- biosppy==0.8.0
- build==0.8.0
- cached-property==1.5.2
- cloudpickle==2.2.0
- configargparse==0.15.1
- configspace==0.4.21
- cr-features==0.2.1
- cycler==0.11.0
- cython==0.29.32
- dask==2022.2.0
- decorator==4.4.2
- distributed==2022.2.0
- distro==1.7.0
- emcee==3.1.2
- fonttools==4.33.2
- fsspec==2022.8.2
- h5py==3.6.0
- heapdict==1.0.1
- hmmlearn==0.2.7
- ipython-genutils==0.2.0
- jupyter-core==4.6.3
- kiwisolver==1.4.2
- liac-arff==2.5.0
- locket==1.0.0
- matplotlib==3.5.1
- msgpack==1.0.4
- nbformat==5.0.7
- opencv-python==4.5.5.64
- packaging==21.3
- partd==1.3.0
- peakutils==1.3.3
- pep517==0.13.0
- pillow==9.1.0
- pulp==2.4
- pynisher==0.6.4
- pyparsing==2.4.7
- pyrfr==0.8.3
- pyrsistent==0.15.5
- pywavelets==1.3.0
- ratelimiter==1.2.0.post0
- scikit-learn==0.24.2
- scipy==1.7.3
- seaborn==0.11.2
- shortuuid==1.0.8
- smac==1.2
- snakemake==5.30.2
- sortedcontainers==2.4.0
- tblib==1.7.0
- tomli==2.0.1
- toolz==0.12.0
- toposort==1.5
- tornado==6.2
- traitlets==4.3.3
- typing-extensions==4.2.0
- zict==2.2.0
prefix: /opt/conda/envs/rapids

View File

@ -40,15 +40,6 @@ def find_features_files(wildcards):
feature_files.extend(expand("data/interim/{{pid}}/{sensor_key}_features/{sensor_key}_{language}_{provider_key}.csv", sensor_key=wildcards.sensor_key.lower(), language=get_script_language(provider["SRC_SCRIPT"]), provider_key=provider_key.lower()))
return(feature_files)
def find_empaticas_standardized_features_files(wildcards):
feature_files = []
if "empatica" in wildcards.sensor_key:
for provider_key, provider in config[(wildcards.sensor_key).upper()]["PROVIDERS"].items():
if provider["COMPUTE"] and provider.get("WINDOWS", False) and provider["WINDOWS"]["COMPUTE"]:
if "empatica" in wildcards.sensor_key:
feature_files.extend(expand("data/interim/{{pid}}/{sensor_key}_features/z_{sensor_key}_{language}_{provider_key}.csv", sensor_key=wildcards.sensor_key.lower(), language=get_script_language(provider["SRC_SCRIPT"]), provider_key=provider_key.lower()))
return(feature_files)
def find_joint_non_empatica_sensor_files(wildcards):
joined_files = []
for config_key in config.keys():
@ -82,18 +73,6 @@ def input_merge_sensor_features_for_individual_participants(wildcards):
break
return feature_files
def input_merge_standardized_sensor_features_for_individual_participants(wildcards):
feature_files = []
for config_key in config.keys():
if config_key.startswith(("PHONE", "FITBIT", "EMPATICA")) and "PROVIDERS" in config[config_key] and isinstance(config[config_key]["PROVIDERS"], dict):
for provider_key, provider in config[config_key]["PROVIDERS"].items():
if "COMPUTE" in provider.keys() and provider["COMPUTE"] and ("STANDARDIZE_FEATURES" in provider.keys() and provider["STANDARDIZE_FEATURES"] or
"WINDOWS" in provider.keys() and "STANDARDIZE_FEATURES" in provider["WINDOWS"].keys() and provider["WINDOWS"]["STANDARDIZE_FEATURES"]):
feature_files.append("data/processed/features/{pid}/z_" + config_key.lower() + ".csv")
break
return feature_files
def get_phone_sensor_names():
phone_sensor_names = []
for config_key in config.keys():

View File

@ -796,20 +796,6 @@ rule empatica_accelerometer_python_features:
script:
"../src/features/entry.py"
rule empatica_accelerometer_python_features_standardization:
input:
windows_features_data = "data/interim/{pid}/empatica_accelerometer_features/empatica_accelerometer_python_{provider_key}_windows.csv"
params:
provider = config["STANDARDIZATION"]["PROVIDERS"]["CR"],
provider_key = "{provider_key}",
sensor_key = "empatica_accelerometer",
provider_main = config["EMPATICA_ACCELEROMETER"]["PROVIDERS"]["CR"]
output:
"data/interim/{pid}/empatica_accelerometer_features/z_empatica_accelerometer_python_{provider_key}.csv",
"data/interim/{pid}/empatica_accelerometer_features/z_empatica_accelerometer_python_{provider_key}_windows.csv"
script:
"../src/features/standardization/main.py"
rule empatica_accelerometer_r_features:
input:
sensor_data = "data/raw/{pid}/empatica_accelerometer_with_datetime.csv",
@ -864,20 +850,6 @@ rule empatica_temperature_python_features:
script:
"../src/features/entry.py"
rule empatica_temperature_python_features_standardization:
input:
windows_features_data = "data/interim/{pid}/empatica_temperature_features/empatica_temperature_python_{provider_key}_windows.csv"
params:
provider = config["STANDARDIZATION"]["PROVIDERS"]["CR"],
provider_key = "{provider_key}",
sensor_key = "empatica_temperature",
provider_main = config["EMPATICA_TEMPERATURE"]["PROVIDERS"]["CR"]
output:
"data/interim/{pid}/empatica_temperature_features/z_empatica_temperature_python_{provider_key}.csv",
"data/interim/{pid}/empatica_temperature_features/z_empatica_temperature_python_{provider_key}_windows.csv"
script:
"../src/features/standardization/main.py"
rule empatica_temperature_r_features:
input:
sensor_data = "data/raw/{pid}/empatica_temperature_with_datetime.csv",
@ -905,20 +877,6 @@ rule empatica_electrodermal_activity_python_features:
script:
"../src/features/entry.py"
rule empatica_electrodermal_activity_python_features_standardization:
input:
windows_features_data = "data/interim/{pid}/empatica_electrodermal_activity_features/empatica_electrodermal_activity_python_{provider_key}_windows.csv"
params:
provider = config["STANDARDIZATION"]["PROVIDERS"]["CR"],
provider_key = "{provider_key}",
sensor_key = "empatica_electrodermal_activity",
provider_main = config["EMPATICA_ELECTRODERMAL_ACTIVITY"]["PROVIDERS"]["CR"]
output:
"data/interim/{pid}/empatica_electrodermal_activity_features/z_empatica_electrodermal_activity_python_{provider_key}.csv",
"data/interim/{pid}/empatica_electrodermal_activity_features/z_empatica_electrodermal_activity_python_{provider_key}_windows.csv"
script:
"../src/features/standardization/main.py"
rule empatica_electrodermal_activity_r_features:
input:
sensor_data = "data/raw/{pid}/empatica_electrodermal_activity_with_datetime.csv",
@ -946,20 +904,6 @@ rule empatica_blood_volume_pulse_python_features:
script:
"../src/features/entry.py"
rule empatica_blood_volume_pulse_python_cr_features_standardization:
input:
windows_features_data = "data/interim/{pid}/empatica_blood_volume_pulse_features/empatica_blood_volume_pulse_python_{provider_key}_windows.csv"
params:
provider = config["STANDARDIZATION"]["PROVIDERS"]["CR"],
provider_key = "{provider_key}",
sensor_key = "empatica_blood_volume_pulse",
provider_main = config["EMPATICA_BLOOD_VOLUME_PULSE"]["PROVIDERS"]["CR"]
output:
"data/interim/{pid}/empatica_blood_volume_pulse_features/z_empatica_blood_volume_pulse_python_{provider_key}.csv",
"data/interim/{pid}/empatica_blood_volume_pulse_features/z_empatica_blood_volume_pulse_python_{provider_key}_windows.csv"
script:
"../src/features/standardization/main.py"
rule empatica_blood_volume_pulse_r_features:
input:
sensor_data = "data/raw/{pid}/empatica_blood_volume_pulse_with_datetime.csv",
@ -987,20 +931,6 @@ rule empatica_inter_beat_interval_python_features:
script:
"../src/features/entry.py"
rule empatica_inter_beat_interval_python_features_standardization:
input:
windows_features_data = "data/interim/{pid}/empatica_inter_beat_interval_features/empatica_inter_beat_interval_python_{provider_key}_windows.csv"
params:
provider = config["STANDARDIZATION"]["PROVIDERS"]["CR"],
provider_key = "{provider_key}",
sensor_key = "empatica_inter_beat_interval",
provider_main = config["EMPATICA_INTER_BEAT_INTERVAL"]["PROVIDERS"]["CR"]
output:
"data/interim/{pid}/empatica_inter_beat_interval_features/z_empatica_inter_beat_interval_python_{provider_key}.csv",
"data/interim/{pid}/empatica_inter_beat_interval_features/z_empatica_inter_beat_interval_python_{provider_key}_windows.csv"
script:
"../src/features/standardization/main.py"
rule empatica_inter_beat_interval_r_features:
input:
sensor_data = "data/raw/{pid}/empatica_inter_beat_interval_with_datetime.csv",
@ -1048,38 +978,6 @@ rule merge_sensor_features_for_individual_participants:
script:
"../src/features/utils/merge_sensor_features_for_individual_participants.R"
rule join_standardized_features_from_empatica:
input:
sensor_features = find_empaticas_standardized_features_files
wildcard_constraints:
sensor_key = '(empatica).*'
output:
"data/processed/features/{pid}/z_{sensor_key}.csv"
script:
"../src/features/utils/join_features_from_providers.R"
rule standardize_features_from_providers_no_empatica:
input:
sensor_features = find_joint_non_empatica_sensor_files
wildcard_constraints:
sensor_key = '(phone|fitbit).*'
params:
provider = config["STANDARDIZATION"]["PROVIDERS"]["OTHER"],
provider_key = "OTHER",
sensor_key = "{sensor_key}"
output:
"data/processed/features/{pid}/z_{sensor_key}.csv"
script:
"../src/features/standardization/main.py"
rule merge_standardized_sensor_features_for_individual_participants:
input:
feature_files = input_merge_standardized_sensor_features_for_individual_participants
output:
"data/processed/features/{pid}/z_all_sensor_features.csv"
script:
"../src/features/utils/merge_sensor_features_for_individual_participants.R"
rule merge_sensor_features_for_all_participants:
input:
feature_files = expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"])
@ -1088,14 +986,6 @@ rule merge_sensor_features_for_all_participants:
script:
"../src/features/utils/merge_sensor_features_for_all_participants.R"
rule merge_standardized_sensor_features_for_all_participants:
input:
feature_files = expand("data/processed/features/{pid}/z_all_sensor_features.csv", pid=config["PIDS"])
output:
"data/processed/features/all_participants/z_all_sensor_features.csv"
script:
"../src/features/utils/merge_standardized_sensor_features_for_all_participants.R"
rule clean_sensor_features_for_individual_participants:
input:
sensor_data = rules.merge_sensor_features_for_individual_participants.output
@ -1107,7 +997,7 @@ rule clean_sensor_features_for_individual_participants:
script_extension = "{script_extension}",
sensor_key = "all_cleaning_individual"
output:
"data/processed/features/{pid}/all_sensor_features_cleaned_{provider_key}_{script_extension}.csv" # bo predstavljalo probleme za naprej (kako iskati datoteke + standardizacija itd.)
"data/processed/features/{pid}/all_sensor_features_cleaned_{provider_key}_{script_extension}.csv"
script:
"../src/features/entry.{params.script_extension}"
@ -1118,37 +1008,9 @@ rule clean_sensor_features_for_all_participants:
provider = lambda wildcards: config["ALL_CLEANING_OVERALL"]["PROVIDERS"][wildcards.provider_key.upper()],
provider_key = "{provider_key}",
script_extension = "{script_extension}",
sensor_key = "all_cleaning_overall"
sensor_key = "all_cleaning_overall",
target = "{target}"
output:
"data/processed/features/all_participants/all_sensor_features_cleaned_{provider_key}_{script_extension}.csv"
"data/processed/features/all_participants/all_sensor_features_cleaned_{provider_key}_{script_extension}_({target}).csv"
script:
"../src/features/entry.{params.script_extension}"
rule clean_standardized_sensor_features_for_individual_participants:
input:
sensor_data = rules.merge_standardized_sensor_features_for_individual_participants.output
wildcard_constraints:
pid = "("+"|".join(config["PIDS"])+")"
params:
provider = lambda wildcards: config["ALL_CLEANING_INDIVIDUAL"]["PROVIDERS"][wildcards.provider_key.upper()],
provider_key = "{provider_key}",
script_extension = "{script_extension}",
sensor_key = "all_cleaning_individual"
output:
"data/processed/features/{pid}/z_all_sensor_features_cleaned_{provider_key}_{script_extension}.csv"
script:
"../src/features/entry.{params.script_extension}"
rule clean_standardized_sensor_features_for_all_participants:
input:
sensor_data = rules.merge_standardized_sensor_features_for_all_participants.output
params:
provider = lambda wildcards: config["ALL_CLEANING_OVERALL"]["PROVIDERS"][wildcards.provider_key.upper()],
provider_key = "{provider_key}",
script_extension = "{script_extension}",
sensor_key = "all_cleaning_overall"
output:
"data/processed/features/all_participants/z_all_sensor_features_cleaned_{provider_key}_{script_extension}.csv"
script:
"../src/features/entry.{params.script_extension}"

View File

@ -30,43 +30,23 @@ rule baseline_features:
rule select_target:
input:
cleaned_sensor_features = "data/processed/features/{pid}/z_all_sensor_features_cleaned_straw_py.csv"
cleaned_sensor_features = "data/processed/features/{pid}/all_sensor_features_cleaned_straw_py.csv"
params:
target_variable = config["PARAMS_FOR_ANALYSIS"]["TARGET"]["LABEL"]
output:
"data/processed/models/individual_model/{pid}/z_input.csv"
"data/processed/models/individual_model/{pid}/input.csv"
script:
"../src/models/select_targets.py"
rule merge_features_and_targets_for_population_model:
input:
cleaned_sensor_features = "data/processed/features/all_participants/z_all_sensor_features_cleaned_straw_py.csv",
cleaned_sensor_features = "data/processed/features/all_participants/all_sensor_features_cleaned_straw_py_({target}).csv",
demographic_features = expand("data/processed/features/{pid}/baseline_features.csv", pid=config["PIDS"]),
params:
target_variable=config["PARAMS_FOR_ANALYSIS"]["TARGET"]["LABEL"]
target_variable="{target}"
output:
"data/processed/models/population_model/z_input.csv"
"data/processed/models/population_model/input_{target}.csv"
script:
"../src/models/merge_features_and_targets_for_population_model.py"
# rule select_target:
# input:
# cleaned_sensor_features = "data/processed/features/{pid}/all_sensor_features_cleaned_straw_py.csv"
# params:
# target_variable = config["PARAMS_FOR_ANALYSIS"]["TARGET"]["LABEL"]
# output:
# "data/processed/models/individual_model/{pid}/input.csv"
# script:
# "../src/models/select_targets.py"
# rule merge_features_and_targets_for_population_model:
# input:
# cleaned_sensor_features = "data/processed/features/all_participants/all_sensor_features_cleaned_straw_py.csv",
# demographic_features = expand("data/processed/features/{pid}/baseline_features.csv", pid=config["PIDS"]),
# params:
# target_variable=config["PARAMS_FOR_ANALYSIS"]["TARGET"]["LABEL"]
# output:
# "data/processed/models/population_model/input.csv"
# script:
# "../src/models/merge_features_and_targets_for_population_model.py"

View File

@ -249,3 +249,29 @@ rule empatica_readable_datetime:
"data/raw/{pid}/empatica_{sensor}_with_datetime.csv"
script:
"../src/data/datetime/readable_datetime.R"
rule extract_event_information_from_esm:
input:
esm_raw_input = "data/raw/{pid}/phone_esm_raw.csv",
pid_file = "data/external/participant_files/{pid}.yaml"
params:
stage = "extract",
pid = "{pid}"
output:
"data/raw/ers/{pid}_ers.csv",
"data/raw/ers/{pid}_stress_event_targets.csv"
script:
"../src/features/phone_esm/straw/process_user_event_related_segments.py"
rule merge_event_related_segments_files:
input:
ers_files = expand("data/raw/ers/{pid}_ers.csv", pid=config["PIDS"]),
se_files = expand("data/raw/ers/{pid}_stress_event_targets.csv", pid=config["PIDS"])
params:
stage = "merge"
output:
"data/external/straw_events.csv",
"data/external/stress_event_targets.csv"
script:
"../src/features/phone_esm/straw/process_user_event_related_segments.py"

View File

@ -5,13 +5,16 @@ options(scipen=999)
assign_rows_to_segments <- function(data, segments){
# This function is used by all segment types, we use data.tables because they are fast
data <- data.table::as.data.table(data)
data[, assigned_segments := ""]
for(i in seq_len(nrow(segments))) {
segment <- segments[i,]
data[segment$segment_start_ts<= timestamp & segment$segment_end_ts >= timestamp,
assigned_segments := stringi::stri_c(assigned_segments, segment$segment_id, sep = "|")]
}
data[,assigned_segments:=substring(assigned_segments, 2)]
data
}

View File

@ -1,88 +1,174 @@
import pandas as pd
import numpy as np
import math, sys
import math, sys, random
import yaml
from sklearn.impute import KNNImputer
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import seaborn as sns
sys.path.append('/rapids/')
from src.features import empatica_data_yield as edy
pd.set_option('display.max_columns', 20)
def straw_cleaning(sensor_data_files, provider):
features = pd.read_csv(sensor_data_files["sensor_data"][0])
# TODO: reorder the cleaning steps so it makes sense for the analysis
# TODO: add conditions that differentiates cleaning steps for standardized and nonstandardized features, for this
# the snakemake rules will also have to come with additional parameter (in rules/features.smk)
# Impute selected features event
impute_phone_features = provider["IMPUTE_PHONE_SELECTED_EVENT_FEATURES"]
if impute_phone_features["COMPUTE"]:
if not 'phone_data_yield_rapids_ratiovalidyieldedminutes' in features.columns:
raise KeyError("RAPIDS provider needs to impute the selected event features based on phone_data_yield_rapids_ratiovalidyieldedminutes column, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyieldedminutes' in [FEATURES].")
# TODO: if the type of the imputation will vary for different groups of features make conditional imputations here
phone_cols = [col for col in features if \
col.startswith('phone_applications_foreground_rapids_') or
col.startswith('phone_battery_rapids_') or
col.startswith('phone_calls_rapids_') or
col.startswith('phone_keyboard_rapids_') or
col.startswith('phone_messages_rapids_') or
col.startswith('phone_screen_rapids_') or
col.startswith('phone_wifi_')]
mask = features['phone_data_yield_rapids_ratiovalidyieldedminutes'] > impute_phone_features['MIN_DATA_YIELDED_MINUTES_TO_IMPUTE']
features.loc[mask, phone_cols] = impute(features[mask][phone_cols], method=impute_phone_features["TYPE"].lower())
# Drop rows with the value of data_yield_column less than data_yield_ratio_threshold
data_yield_unit = provider["DATA_YIELD_FEATURE"].split("_")[3].lower()
data_yield_column = "phone_data_yield_rapids_ratiovalidyielded" + data_yield_unit
if not data_yield_column in features.columns:
raise KeyError(f"RAPIDS provider needs to impute the selected event features based on {data_yield_column} column, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyielded{data_yield_unit}' in [FEATURES].")
if provider["DATA_YIELD_RATIO_THRESHOLD"]:
features = features[features[data_yield_column] >= provider["DATA_YIELD_RATIO_THRESHOLD"]]
esm_cols = features.loc[:, features.columns.str.startswith('phone_esm')] # For later preservation of esm_cols
# Remove cols if threshold of NaN values is passed
features = features.loc[:, features.isna().sum() < provider["COLS_NAN_THRESHOLD"] * features.shape[0]]
# Remove cols where variance is 0
if provider["COLS_VAR_THRESHOLD"]:
features.drop(features.std()[features.std() == 0].index.values, axis=1, inplace=True)
esm_cols = features.loc[:, features.columns.str.startswith('phone_esm_straw')] # Get target (esm) columns
with open('config.yaml', 'r') as stream:
config = yaml.load(stream, Loader=yaml.FullLoader)
excluded_columns = ['local_segment', 'local_segment_label', 'local_segment_start_datetime', 'local_segment_end_datetime']
# (1) FILTER_OUT THE ROWS THAT DO NOT HAVE THE TARGET COLUMN AVAILABLE
if config['PARAMS_FOR_ANALYSIS']['TARGET']['COMPUTE']:
target = config['PARAMS_FOR_ANALYSIS']['TARGET']['LABEL'] # get target label from config
if 'phone_esm_straw_' + target in features:
features = features[features['phone_esm_straw_' + target].notna()].reset_index(drop=True)
else:
return features
# (2.1) QUALITY CHECK (DATA YIELD COLUMN) deletes the rows where E4 or phone data is low quality
phone_data_yield_unit = provider["PHONE_DATA_YIELD_FEATURE"].split("_")[3].lower()
phone_data_yield_column = "phone_data_yield_rapids_ratiovalidyielded" + phone_data_yield_unit
features = edy.calculate_empatica_data_yield(features)
if not phone_data_yield_column in features.columns and not "empatica_data_yield" in features.columns:
raise KeyError(f"RAPIDS provider needs to clean the selected event features based on {phone_data_yield_column} and empatica_data_yield columns. For phone data yield, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyielded{data_yield_unit}' in [FEATURES].")
# Drop rows where phone data yield is less then given threshold
if provider["PHONE_DATA_YIELD_RATIO_THRESHOLD"]:
features = features[features[phone_data_yield_column] >= provider["PHONE_DATA_YIELD_RATIO_THRESHOLD"]].reset_index(drop=True)
# Drop rows where empatica data yield is less then given threshold
if provider["EMPATICA_DATA_YIELD_RATIO_THRESHOLD"]:
features = features[features["empatica_data_yield"] >= provider["EMPATICA_DATA_YIELD_RATIO_THRESHOLD"]].reset_index(drop=True)
if features.empty:
return features
# (2.2) DO THE ROWS CONSIST OF ENOUGH NON-NAN VALUES?
min_count = math.ceil((1 - provider["ROWS_NAN_THRESHOLD"]) * features.shape[1]) # minimal not nan values in row
features.dropna(axis=0, thresh=min_count, inplace=True) # Thresh => at least this many not-nans
# (3) REMOVE COLS IF THEIR NAN THRESHOLD IS PASSED (should be <= if even all NaN columns must be preserved - this solution now drops columns with all NaN rows)
esm_cols = features.loc[:, features.columns.str.startswith('phone_esm_straw')] # Get target (esm) columns
features = features.loc[:, features.isna().sum() < provider["COLS_NAN_THRESHOLD"] * features.shape[0]]
# Preserve esm cols if deleted (has to come after drop cols operations)
for esm in esm_cols:
if esm not in features:
features[esm] = esm_cols[esm]
# Drop highly correlated features - To-Do še en thershold var, ki je v config + kako se tretirajo NaNs?
# (4) CONTEXTUAL IMPUTATION
# Impute selected phone features with a high number
impute_w_hn = [col for col in features.columns if \
"timeoffirstuse" in col or
"timeoflastuse" in col or
"timefirstcall" in col or
"timelastcall" in col or
"firstuseafter" in col or
"timefirstmessages" in col or
"timelastmessages" in col]
features[impute_w_hn] = features[impute_w_hn].fillna(1500)
# Impute special case (mostcommonactivity) and (homelabel)
impute_w_sn = [col for col in features.columns if "mostcommonactivity" in col]
features[impute_w_sn] = features[impute_w_sn].fillna(4) # Special case of imputation - nominal/ordinal value
impute_w_sn2 = [col for col in features.columns if "homelabel" in col]
features[impute_w_sn2] = features[impute_w_sn2].fillna(1) # Special case of imputation - nominal/ordinal value
impute_w_sn3 = [col for col in features.columns if "loglocationvariance" in col]
features[impute_w_sn2] = features[impute_w_sn2].fillna(-1000000) # Special case of imputation - nominal/ordinal value
# Impute selected phone features with 0
impute_zero = [col for col in features if \
col.startswith('phone_applications_foreground_rapids_') or
col.startswith('phone_battery_rapids_') or
col.startswith('phone_bluetooth_rapids_') or
col.startswith('phone_light_rapids_') or
col.startswith('phone_calls_rapids_') or
col.startswith('phone_messages_rapids_') or
col.startswith('phone_screen_rapids_') or
col.startswith('phone_wifi_visible')]
features[impute_zero+list(esm_cols.columns)] = features[impute_zero+list(esm_cols.columns)].fillna(0)
## (5) STANDARDIZATION
if provider["STANDARDIZATION"]:
features.loc[:, ~features.columns.isin(excluded_columns)] = StandardScaler().fit_transform(features.loc[:, ~features.columns.isin(excluded_columns)])
# (6) IMPUTATION: IMPUTE DATA WITH KNN METHOD
impute_cols = [col for col in features.columns if col not in excluded_columns]
features.reset_index(drop=True, inplace=True)
features[impute_cols] = impute(features[impute_cols], method="knn")
# (7) REMOVE COLS WHERE VARIANCE IS 0
esm_cols = features.loc[:, features.columns.str.startswith('phone_esm_straw')]
if provider["COLS_VAR_THRESHOLD"]:
features.drop(features.std()[features.std() == 0].index.values, axis=1, inplace=True)
fe5 = features.copy()
# (8) DROP HIGHLY CORRELATED FEATURES
drop_corr_features = provider["DROP_HIGHLY_CORRELATED_FEATURES"]
if drop_corr_features["COMPUTE"]:
if drop_corr_features["COMPUTE"] and features.shape[0]: # If small amount of segments (rows) is present, do not execute correlation check
numerical_cols = features.select_dtypes(include=np.number).columns.tolist()
# Remove columns where NaN count threshold is passed
valid_features = features[numerical_cols].loc[:, features[numerical_cols].isna().sum() < drop_corr_features['MIN_OVERLAP_FOR_CORR_THRESHOLD'] * features[numerical_cols].shape[0]]
cor_matrix = valid_features.corr(method='spearman').abs()
upper_tri = cor_matrix.where(np.triu(np.ones(cor_matrix.shape), k=1).astype(np.bool))
to_drop = [column for column in upper_tri.columns if any(upper_tri[column] > drop_corr_features["CORR_THRESHOLD"])]
corr_matrix = valid_features.corr().abs()
upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(np.bool))
to_drop = [column for column in upper.columns if any(upper[column] > drop_corr_features["CORR_THRESHOLD"])]
features.drop(to_drop, axis=1, inplace=True)
# Remove rows if threshold of NaN values is passed
min_count = math.ceil((1 - provider["ROWS_NAN_THRESHOLD"]) * features.shape[1]) # minimal not nan values in row
features.dropna(axis=0, thresh=min_count, inplace=True)
# Preserve esm cols if deleted (has to come after drop cols operations)
for esm in esm_cols:
if esm not in features:
features[esm] = esm_cols[esm]
# (9) VERIFY IF THERE ARE ANY NANS LEFT IN THE DATAFRAME
if features.isna().any().any():
raise ValueError("There are still some NaNs present in the dataframe. Please check for implementation errors.")
return features
def impute(df, method='zero'):
def k_nearest(df): # TODO: if needed, implement k-nearest imputation / interpolation
pass
def k_nearest(df):
pd.set_option('display.max_columns', None)
imputer = KNNImputer(n_neighbors=3)
return pd.DataFrame(imputer.fit_transform(df), columns=df.columns)
return { # rest of the columns should be imputed with the selected method
return {
'zero': df.fillna(0),
'high_number': df.fillna(1500),
'mean': df.fillna(df.mean()),
'median': df.fillna(df.median()),
'k-nearest': k_nearest(df)
'knn': k_nearest(df)
}[method]
def graph_bf_af(features, phase_name, plt_flag=False):
if plt_flag:
sns.set(rc={"figure.figsize":(16, 8)})
sns.heatmap(features.isna(), cbar=False) #features.select_dtypes(include=np.number)
plt.savefig(f'features_overall_nans_{phase_name}.png', bbox_inches='tight')
print(f"\n-------------{phase_name}-------------")
print("Rows number:", features.shape[0])
print("Columns number:", len(features.columns))
print("---------------------------------------------\n")

View File

@ -1,88 +1,261 @@
import pandas as pd
import numpy as np
import math, sys
import math, sys, random, warnings, yaml
from sklearn.impute import KNNImputer
from sklearn.preprocessing import StandardScaler, minmax_scale
import matplotlib.pyplot as plt
import seaborn as sns
sys.path.append('/rapids/')
from src.features import empatica_data_yield as edy
def straw_cleaning(sensor_data_files, provider, target):
def straw_cleaning(sensor_data_files, provider):
features = pd.read_csv(sensor_data_files["sensor_data"][0])
# TODO: reorder the cleaning steps so it makes sense for the analysis
# TODO: add conditions that differentiates cleaning steps for standardized and nonstandardized features, for this
# the snakemake rules will also have to come with additional parameter (in rules/features.smk)
with open('config.yaml', 'r') as stream:
config = yaml.load(stream, Loader=yaml.FullLoader)
# Impute selected features event
impute_phone_features = provider["IMPUTE_PHONE_SELECTED_EVENT_FEATURES"]
if impute_phone_features["COMPUTE"]:
if not 'phone_data_yield_rapids_ratiovalidyieldedminutes' in features.columns:
raise KeyError("RAPIDS provider needs to impute the selected event features based on phone_data_yield_rapids_ratiovalidyieldedminutes column, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyieldedminutes' in [FEATURES].")
# TODO: if the type of the imputation will vary for different groups of features make conditional imputations here
phone_cols = [col for col in features if \
col.startswith('phone_applications_foreground_rapids_') or
col.startswith('phone_battery_rapids_') or
col.startswith('phone_calls_rapids_') or
col.startswith('phone_keyboard_rapids_') or
col.startswith('phone_messages_rapids_') or
col.startswith('phone_screen_rapids_') or
col.startswith('phone_wifi_')]
esm_cols = features.loc[:, features.columns.str.startswith('phone_esm_straw')] # Get target (esm) columns
mask = features['phone_data_yield_rapids_ratiovalidyieldedminutes'] > impute_phone_features['MIN_DATA_YIELDED_MINUTES_TO_IMPUTE']
features.loc[mask, phone_cols] = impute(features[mask][phone_cols], method=impute_phone_features["TYPE"].lower())
excluded_columns = ['local_segment', 'local_segment_label', 'local_segment_start_datetime', 'local_segment_end_datetime']
# Drop rows with the value of data_yield_column less than data_yield_ratio_threshold
data_yield_unit = provider["DATA_YIELD_FEATURE"].split("_")[3].lower()
data_yield_column = "phone_data_yield_rapids_ratiovalidyielded" + data_yield_unit
graph_bf_af(features, "1target_rows_before")
if not data_yield_column in features.columns:
raise KeyError(f"RAPIDS provider needs to impute the selected event features based on {data_yield_column} column, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyielded{data_yield_unit}' in [FEATURES].")
if provider["DATA_YIELD_RATIO_THRESHOLD"]:
features = features[features[data_yield_column] >= provider["DATA_YIELD_RATIO_THRESHOLD"]]
esm_cols = features.loc[:, features.columns.str.startswith('phone_esm')] # For later preservation of esm_cols
# Remove cols if threshold of NaN values is passed
features = features.loc[:, features.isna().sum() < provider["COLS_NAN_THRESHOLD"] * features.shape[0]]
# (1.0) OVERRIDE STRESSFULNESS EVENT TARGETS IF ERS SEGMENTING_METHOD IS "STRESS_EVENT"
if config["TIME_SEGMENTS"]["TAILORED_EVENTS"]["SEGMENTING_METHOD"] == "stress_event":
# Remove cols where variance is 0
stress_events_targets = pd.read_csv("data/external/stress_event_targets.csv")
if "appraisal_stressfulness_event_mean" in config['PARAMS_FOR_ANALYSIS']['TARGET']['ALL_LABELS']:
features.drop(columns=['phone_esm_straw_appraisal_stressfulness_event_mean'], inplace=True)
features = features.merge(stress_events_targets[["label", "appraisal_stressfulness_event"]] \
.rename(columns={'label': 'local_segment_label'}), on=['local_segment_label'], how='inner') \
.rename(columns={'appraisal_stressfulness_event': 'phone_esm_straw_appraisal_stressfulness_event_mean'})
if "appraisal_threat_mean" in config['PARAMS_FOR_ANALYSIS']['TARGET']['ALL_LABELS']:
features.drop(columns=['phone_esm_straw_appraisal_threat_mean'], inplace=True)
features = features.merge(stress_events_targets[["label", "appraisal_threat"]] \
.rename(columns={'label': 'local_segment_label'}), on=['local_segment_label'], how='inner') \
.rename(columns={'appraisal_threat': 'phone_esm_straw_appraisal_threat_mean'})
if "appraisal_challenge_mean" in config['PARAMS_FOR_ANALYSIS']['TARGET']['ALL_LABELS']:
features.drop(columns=['phone_esm_straw_appraisal_challenge_mean'], inplace=True)
features = features.merge(stress_events_targets[["label", "appraisal_challenge"]] \
.rename(columns={'label': 'local_segment_label'}), on=['local_segment_label'], how='inner') \
.rename(columns={'appraisal_challenge': 'phone_esm_straw_appraisal_challenge_mean'})
esm_cols = features.loc[:, features.columns.str.startswith('phone_esm_straw')] # Get target (esm) columns
# (1.1) FILTER_OUT THE ROWS THAT DO NOT HAVE THE TARGET COLUMN AVAILABLE
if config['PARAMS_FOR_ANALYSIS']['TARGET']['COMPUTE']:
features = features[features['phone_esm_straw_' + target].notna()].reset_index(drop=True)
if features.empty:
return pd.DataFrame(columns=excluded_columns)
graph_bf_af(features, "2target_rows_after")
# (2) QUALITY CHECK (DATA YIELD COLUMN) drops the rows where E4 or phone data is low quality
phone_data_yield_unit = provider["PHONE_DATA_YIELD_FEATURE"].split("_")[3].lower()
phone_data_yield_column = "phone_data_yield_rapids_ratiovalidyielded" + phone_data_yield_unit
features = edy.calculate_empatica_data_yield(features)
if not phone_data_yield_column in features.columns and not "empatica_data_yield" in features.columns:
raise KeyError(f"RAPIDS provider needs to clean the selected event features based on {phone_data_yield_column} and empatica_data_yield columns. For phone data yield, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyielded{data_yield_unit}' in [FEATURES].")
hist = features[["empatica_data_yield", phone_data_yield_column]].hist()
plt.savefig(f'phone_E4_histogram.png', bbox_inches='tight')
# Drop rows where phone data yield is less then given threshold
if provider["PHONE_DATA_YIELD_RATIO_THRESHOLD"]:
hist = features[phone_data_yield_column].hist(bins=5)
plt.close()
features = features[features[phone_data_yield_column] >= provider["PHONE_DATA_YIELD_RATIO_THRESHOLD"]].reset_index(drop=True)
# Drop rows where empatica data yield is less then given threshold
if provider["EMPATICA_DATA_YIELD_RATIO_THRESHOLD"]:
features = features[features["empatica_data_yield"] >= provider["EMPATICA_DATA_YIELD_RATIO_THRESHOLD"]].reset_index(drop=True)
if features.empty:
return pd.DataFrame(columns=excluded_columns)
graph_bf_af(features, "3data_yield_drop_rows")
if features.empty:
return pd.DataFrame(columns=excluded_columns)
# (3) CONTEXTUAL IMPUTATION
# Impute selected phone features with a high number
impute_w_hn = [col for col in features.columns if \
"timeoffirstuse" in col or
"timeoflastuse" in col or
"timefirstcall" in col or
"timelastcall" in col or
"firstuseafter" in col or
"timefirstmessages" in col or
"timelastmessages" in col]
features[impute_w_hn] = features[impute_w_hn].fillna(1500)
# Impute special case (mostcommonactivity) and (homelabel)
impute_w_sn = [col for col in features.columns if "mostcommonactivity" in col]
features[impute_w_sn] = features[impute_w_sn].fillna(4) # Special case of imputation - nominal/ordinal value
impute_w_sn2 = [col for col in features.columns if "homelabel" in col]
features[impute_w_sn2] = features[impute_w_sn2].fillna(1) # Special case of imputation - nominal/ordinal value
impute_w_sn3 = [col for col in features.columns if "loglocationvariance" in col]
features[impute_w_sn3] = features[impute_w_sn3].fillna(-1000000) # Special case of imputation - loglocation
# Impute location features
impute_locations = [col for col in features \
if col.startswith('phone_locations_doryab_') and
'radiusgyration' not in col
]
# Impute selected phone, location, and esm features with 0
impute_zero = [col for col in features if \
col.startswith('phone_applications_foreground_rapids_') or
col.startswith('phone_activity_recognition_') or
col.startswith('phone_battery_rapids_') or
col.startswith('phone_bluetooth_rapids_') or
col.startswith('phone_light_rapids_') or
col.startswith('phone_calls_rapids_') or
col.startswith('phone_messages_rapids_') or
col.startswith('phone_screen_rapids_') or
col.startswith('phone_bluetooth_doryab_') or
col.startswith('phone_wifi_visible')
]
features[impute_zero+impute_locations+list(esm_cols.columns)] = features[impute_zero+impute_locations+list(esm_cols.columns)].fillna(0)
pd.set_option('display.max_rows', None)
graph_bf_af(features, "4context_imp")
# (4) REMOVE COLS IF THEIR NAN THRESHOLD IS PASSED (should be <= if even all NaN columns must be preserved - this solution now drops columns with all NaN rows)
esm_cols = features.loc[:, features.columns.str.startswith('phone_esm_straw')] # Get target (esm) columns
features = features.loc[:, features.isna().sum() < provider["COLS_NAN_THRESHOLD"] * features.shape[0]]
graph_bf_af(features, "5too_much_nans_cols")
# (5) REMOVE COLS WHERE VARIANCE IS 0
if provider["COLS_VAR_THRESHOLD"]:
features.drop(features.std()[features.std() == 0].index.values, axis=1, inplace=True)
graph_bf_af(features, "6variance_drop")
# Preserve esm cols if deleted (has to come after drop cols operations)
for esm in esm_cols:
if esm not in features:
features[esm] = esm_cols[esm]
# Drop highly correlated features - To-Do še en thershold var, ki je v config + kako se tretirajo NaNs?
# (6) DO THE ROWS CONSIST OF ENOUGH NON-NAN VALUES?
min_count = math.ceil((1 - provider["ROWS_NAN_THRESHOLD"]) * features.shape[1]) # minimal not nan values in row
features.dropna(axis=0, thresh=min_count, inplace=True) # Thresh => at least this many not-nans
graph_bf_af(features, "7too_much_nans_rows")
if features.empty:
return pd.DataFrame(columns=excluded_columns)
# (7) STANDARDIZATION
if provider["STANDARDIZATION"]:
nominal_cols = [col for col in features.columns if "mostcommonactivity" in col or "homelabel" in col] # Excluded nominal features
# Expected warning within this code block
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=RuntimeWarning)
features.loc[:, ~features.columns.isin(excluded_columns + ["pid"] + nominal_cols)] = \
features.loc[:, ~features.columns.isin(excluded_columns + nominal_cols)].groupby('pid').transform(lambda x: StandardScaler().fit_transform(x.values[:,np.newaxis]).ravel())
graph_bf_af(features, "8standardization")
# (8) IMPUTATION: IMPUTE DATA WITH KNN METHOD
features.reset_index(drop=True, inplace=True)
impute_cols = [col for col in features.columns if col not in excluded_columns and col != "pid"]
features[impute_cols] = impute(features[impute_cols], method="knn")
graph_bf_af(features, "9knn_after")
# (9) DROP HIGHLY CORRELATED FEATURES
esm_cols = features.loc[:, features.columns.str.startswith('phone_esm_straw')]
drop_corr_features = provider["DROP_HIGHLY_CORRELATED_FEATURES"]
if drop_corr_features["COMPUTE"]:
if drop_corr_features["COMPUTE"] and features.shape[0] > 5: # If small amount of segments (rows) is present, do not execute correlation check
numerical_cols = features.select_dtypes(include=np.number).columns.tolist()
# Remove columns where NaN count threshold is passed
valid_features = features[numerical_cols].loc[:, features[numerical_cols].isna().sum() < drop_corr_features['MIN_OVERLAP_FOR_CORR_THRESHOLD'] * features[numerical_cols].shape[0]]
cor_matrix = valid_features.corr(method='spearman').abs()
upper_tri = cor_matrix.where(np.triu(np.ones(cor_matrix.shape), k=1).astype(np.bool))
to_drop = [column for column in upper_tri.columns if any(upper_tri[column] > drop_corr_features["CORR_THRESHOLD"])]
corr_matrix = valid_features.corr().abs()
upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(np.bool))
to_drop = [column for column in upper.columns if any(upper[column] > drop_corr_features["CORR_THRESHOLD"])]
# sns.heatmap(corr_matrix, cmap="YlGnBu")
# plt.savefig(f'correlation_matrix.png', bbox_inches='tight')
# plt.close()
# s = corr_matrix.unstack()
# so = s.sort_values(ascending=False)
# pd.set_option('display.max_rows', None)
# sorted_upper = upper.unstack().sort_values(ascending=False)
# print(sorted_upper[sorted_upper > drop_corr_features["CORR_THRESHOLD"]])
features.drop(to_drop, axis=1, inplace=True)
# Remove rows if threshold of NaN values is passed
min_count = math.ceil((1 - provider["ROWS_NAN_THRESHOLD"]) * features.shape[1]) # minimal not nan values in row
features.dropna(axis=0, thresh=min_count, inplace=True)
# Preserve esm cols if deleted (has to come after drop cols operations)
for esm in esm_cols:
if esm not in features:
features[esm] = esm_cols[esm]
graph_bf_af(features, "10correlation_drop")
# Transform categorical columns to category dtype
cat1 = [col for col in features.columns if "mostcommonactivity" in col]
if cat1: # Transform columns to category dtype (mostcommonactivity)
features[cat1] = features[cat1].astype(int).astype('category')
cat2 = [col for col in features.columns if "homelabel" in col]
if cat2: # Transform columns to category dtype (homelabel)
features[cat2] = features[cat2].astype(int).astype('category')
# (10) VERIFY IF THERE ARE ANY NANS LEFT IN THE DATAFRAME
if features.isna().any().any():
raise ValueError("There are still some NaNs present in the dataframe. Please check for implementation errors.")
return features
def impute(df, method='zero'):
def k_nearest(df): # TODO: if needed, implement k-nearest imputation / interpolation
pass
def k_nearest(df):
imputer = KNNImputer(n_neighbors=3)
return pd.DataFrame(imputer.fit_transform(df), columns=df.columns)
return { # rest of the columns should be imputed with the selected method
return {
'zero': df.fillna(0),
'high_number': df.fillna(1500),
'mean': df.fillna(df.mean()),
'median': df.fillna(df.median()),
'k-nearest': k_nearest(df)
'knn': k_nearest(df)
}[method]
def graph_bf_af(features, phase_name, plt_flag=False):
if plt_flag:
sns.set(rc={"figure.figsize":(16, 8)})
sns.heatmap(features.isna(), cbar=False) #features.select_dtypes(include=np.number)
plt.savefig(f'features_overall_nans_{phase_name}.png', bbox_inches='tight')
print(f"\n-------------{phase_name}-------------")
print("Rows number:", features.shape[0])
print("Columns number:", len(features.columns))
print("NaN values:", features.isna().sum().sum())
print("---------------------------------------------\n")

View File

@ -21,7 +21,7 @@ def extract_second_order_features(intraday_features, so_features_names, prefix="
so_features = pd.concat([so_features, intraday_features.drop(prefix+"level_1", axis=1).groupby(groupby_cols).median().add_suffix("_SO_median")], axis=1)
if "sd" in so_features_names:
so_features = pd.concat([so_features, intraday_features.drop(prefix+"level_1", axis=1).groupby(groupby_cols).std().add_suffix("_SO_sd")], axis=1)
so_features = pd.concat([so_features, intraday_features.drop(prefix+"level_1", axis=1).groupby(groupby_cols).std().fillna(0).add_suffix("_SO_sd")], axis=1)
if "nlargest" in so_features_names: # largest 5 -- maybe there is a faster groupby solution?
for column in intraday_features.loc[:, ~intraday_features.columns.isin(groupby_cols+[prefix+"level_1"])]:

View File

@ -43,7 +43,11 @@ def extract_acc_features_from_intraday_data(acc_intraday_data, features, window_
def cr_features(sensor_data_files, time_segment, provider, filter_data_by_segment, *args, **kwargs):
acc_intraday_data = pd.read_csv(sensor_data_files["sensor_data"])
data_types = {'local_timezone': 'str', 'device_id': 'str', 'timestamp': 'int64', 'double_values_0': 'float64',
'double_values_1': 'float64', 'double_values_2': 'float64', 'local_date_time': 'str', 'local_date': "str",
'local_time': "str", 'local_hour': "str", 'local_minute': "str", 'assigned_segments': "str"}
acc_intraday_data = pd.read_csv(sensor_data_files["sensor_data"], dtype=data_types)
requested_intraday_features = provider["FEATURES"]

View File

@ -0,0 +1,32 @@
import pandas as pd
import numpy as np
from datetime import datetime
import sys, yaml
def calculate_empatica_data_yield(features): # TODO
# Get time segment duration in seconds from all segments in features dataframe
datetime_start = pd.to_datetime(features['local_segment_start_datetime'], format='%Y-%m-%d %H:%M:%S')
datetime_end = pd.to_datetime(features['local_segment_end_datetime'], format='%Y-%m-%d %H:%M:%S')
tseg_duration = (datetime_end - datetime_start).dt.total_seconds()
with open('config.yaml', 'r') as stream:
config = yaml.load(stream, Loader=yaml.FullLoader)
sensors = ["EMPATICA_ACCELEROMETER", "EMPATICA_TEMPERATURE", "EMPATICA_ELECTRODERMAL_ACTIVITY", "EMPATICA_INTER_BEAT_INTERVAL"]
for sensor in sensors:
features[f"{sensor.lower()}_data_yield"] = \
(features[f"{sensor.lower()}_cr_SO_windowsCount"] * config[sensor]["PROVIDERS"]["CR"]["WINDOWS"]["WINDOW_LENGTH"]) / tseg_duration \
if f'{sensor.lower()}_cr_SO_windowsCount' in features else 0
empatica_data_yield_cols = [sensor.lower() + "_data_yield" for sensor in sensors]
pd.set_option('display.max_rows', None)
# Assigns 1 to values that are over 1 (in case of windows not being filled fully)
features[empatica_data_yield_cols] = features[empatica_data_yield_cols].apply(lambda x: [y if y <= 1 or np.isnan(y) else 1 for y in x])
features["empatica_data_yield"] = features[empatica_data_yield_cols].mean(axis=1).fillna(0)
features.drop(empatica_data_yield_cols, axis=1, inplace=True) # In case of if the advanced operations will later not be needed (e.g., weighted average)
return features

View File

@ -44,7 +44,11 @@ def extract_eda_features_from_intraday_data(eda_intraday_data, features, window_
def cr_features(sensor_data_files, time_segment, provider, filter_data_by_segment, *args, **kwargs):
eda_intraday_data = pd.read_csv(sensor_data_files["sensor_data"])
data_types = {'local_timezone': 'str', 'device_id': 'str', 'timestamp': 'int64', 'electrodermal_activity': 'float64', 'local_date_time': 'str',
'local_date': "str", 'local_time': "str", 'local_hour': "str", 'local_minute': "str", 'assigned_segments': "str"}
eda_intraday_data = pd.read_csv(sensor_data_files["sensor_data"], dtype=data_types)
requested_intraday_features = provider["FEATURES"]

View File

@ -50,6 +50,11 @@ def extract_ibi_features_from_intraday_data(ibi_intraday_data, features, window_
def cr_features(sensor_data_files, time_segment, provider, filter_data_by_segment, *args, **kwargs):
data_types = {'local_timezone': 'str', 'device_id': 'str', 'timestamp': 'int64', 'inter_beat_interval': 'float64', 'timings': 'float64', 'local_date_time': 'str',
'local_date': "str", 'local_time': "str", 'local_hour': "str", 'local_minute': "str", 'assigned_segments': "str"}
temperature_intraday_data = pd.read_csv(sensor_data_files["sensor_data"], dtype=data_types)
ibi_intraday_data = pd.read_csv(sensor_data_files["sensor_data"])
requested_intraday_features = provider["FEATURES"]

View File

@ -37,7 +37,10 @@ def extract_temp_features_from_intraday_data(temperature_intraday_data, features
def cr_features(sensor_data_files, time_segment, provider, filter_data_by_segment, *args, **kwargs):
temperature_intraday_data = pd.read_csv(sensor_data_files["sensor_data"])
data_types = {'local_timezone': 'str', 'device_id': 'str', 'timestamp': 'int64', 'temperature': 'float64', 'local_date_time': 'str',
'local_date': "str", 'local_time': "str", 'local_hour': "str", 'local_minute': "str", 'assigned_segments': "str"}
temperature_intraday_data = pd.read_csv(sensor_data_files["sensor_data"], dtype=data_types)
requested_intraday_features = provider["FEATURES"]

View File

@ -13,7 +13,10 @@ calc_windows = True if (provider.get("WINDOWS", False) and provider["WINDOWS"].g
if sensor_key == "all_cleaning_individual" or sensor_key == "all_cleaning_overall":
# Data cleaning
sensor_features = run_provider_cleaning_script(provider, provider_key, sensor_key, sensor_data_files)
if "overall" in sensor_key:
sensor_features = run_provider_cleaning_script(provider, provider_key, sensor_key, sensor_data_files, snakemake.params["target"])
else:
sensor_features = run_provider_cleaning_script(provider, provider_key, sensor_key, sensor_data_files)
else:
# Extract sensor features
del sensor_data_files["time_segments_labels"]

View File

@ -37,6 +37,6 @@ def rapids_features(sensor_data_files, time_segment, provider, filter_data_by_se
ar_features.index.names = ["local_segment"]
ar_features = ar_features.reset_index()
ar_features.fillna(value={"count": 0, "countuniqueactivities": 0, "durationstationary": 0, "durationmobile": 0, "durationvehicle": 0}, inplace=True)
ar_features.fillna(value={"count": 0, "countuniqueactivities": 0, "durationstationary": 0, "durationmobile": 0, "durationvehicle": 0, "mostcommonactivity": 4}, inplace=True)
return ar_features

View File

@ -9,19 +9,19 @@ def compute_features(filtered_data, apps_type, requested_features, apps_features
if "timeoffirstuse" in requested_features:
time_first_event = filtered_data.sort_values(by="timestamp", ascending=True).drop_duplicates(subset="local_segment", keep="first").set_index("local_segment")
if time_first_event.empty:
apps_features["timeoffirstuse" + apps_type] = np.nan
apps_features["timeoffirstuse" + apps_type] = 1500 # np.nan
else:
apps_features["timeoffirstuse" + apps_type] = time_first_event["local_hour"] * 60 + time_first_event["local_minute"]
if "timeoflastuse" in requested_features:
time_last_event = filtered_data.sort_values(by="timestamp", ascending=False).drop_duplicates(subset="local_segment", keep="first").set_index("local_segment")
if time_last_event.empty:
apps_features["timeoflastuse" + apps_type] = np.nan
apps_features["timeoflastuse" + apps_type] = 1500 # np.nan
else:
apps_features["timeoflastuse" + apps_type] = time_last_event["local_hour"] * 60 + time_last_event["local_minute"]
if "frequencyentropy" in requested_features:
apps_with_count = filtered_data.groupby(["local_segment","application_name"]).count().sort_values(by="timestamp", ascending=False).reset_index()
if (len(apps_with_count.index) < 2 ):
apps_features["frequencyentropy" + apps_type] = np.nan
apps_features["frequencyentropy" + apps_type] = 0 # np.nan
else:
apps_features["frequencyentropy" + apps_type] = apps_with_count.groupby("local_segment")["timestamp"].agg(entropy)
if "countevent" in requested_features:
@ -43,6 +43,7 @@ def compute_features(filtered_data, apps_type, requested_features, apps_features
apps_features["sumduration" + apps_type] = filtered_data.groupby(by = ["local_segment"])["duration"].sum()
apps_features.index.names = ["local_segment"]
return apps_features
def process_app_features(data, requested_features, time_segment, provider, filter_data_by_segment):

View File

@ -14,8 +14,8 @@ def deviceFeatures(devices, ownership, common_devices, features_to_compute, feat
features = features.join(device_value_counts.groupby("local_segment")["bt_address"].nunique().to_frame("uniquedevices" + ownership), how="outer")
if "meanscans" in features_to_compute:
features = features.join(device_value_counts.groupby("local_segment")["scans"].mean().to_frame("meanscans" + ownership), how="outer")
if "stdscans" in features_to_compute:
features = features.join(device_value_counts.groupby("local_segment")["scans"].std().to_frame("stdscans" + ownership), how="outer")
if "stdscans" in features_to_compute:
features = features.join(device_value_counts.groupby("local_segment")["scans"].std().to_frame("stdscans" + ownership).fillna(0), how="outer")
# Most frequent device within segments, across segments, and across dataset
if "countscansmostfrequentdevicewithinsegments" in features_to_compute:
features = features.join(device_value_counts.groupby("local_segment")["scans"].max().to_frame("countscansmostfrequentdevicewithinsegments" + ownership), how="outer")

View File

@ -88,6 +88,16 @@ rapids_features <- function(sensor_data_files, time_segment, provider){
features <- call_features_of_type(calls_of_type, features_type, call_type, time_segment, requested_features)
call_features <- merge(call_features, features, all=TRUE)
}
call_features <- call_features %>% mutate_at(vars(contains("countmostfrequentcontact") | contains("distinctcontacts") | contains("count") | contains("sumduration") | contains("minduration") | contains("maxduration") | contains("meanduration") | contains("modeduration")), list( ~ replace_na(., 0)))
# Fill seleted columns with a high number
time_cols <- select(call_features, contains("timefirstcall") | contains("timelastcall")) %>%
colnames(.)
call_features <- call_features %>%
mutate_at(., time_cols, ~replace(., is.na(.), 1500))
# Fill NA values with 0
call_features <- call_features %>% mutate_all(~replace(., is.na(.), 0))
return(call_features)
}

View File

@ -0,0 +1,274 @@
from collections.abc import Collection
import numpy as np
import pandas as pd
from pytz import timezone
import datetime, json
# from config.models import ESM, Participant
# from features import helper
ESM_STATUS_ANSWERED = 2
GROUP_SESSIONS_BY = ["device_id", "esm_session"] # 'participant_id
SESSION_STATUS_UNANSWERED = "ema_unanswered"
SESSION_STATUS_DAY_FINISHED = "day_finished"
SESSION_STATUS_COMPLETE = "ema_completed"
ANSWER_DAY_FINISHED = "DayFinished3421"
ANSWER_DAY_OFF = "DayOff3421"
ANSWER_SET_EVENING = "DayFinishedSetEvening"
MAX_MORNING_LENGTH = 3
# When the participants was not yet at work at the time of the first (morning) EMA,
# only three items were answered.
# Two sleep related items and one indicating NOT starting work yet.
# Daytime EMAs are all longer, in fact they always consist of at least 6 items.
TZ_LJ = timezone("Europe/Ljubljana")
COLUMN_TIMESTAMP = "timestamp"
COLUMN_TIMESTAMP_ESM = "double_esm_user_answer_timestamp"
def get_date_from_timestamp(df_aware) -> pd.DataFrame:
"""
Transform a UNIX timestamp into a datetime (with Ljubljana timezone).
Additionally, extract only the date part, where anything until 4 AM is considered the same day.
Parameters
----------
df_aware: pd.DataFrame
Any AWARE-type data as defined in models.py.
Returns
-------
df_aware: pd.DataFrame
The same dataframe with datetime_lj and date_lj columns added.
"""
if COLUMN_TIMESTAMP_ESM in df_aware:
column_timestamp = COLUMN_TIMESTAMP_ESM
else:
column_timestamp = COLUMN_TIMESTAMP
df_aware["datetime_lj"] = df_aware[column_timestamp].apply(
lambda x: datetime.datetime.fromtimestamp(x / 1000.0, tz=TZ_LJ)
)
df_aware = df_aware.assign(
date_lj=lambda x: (x.datetime_lj - datetime.timedelta(hours=4)).dt.date
)
# Since daytime EMAs could *theoretically* last beyond midnight, but never after 4 AM,
# the datetime is first translated to 4 h earlier.
return df_aware
def preprocess_esm(df_esm: pd.DataFrame) -> pd.DataFrame:
"""
Convert timestamps into human-readable datetimes and dates
and expand the JSON column into several Pandas DF columns.
Parameters
----------
df_esm: pd.DataFrame
A dataframe of esm data.
Returns
-------
df_esm_preprocessed: pd.DataFrame
A dataframe with added columns: datetime in Ljubljana timezone and all fields from ESM_JSON column.
"""
df_esm = get_date_from_timestamp(df_esm)
df_esm_json = df_esm["esm_json"].apply(json.loads)
df_esm_json = pd.json_normalize(df_esm_json).drop(
columns=["esm_trigger"]
) # The esm_trigger column is already present in the main df.
return df_esm.join(df_esm_json)
def classify_sessions_by_completion(df_esm_preprocessed: pd.DataFrame) -> pd.DataFrame:
"""
For each distinct EMA session, determine how the participant responded to it.
Possible outcomes are: SESSION_STATUS_UNANSWERED, SESSION_STATUS_DAY_FINISHED, and SESSION_STATUS_COMPLETE
This is done in three steps.
First, the esm_status is considered.
If any of the ESMs in a session has a status *other than* "answered", then this session is taken as unfinished.
Second, the sessions which do not represent full questionnaires are identified.
These are sessions where participants only marked they are finished with the day or have not yet started working.
Third, the sessions with only one item are marked with their trigger.
We never offered questionnaires with single items, so we can be sure these are unfinished.
Finally, all sessions that remain are marked as completed.
By going through different possibilities in expl_esm_adherence.ipynb, this turned out to be a reasonable option.
Parameters
----------
df_esm_preprocessed: pd.DataFrame
A preprocessed dataframe of esm data, which must include the session ID (esm_session).
Returns
-------
df_session_counts: pd.Dataframe
A dataframe of all sessions (grouped by GROUP_SESSIONS_BY) with their statuses and the number of items.
"""
sessions_grouped = df_esm_preprocessed.groupby(GROUP_SESSIONS_BY)
# 0. First, assign all session statuses as NaN.
df_session_counts = pd.DataFrame(sessions_grouped.count()["timestamp"]).rename(
columns={"timestamp": "esm_session_count"}
)
df_session_counts["session_response"] = np.nan
# 1. Identify all ESMs with status other than answered.
esm_not_answered = sessions_grouped.apply(
lambda x: (x.esm_status != ESM_STATUS_ANSWERED).any()
)
df_session_counts.loc[
esm_not_answered, "session_response"
] = SESSION_STATUS_UNANSWERED
# 2. Identify non-sessions, i.e. answers about the end of the day.
non_session = sessions_grouped.apply(
lambda x: (
(x.esm_user_answer == ANSWER_DAY_FINISHED) # I finished working for today.
| (x.esm_user_answer == ANSWER_DAY_OFF) # I am not going to work today.
| (
x.esm_user_answer == ANSWER_SET_EVENING
) # When would you like to answer the evening EMA?
).any()
)
df_session_counts.loc[non_session, "session_response"] = SESSION_STATUS_DAY_FINISHED
# 3. Identify sessions appearing only once, as those were not true EMAs for sure.
singleton_sessions = (df_session_counts.esm_session_count == 1) & (
df_session_counts.session_response.isna()
)
df_session_1 = df_session_counts[singleton_sessions]
df_esm_unique_session = df_session_1.join(
df_esm_preprocessed.set_index(GROUP_SESSIONS_BY), how="left"
)
df_esm_unique_session = df_esm_unique_session.assign(
session_response=lambda x: x.esm_trigger
)["session_response"]
df_session_counts.loc[
df_esm_unique_session.index, "session_response"
] = df_esm_unique_session
# 4. Mark the remaining sessions as completed.
df_session_counts.loc[
df_session_counts.session_response.isna(), "session_response"
] = SESSION_STATUS_COMPLETE
return df_session_counts
def classify_sessions_by_time(df_esm_preprocessed: pd.DataFrame) -> pd.DataFrame:
"""
For each EMA session, determine the time of the first user answer and its time type (morning, workday, or evening.)
Parameters
----------
df_esm_preprocessed: pd.DataFrame
A preprocessed dataframe of esm data, which must include the session ID (esm_session).
Returns
-------
df_session_time: pd.DataFrame
A dataframe of all sessions (grouped by GROUP_SESSIONS_BY) with their time type and timestamp of first answer.
"""
df_session_time = (
df_esm_preprocessed.sort_values(["datetime_lj"]) # "participant_id"
.groupby(GROUP_SESSIONS_BY)
.first()[["time", "datetime_lj"]]
)
return df_session_time
def classify_sessions_by_completion_time(
df_esm_preprocessed: pd.DataFrame,
) -> pd.DataFrame:
"""
The point of this function is to not only classify sessions by using the previously defined functions.
It also serves to "correct" the time type of some EMA sessions.
A morning questionnaire could seamlessly transition into a daytime questionnaire,
if the participant was already at work.
In this case, the "time" label changed mid-session.
Because of the way classify_sessions_by_time works, this questionnaire was classified as "morning".
But for all intents and purposes, it can be treated as a "daytime" EMA.
The way this scenario is differentiated from a true "morning" questionnaire,
where the participants NOT yet at work, is by considering their length.
Parameters
----------
df_esm_preprocessed: pd.DataFrame
A preprocessed dataframe of esm data, which must include the session ID (esm_session).
Returns
-------
df_session_counts_time: pd.DataFrame
A dataframe of all sessions (grouped by GROUP_SESSIONS_BY) with statuses, the number of items,
their time type (with some morning EMAs reclassified) and timestamp of first answer.
"""
df_session_counts = classify_sessions_by_completion(df_esm_preprocessed)
df_session_time = classify_sessions_by_time(df_esm_preprocessed)
df_session_counts_time = df_session_time.join(df_session_counts)
morning_transition_to_daytime = (df_session_counts_time.time == "morning") & (
df_session_counts_time.esm_session_count > MAX_MORNING_LENGTH
)
df_session_counts_time.loc[morning_transition_to_daytime, "time"] = "daytime"
return df_session_counts_time
# def clean_up_esm(df_esm_preprocessed: pd.DataFrame) -> pd.DataFrame:
# """
# This function eliminates invalid ESM responses.
# It removes unanswered ESMs and those that indicate end of work and similar.
# It also extracts a numeric answer from strings such as "4 - I strongly agree".
# Parameters
# ----------
# df_esm_preprocessed: pd.DataFrame
# A preprocessed dataframe of esm data.
# Returns
# -------
# df_esm_clean: pd.DataFrame
# A subset of the original dataframe.
# """
# df_esm_clean = df_esm_preprocessed[
# df_esm_preprocessed["esm_status"] == ESM_STATUS_ANSWERED
# ]
# df_esm_clean = df_esm_clean[
# ~df_esm_clean["esm_user_answer"].isin(
# [ANSWER_DAY_FINISHED, ANSWER_DAY_OFF, ANSWER_SET_EVENING]
# )
# ]
# df_esm_clean["esm_user_answer_numeric"] = np.nan
# esm_type_numeric = [
# ESM.ESM_TYPE.get("radio"),
# ESM.ESM_TYPE.get("scale"),
# ESM.ESM_TYPE.get("number"),
# ]
# df_esm_clean.loc[
# df_esm_clean["esm_type"].isin(esm_type_numeric)
# ] = df_esm_clean.loc[df_esm_clean["esm_type"].isin(esm_type_numeric)].assign(
# esm_user_answer_numeric=lambda x: x.esm_user_answer.str.slice(stop=1).astype(
# int
# )
# )
# return df_esm_clean

View File

@ -42,7 +42,8 @@ def straw_features(sensor_data_files, time_segment, provider, filter_data_by_seg
requested_features = provider["FEATURES"]
# name of the features this function can compute
requested_scales = provider["SCALES"]
base_features_names = ["PANAS_positive_affect", "PANAS_negative_affect", "JCQ_job_demand", "JCQ_job_control", "JCQ_supervisor_support", "JCQ_coworker_support"]
base_features_names = ["PANAS_positive_affect", "PANAS_negative_affect", "JCQ_job_demand", "JCQ_job_control", "JCQ_supervisor_support", "JCQ_coworker_support",
"appraisal_stressfulness_period", "appraisal_stressfulness_event", "appraisal_threat", "appraisal_challenge"]
#TODO Check valid questionnaire and feature names.
# the subset of requested features this function can compute
features_to_compute = list(set(requested_features) & set(base_features_names))
@ -52,7 +53,6 @@ def straw_features(sensor_data_files, time_segment, provider, filter_data_by_seg
if not esm_data.empty:
esm_features = pd.DataFrame()
for scale in requested_scales:
questionnaire_id = QUESTIONNAIRE_IDS[scale]
mask = esm_data["questionnaire_id"] == questionnaire_id
@ -60,4 +60,7 @@ def straw_features(sensor_data_files, time_segment, provider, filter_data_by_seg
#TODO Create the column esm_user_score in esm_clean. Currently, this is only done when reversing.
esm_features = esm_features.reset_index()
if 'index' in esm_features: # In calse of empty esm_features df
esm_features.rename(columns={'index': 'local_segment'}, inplace=True)
return esm_features

View File

@ -0,0 +1,220 @@
import pandas as pd
import numpy as np
import datetime
import math, sys, yaml
from esm_preprocess import clean_up_esm
from esm import classify_sessions_by_completion_time, preprocess_esm
input_data_files = dict(snakemake.input)
def format_timestamp(x):
"""This method formates inputed timestamp into format "HH MM SS". Including spaces. If there is no hours or minutes present
that part is ignored, e.g., "MM SS" or just "SS".
Args:
x (int): unix timestamp in seconds
Returns:
str: formatted timestamp using "HH MM SS" sintax
"""
tstring=""
space = False
if x//3600 > 0:
tstring += f"{x//3600}H"
space = True
if x % 3600 // 60 > 0:
tstring += f" {x % 3600 // 60}M" if "H" in tstring else f"{x % 3600 // 60}M"
if x % 60 > 0:
tstring += f" {x % 60}S" if "M" in tstring or "H" in tstring else f"{x % 60}S"
return tstring
def extract_ers(esm_df):
"""This method has two major functionalities:
(1) It prepares STRAW event-related segments file with the use of esm file. The execution protocol is depended on
the segmenting method specified in the config.yaml file.
(2) It prepares and writes csv with targets and corresponding time segments labels. This is later used
in the overall cleaning script (straw).
Details about each segmenting method are listed below by each corresponding condition. Refer to the RAPIDS documentation for the
ERS file format: https://www.rapids.science/1.9/setup/configuration/#time-segments -> event segments
Args:
esm_df (DataFrame): read esm file that is dependend on the current participant.
Returns:
extracted_ers (DataFrame): dataframe with all necessary information to write event-related segments file
in the correct format.
"""
pd.set_option("display.max_rows", 20)
pd.set_option("display.max_columns", None)
with open('config.yaml', 'r') as stream:
config = yaml.load(stream, Loader=yaml.FullLoader)
pd.DataFrame(columns=["label", "intensity"]).to_csv(snakemake.output[1]) # Create an empty stress_events_targets file
esm_preprocessed = clean_up_esm(preprocess_esm(esm_df))
# Take only ema_completed sessions responses
classified = classify_sessions_by_completion_time(esm_preprocessed)
esm_filtered_sessions = classified[classified["session_response"] == 'ema_completed'].reset_index()[['device_id', 'esm_session']]
esm_df = esm_preprocessed.loc[(esm_preprocessed['device_id'].isin(esm_filtered_sessions['device_id'])) & (esm_preprocessed['esm_session'].isin(esm_filtered_sessions['esm_session']))]
segmenting_method = config["TIME_SEGMENTS"]["TAILORED_EVENTS"]["SEGMENTING_METHOD"]
if segmenting_method in ["30_before", "90_before"]: # takes 30-minute peroid before the questionnaire + the duration of the questionnaire
""" '30-minutes and 90-minutes before' have the same fundamental logic with couple of deviations that will be explained below.
Both take x-minute period before the questionnaire that is summed with the questionnaire duration.
All questionnaire durations over 15 minutes are excluded from the querying.
"""
# Extract time-relevant information
extracted_ers = esm_df.groupby(["device_id", "esm_session"])['timestamp'].apply(lambda x: math.ceil((x.max() - x.min()) / 1000)).reset_index() # questionnaire length
extracted_ers["label"] = f"straw_event_{segmenting_method}_" + snakemake.params["pid"] + "_" + extracted_ers.index.astype(str).str.zfill(3)
extracted_ers[['event_timestamp', 'device_id']] = esm_df.groupby(["device_id", "esm_session"])['timestamp'].min().reset_index()[['timestamp', 'device_id']]
extracted_ers = extracted_ers[extracted_ers["timestamp"] <= 15 * 60].reset_index(drop=True) # ensure that the longest duration of the questionnaire anwsering is 15 min
extracted_ers["shift_direction"] = -1
if segmenting_method == "30_before":
"""The method 30-minutes before simply takes 30 minutes before the questionnaire and sums it with the questionnaire duration.
The timestamps are formatted with the help of format_timestamp() method.
"""
time_before_questionnaire = 30 * 60 # in seconds (30 minutes)
extracted_ers["length"] = (extracted_ers["timestamp"] + time_before_questionnaire).apply(lambda x: format_timestamp(x))
extracted_ers["shift"] = time_before_questionnaire
extracted_ers["shift"] = extracted_ers["shift"].apply(lambda x: format_timestamp(x))
elif segmenting_method == "90_before":
"""The method 90-minutes before has an important condition. If the time between the current and the previous questionnaire is
longer then 90 minutes it takes 90 minutes, otherwise it takes the original time difference between the questionnaires.
"""
time_before_questionnaire = 90 * 60 # in seconds (90 minutes)
extracted_ers[['end_event_timestamp', 'device_id']] = esm_df.groupby(["device_id", "esm_session"])['timestamp'].max().reset_index()[['timestamp', 'device_id']]
extracted_ers['diffs'] = extracted_ers['event_timestamp'].astype('int64') - extracted_ers['end_event_timestamp'].shift(1, fill_value=0).astype('int64')
extracted_ers.loc[extracted_ers['diffs'] > time_before_questionnaire * 1000, 'diffs'] = time_before_questionnaire * 1000
extracted_ers["diffs"] = (extracted_ers["diffs"] / 1000).apply(lambda x: math.ceil(x))
extracted_ers["length"] = (extracted_ers["timestamp"] + extracted_ers["diffs"]).apply(lambda x: format_timestamp(x))
extracted_ers["shift"] = extracted_ers["diffs"].apply(lambda x: format_timestamp(x))
elif segmenting_method == "stress_event":
"""This is a special case of the method as it consists of two important parts:
(1) Generating of the ERS file (same as the methods above) and
(2) Generating targets file alongside with the correct time segment labels.
This extracts event-related segments, depended on the event time and duration specified by the participant in the next
questionnaire. Additionally, 5 minutes before the specified start time of this event is taken to take into a account the
possiblity of the participant not remembering the start time percisely => this parameter can be manipulated with the variable
"time_before_event" which is defined below.
By default, this method also excludes all events that are longer then 2.5 hours so that the segments are easily comparable.
"""
# Get and join required data
extracted_ers = esm_df.groupby(["device_id", "esm_session"])['timestamp'].apply(lambda x: math.ceil((x.max() - x.min()) / 1000)).reset_index().rename(columns={'timestamp': 'session_length'}) # questionnaire end timestamp
extracted_ers = extracted_ers[extracted_ers["session_length"] <= 15 * 60].reset_index(drop=True) # ensure that the longest duration of the questionnaire anwsering is 15 min
session_end_timestamp = esm_df.groupby(['device_id', 'esm_session'])['timestamp'].max().to_frame().rename(columns={'timestamp': 'session_end_timestamp'}) # questionnaire end timestamp
se_time = esm_df[esm_df.questionnaire_id == 90.].set_index(['device_id', 'esm_session'])['esm_user_answer'].to_frame().rename(columns={'esm_user_answer': 'se_time'})
se_duration = esm_df[esm_df.questionnaire_id == 91.].set_index(['device_id', 'esm_session'])['esm_user_answer'].to_frame().rename(columns={'esm_user_answer': 'se_duration'})
# Extracted 3 targets that will be transfered with the csv file to the cleaning script.
se_stressfulness_event_tg = esm_df[esm_df.questionnaire_id == 87.].set_index(['device_id', 'esm_session'])['esm_user_answer_numeric'].to_frame().rename(columns={'esm_user_answer_numeric': 'appraisal_stressfulness_event'})
se_threat_tg = esm_df[esm_df.questionnaire_id == 88.].groupby(["device_id", "esm_session"]).mean()['esm_user_answer_numeric'].to_frame().rename(columns={'esm_user_answer_numeric': 'appraisal_threat'})
se_challenge_tg = esm_df[esm_df.questionnaire_id == 89.].groupby(["device_id", "esm_session"]).mean()['esm_user_answer_numeric'].to_frame().rename(columns={'esm_user_answer_numeric': 'appraisal_challenge'})
# All relevant features are joined by inner join to remove standalone columns (e.g., stressfulness event target has larger count)
extracted_ers = extracted_ers.join(session_end_timestamp, on=['device_id', 'esm_session'], how='inner') \
.join(se_time, on=['device_id', 'esm_session'], how='inner') \
.join(se_duration, on=['device_id', 'esm_session'], how='inner') \
.join(se_stressfulness_event_tg, on=['device_id', 'esm_session'], how='inner') \
.join(se_threat_tg, on=['device_id', 'esm_session'], how='inner') \
.join(se_challenge_tg, on=['device_id', 'esm_session'], how='inner')
# Filter sessions that are not useful. Because of the ambiguity this excludes:
# (1) straw event times that are marked as "0 - I don't remember"
# (2) straw event durations that are marked as "0 - I don't remember"
extracted_ers = extracted_ers[(~extracted_ers.se_time.str.startswith("0 - ")) & (~extracted_ers.se_duration.str.startswith("0 - "))]
# Transform data into its final form, ready for the extraction
extracted_ers.reset_index(drop=True, inplace=True)
time_before_event = 5 * 60 # in seconds (5 minutes)
extracted_ers['event_timestamp'] = pd.to_datetime(extracted_ers['se_time']).apply(lambda x: x.timestamp() * 1000).astype('int64')
extracted_ers['shift_direction'] = -1
# Checks whether the duration is marked with "1 - It's still ongoing" which means that the end of the current questionnaire
# is taken as end time of the segment. Else the user input duration is taken.
extracted_ers['se_duration'] = \
np.where(
extracted_ers['se_duration'].str.startswith("1 - "),
extracted_ers['session_end_timestamp'] - extracted_ers['event_timestamp'],
extracted_ers['se_duration']
)
# This converts the rows of timestamps in miliseconds and the row with datetime to timestamp in seconds.
extracted_ers['se_duration'] = \
extracted_ers['se_duration'].apply(lambda x: math.ceil(x / 1000) if isinstance(x, int) else (pd.to_datetime(x).hour * 60 + pd.to_datetime(x).minute) * 60) + time_before_event
extracted_ers['shift'] = format_timestamp(time_before_event)
extracted_ers['length'] = extracted_ers['se_duration'].apply(lambda x: format_timestamp(x))
# Drop event_timestamp duplicates in case of user referencing the same event over multiple questionnaires
extracted_ers.drop_duplicates(subset=["event_timestamp"], keep='first', inplace=True)
extracted_ers.reset_index(drop=True, inplace=True)
extracted_ers["label"] = f"straw_event_{segmenting_method}_" + snakemake.params["pid"] + "_" + extracted_ers.index.astype(str).str.zfill(3)
# Write the csv of extracted ERS labels with targets related to stressfulness event
extracted_ers[["label", "appraisal_stressfulness_event", "appraisal_threat", "appraisal_challenge"]].to_csv(snakemake.output[1], index=False)
else:
raise Exception("Please select correct target method for the event-related segments.")
extracted_ers = pd.DataFrame(columns=["label", "event_timestamp", "length", "shift", "shift_direction", "device_id"])
return extracted_ers[["label", "event_timestamp", "length", "shift", "shift_direction", "device_id"]]
"""
Here the code is executed - this .py file is used both for extraction of the STRAW time_segments file for the individual
participant, and also for merging all participant's files into one combined file which is later used for the time segments
to all sensors assignment.
There are two files involved (see rules extract_event_information_from_esm and merge_event_related_segments_files in preprocessing.smk)
(1) ERS file which contains all the information about the time segment timings and
(2) targets file which has corresponding target value for the segment label which is later used to merge with other features in the cleaning script.
For more information, see the comment in the method above.
"""
if snakemake.params["stage"] == "extract":
esm_df = pd.read_csv(input_data_files['esm_raw_input'])
extracted_ers = extract_ers(esm_df)
extracted_ers.to_csv(snakemake.output[0], index=False)
elif snakemake.params["stage"] == "merge":
input_data_files = dict(snakemake.input)
straw_events = pd.DataFrame(columns=["label", "event_timestamp", "length", "shift", "shift_direction", "device_id"])
stress_events_targets = pd.DataFrame(columns=["label", "appraisal_stressfulness_event", "appraisal_threat", "appraisal_challenge"])
for input_file in input_data_files["ers_files"]:
ers_df = pd.read_csv(input_file)
straw_events = pd.concat([straw_events, ers_df], axis=0, ignore_index=True)
straw_events.to_csv(snakemake.output[0], index=False)
for input_file in input_data_files["se_files"]:
se_df = pd.read_csv(input_file)
stress_events_targets = pd.concat([stress_events_targets, se_df], axis=0, ignore_index=True)
stress_events_targets.to_csv(snakemake.output[1], index=False)

View File

@ -29,7 +29,7 @@ def rapids_features(sensor_data_files, time_segment, provider, filter_data_by_se
if "medianlux" in features_to_compute:
light_features["medianlux"] = light_data.groupby(["local_segment"])["double_light_lux"].median()
if "stdlux" in features_to_compute:
light_features["stdlux"] = light_data.groupby(["local_segment"])["double_light_lux"].std()
light_features["stdlux"] = light_data.groupby(["local_segment"])["double_light_lux"].std().fillna(0)
light_features = light_features.reset_index()

View File

@ -37,7 +37,8 @@ def variance_and_logvariance_features(location_data, location_features):
location_data["longitude_for_wvar"] = (location_data["double_longitude"] - location_data["longitude_wavg"]) ** 2 * location_data["duration"] * 60
location_features["locationvariance"] = ((location_data_grouped["latitude_for_wvar"].sum() + location_data_grouped["longitude_for_wvar"].sum()) / (location_data_grouped["duration"].sum() * 60 - 1)).fillna(0)
location_features["loglocationvariance"] = np.log10(location_features["locationvariance"]).replace(-np.inf, np.nan)
location_features["loglocationvariance"] = np.log10(location_features["locationvariance"]).replace(-np.inf, -1000000)
return location_features

View File

@ -65,6 +65,15 @@ rapids_features <- function(sensor_data_files, time_segment, provider){
features <- message_features_of_type(messages_of_type, message_type, time_segment, requested_features)
messages_features <- merge(messages_features, features, all=TRUE)
}
messages_features <- messages_features %>% mutate_at(vars(contains("countmostfrequentcontact") | contains("distinctcontacts") | contains("count")), list( ~ replace_na(., 0)))
# Fill seleted columns with a high number
time_cols <- select(messages_features, contains("timefirstmessages") | contains("timelastmessages")) %>%
colnames(.)
messages_features <- messages_features %>%
mutate_at(., time_cols, ~replace(., is.na(.), 1500))
# Fill NA values with 0
messages_features <- messages_features %>% mutate_all(~replace(., is.na(.), 0))
return(messages_features)
}

View File

@ -15,7 +15,7 @@ def getEpisodeDurationFeatures(screen_data, time_segment, episode, features, ref
if "avgduration" in features:
duration_helper = pd.concat([duration_helper, screen_data_episode.groupby(["local_segment"])[["duration"]].mean().rename(columns = {"duration":"avgduration" + episode})], axis = 1)
if "stdduration" in features:
duration_helper = pd.concat([duration_helper, screen_data_episode.groupby(["local_segment"])[["duration"]].std().rename(columns = {"duration":"stdduration" + episode})], axis = 1)
duration_helper = pd.concat([duration_helper, screen_data_episode.groupby(["local_segment"])[["duration"]].std().fillna(0).rename(columns = {"duration":"stdduration" + episode})], axis = 1)
if "firstuseafter" + "{0:0=2d}".format(reference_hour_first_use) in features:
screen_data_episode_after_hour = screen_data_episode.copy()
screen_data_episode_after_hour["hour"] = pd.to_datetime(screen_data_episode["local_start_date_time"]).dt.hour

View File

@ -9,21 +9,26 @@ compute_wifi_feature <- function(data, feature, time_segment){
"countscans" = data %>% summarise(!!feature := n()),
"uniquedevices" = data %>% summarise(!!feature := n_distinct(bssid)))
return(data)
} else if(feature == "countscansmostuniquedevice"){
# Get the most scanned device
mostuniquedevice <- data %>%
mostuniquedevice <- data %>%
filter(bssid != "") %>%
group_by(bssid) %>%
mutate(N=n()) %>%
ungroup() %>%
filter(N == max(N)) %>%
head(1) %>% # if there are multiple device with the same amount of scans pick the first one only
pull(bssid)
data <- data %>% filter_data_by_segment(time_segment)
return(data %>%
filter(bssid == mostuniquedevice) %>%
group_by(local_segment) %>%
summarise(!!feature := n()) %>%
replace(is.na(.), 0))
summarise(!!feature := n())
)
}
}
@ -43,6 +48,6 @@ rapids_features <- function(sensor_data_files, time_segment, provider){
feature <- compute_wifi_feature(wifi_data, feature_name, time_segment)
features <- merge(features, feature, by="local_segment", all = TRUE)
}
features <- features %>% mutate_all(~replace(., is.na(.), 0))
return(features)
}

View File

@ -1,50 +0,0 @@
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
import sys
sensor_data_files = dict(snakemake.input)
provider = snakemake.params["provider"]
provider_key = snakemake.params["provider_key"]
sensor_key = snakemake.params["sensor_key"]
pd.set_option('display.max_columns', None)
if provider_key == "cr":
sys.path.append('/rapids/src/features/')
from cr_features_helper_methods import extract_second_order_features
provider_main = snakemake.params["provider_main"]
prefix = sensor_key + "_" + provider_key + "_"
windows_features_data = pd.read_csv(sensor_data_files["windows_features_data"])
excluded_columns = ['local_segment', 'local_segment_label', 'local_segment_start_datetime', 'local_segment_end_datetime', prefix + "level_1"]
if windows_features_data.empty:
windows_features_data.to_csv(snakemake.output[1], index=False)
windows_features_data.to_csv(snakemake.output[0], index=False)
else:
windows_features_data.loc[:, ~windows_features_data.columns.isin(excluded_columns)] = StandardScaler().fit_transform(windows_features_data.loc[:, ~windows_features_data.columns.isin(excluded_columns)])
windows_features_data.to_csv(snakemake.output[1], index=False)
if provider_main["WINDOWS"]["COMPUTE"] and "SECOND_ORDER_FEATURES" in provider_main["WINDOWS"]:
so_features_names = provider_main["WINDOWS"]["SECOND_ORDER_FEATURES"]
windows_so_features_data = extract_second_order_features(windows_features_data, so_features_names, prefix)
windows_so_features_data.to_csv(snakemake.output[0], index=False)
else:
pd.DataFrame().to_csv(snakemake.output[0], index=False)
else:
for sensor_features in sensor_data_files["sensor_features"]:
if "/" + sensor_key + ".csv" in sensor_features:
sensor_data = pd.read_csv(sensor_features)
excluded_columns = ['local_segment', 'local_segment_label', 'local_segment_start_datetime', 'local_segment_end_datetime']
if not sensor_data.empty:
sensor_data.loc[:, ~sensor_data.columns.isin(excluded_columns)] = StandardScaler().fit_transform(sensor_data.loc[:, ~sensor_data.columns.isin(excluded_columns)])
sensor_data.to_csv(snakemake.output[0], index=False)
break

View File

@ -160,12 +160,16 @@ def fetch_provider_features(provider, provider_key, sensor_key, sensor_data_file
return sensor_features
def run_provider_cleaning_script(provider, provider_key, sensor_key, sensor_data_files):
def run_provider_cleaning_script(provider, provider_key, sensor_key, sensor_data_files, target=False):
from importlib import import_module, util
print("{} Processing {} {}".format(rapids_log_tag, sensor_key, provider_key))
cleaning_module = import_path(provider["SRC_SCRIPT"])
cleaning_function = getattr(cleaning_module, provider_key.lower() + "_cleaning")
sensor_features = cleaning_function(sensor_data_files, provider)
if target:
sensor_features = cleaning_function(sensor_data_files, provider, target)
else:
sensor_features = cleaning_function(sensor_data_files, provider)
return sensor_features

View File

@ -1,5 +1,6 @@
import pandas as pd
import sys
import warnings
def retain_target_column(df_input: pd.DataFrame, target_variable_name: str):
column_names = df_input.columns
@ -8,9 +9,9 @@ def retain_target_column(df_input: pd.DataFrame, target_variable_name: str):
esm_names = column_names[esm_names_index]
target_variable_index = esm_names.str.contains(target_variable_name)
if all(~target_variable_index):
raise ValueError("The requested target (", target_variable_name,
")cannot be found in the dataset.",
"Please check the names of phone_esm_ columns in z_all_sensor_features_cleaned_straw_py.csv")
warnings.warn(f"The requested target (, {target_variable_name} ,)cannot be found in the dataset. Please check the names of phone_esm_ columns in cleaned python file")
return None
sensor_features_plus_target = df_input.drop(esm_names, axis=1)
sensor_features_plus_target["target"] = df_input[esm_names[target_variable_index]]
# We will only keep one column related to phone_esm and that will be our target variable.

View File

@ -12,9 +12,13 @@ for baseline_features_path in snakemake.input["demographic_features"]:
all_baseline_features = pd.concat([all_baseline_features, baseline_features], axis=0)
# merge sensor features and baseline features
features = sensor_features.merge(all_baseline_features, on="pid", how="left")
if not sensor_features.empty:
features = sensor_features.merge(all_baseline_features, on="pid", how="left")
target_variable_name = snakemake.params["target_variable"]
model_input = retain_target_column(features, target_variable_name)
target_variable_name = snakemake.params["target_variable"]
model_input = retain_target_column(features, target_variable_name)
model_input.to_csv(snakemake.output[0], index=False)
model_input.to_csv(snakemake.output[0], index=False)
else:
sensor_features.to_csv(snakemake.output[0], index=False)

View File

@ -6,6 +6,8 @@ cleaned_sensor_features = pd.read_csv(snakemake.input["cleaned_sensor_features"]
target_variable_name = snakemake.params["target_variable"]
model_input = retain_target_column(cleaned_sensor_features, target_variable_name)
model_input.dropna(axis ="index", how="any", subset=["target"], inplace=True)
model_input.to_csv(snakemake.output[0], index=False)
if model_input is None:
pd.DataFrame().to_csv(snakemake.output[0])
else:
model_input.to_csv(snakemake.output[0], index=False)

Binary file not shown.

After

Width:  |  Height:  |  Size: 12 KiB

View File

@ -3,8 +3,8 @@ import seaborn as sns
import matplotlib.pyplot as plt
participant = "p031"
all_sensors = ["eda", "bvp", "ibi", "temp", "acc"]
participant = "p01"
all_sensors = ["eda", "ibi", "temp", "acc"]
for sensor in all_sensors:

View File

@ -0,0 +1,285 @@
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
path = "/rapids/data/processed/features/all_participants/all_sensor_features.csv"
df = pd.read_csv(path)
# activity_recognition
cols = [col for col in df.columns if "activity_recognition" in col]
df_x = df[cols]
print(len(cols))
print(df_x)
df_x = df_x.dropna(axis=0, how="all")
sns.heatmap(df_x.isna(), xticklabels=1)
plt.savefig(f'activity_recognition_values', bbox_inches='tight')
df_q = pd.DataFrame()
for col in df_x:
df_q[col] = pd.to_numeric(pd.cut(df_x[col], bins=[-1,0,0.000000000001,1000], labels=[-1,0,1], right=False))
sns.heatmap(df_q, cbar=False, xticklabels=1)
plt.savefig(f'cut_activity_recognition_values', bbox_inches='tight')
plt.close()
# applications_foreground
cols = [col for col in df.columns if "applications_foreground" in col]
df_x = df[cols]
print(len(cols))
print(df_x)
df_x = df_x.dropna(axis=0, how="all")
sns.heatmap(df_x.isna(), xticklabels=1)
plt.savefig(f'applications_foreground_values', bbox_inches='tight')
df_q = pd.DataFrame()
for col in df_x:
df_q[col] = pd.to_numeric(pd.cut(df_x[col], bins=[-1,0,0.000000000001,1000], labels=[-1,0,1], right=False))
sns.heatmap(df_q, cbar=False, xticklabels=1)
plt.savefig(f'cut_applications_foreground_values', bbox_inches='tight')
plt.close()
# battery
cols = [col for col in df.columns if "phone_battery" in col]
df_x = df[cols]
print(len(cols))
print(df_x)
df_x = df_x.dropna(axis=0, how="all")
sns.heatmap(df_x.isna(), xticklabels=1)
plt.savefig(f'phone_battery_values', bbox_inches='tight')
df_q = pd.DataFrame()
for col in df_x:
df_q[col] = pd.to_numeric(pd.cut(df_x[col], bins=[-1,0,0.000000000001,1000], labels=[-1,0,1], right=False))
sns.heatmap(df_q, cbar=False, xticklabels=1)
plt.savefig(f'cut_phone_battery_values', bbox_inches='tight')
plt.close()
# bluetooth_doryab
cols = [col for col in df.columns if "bluetooth_doryab" in col]
df_x = df[cols]
print(len(cols))
print(df_x)
df_x = df_x.dropna(axis=0, how="all")
sns.heatmap(df_x.isna(), xticklabels=1)
plt.savefig(f'bluetooth_doryab_values', bbox_inches='tight')
df_q = pd.DataFrame()
for col in df_x:
df_q[col] = pd.to_numeric(pd.cut(df_x[col], bins=[-1,0,0.000000000001,1000], labels=[-1,0,1], right=False))
sns.heatmap(df_q, cbar=False, xticklabels=1)
plt.savefig(f'cut_bluetooth_doryab_values', bbox_inches='tight')
plt.close()
# bluetooth_rapids
cols = [col for col in df.columns if "bluetooth_rapids" in col]
df_x = df[cols]
print(len(cols))
print(df_x)
df_x = df_x.dropna(axis=0, how="all")
sns.heatmap(df_x.isna(), xticklabels=1)
plt.savefig(f'bluetooth_rapids_values', bbox_inches='tight')
df_q = pd.DataFrame()
for col in df_x:
df_q[col] = pd.to_numeric(pd.cut(df_x[col], bins=[-1,0,0.000000000001,1000], labels=[-1,0,1], right=False))
sns.heatmap(df_q, cbar=False, xticklabels=1)
plt.savefig(f'cut_bluetooth_rapids_values', bbox_inches='tight')
plt.close()
# calls
cols = [col for col in df.columns if "phone_calls" in col]
df_x = df[cols]
print(len(cols))
print(df_x)
df_x = df_x.dropna(axis=0, how="all")
sns.heatmap(df_x.isna(), xticklabels=1)
plt.savefig(f'phone_calls_values', bbox_inches='tight')
df_q = pd.DataFrame()
for col in df_x:
df_q[col] = pd.to_numeric(pd.cut(df_x[col], bins=[-1,0,0.000000000001,1000], labels=[-1,0,1], right=False))
sns.heatmap(df_q, cbar=False, xticklabels=1)
plt.savefig(f'cut_phone_calls_values', bbox_inches='tight')
plt.close()
# data_yield
cols = [col for col in df.columns if "data_yield" in col]
df_x = df[cols]
print(len(cols))
print(df_x)
df_x = df_x.dropna(axis=0, how="all")
sns.heatmap(df_x.isna(), xticklabels=1)
plt.savefig(f'data_yield_values', bbox_inches='tight')
df_q = pd.DataFrame()
for col in df_x:
df_q[col] = pd.to_numeric(pd.cut(df_x[col], bins=[-1,0,0.000000000001,1000], labels=[-1,0,1], right=False))
sns.heatmap(df_q, cbar=False, xticklabels=1)
plt.savefig(f'cut_data_yield_values', bbox_inches='tight')
plt.close()
# esm
cols = [col for col in df.columns if "phone_esm" in col]
df_x = df[cols]
print(len(cols))
print(df_x)
df_x = df_x.dropna(axis=0, how="all")
sns.heatmap(df_x.isna(), xticklabels=1)
plt.savefig(f'phone_esm_values', bbox_inches='tight')
df_q = pd.DataFrame()
for col in df_x:
df_q[col] = pd.to_numeric(pd.cut(df_x[col], bins=[-1,0,0.000000000001,1000], labels=[-1,0,1], right=False))
sns.heatmap(df_q, cbar=False, xticklabels=1)
plt.savefig(f'cut_phone_esm_values', bbox_inches='tight')
plt.close()
# light
cols = [col for col in df.columns if "phone_light" in col]
df_x = df[cols]
print(len(cols))
print(df_x)
df_x = df_x.dropna(axis=0, how="all")
sns.heatmap(df_x.isna(), xticklabels=1)
plt.savefig(f'phone_light_values', bbox_inches='tight')
df_q = pd.DataFrame()
for col in df_x:
df_q[col] = pd.to_numeric(pd.cut(df_x[col], bins=[-1,0,0.000000000001,1000], labels=[-1,0,1], right=False))
sns.heatmap(df_q, cbar=False, xticklabels=1)
plt.savefig(f'cut_phone_light_values', bbox_inches='tight')
plt.close()
# locations_doryab
cols = [col for col in df.columns if "locations_doryab" in col]
df_x = df[cols]
print(len(cols))
print(df_x)
df_x = df_x.dropna(axis=0, how="all")
sns.heatmap(df_x.isna(), xticklabels=1)
plt.savefig(f'locations_doryab_values', bbox_inches='tight')
df_q = pd.DataFrame()
for col in df_x:
df_q[col] = pd.to_numeric(pd.cut(df_x[col], bins=[-1,0,0.000000000001,1000], labels=[-1,0,1], right=False))
sns.heatmap(df_q, cbar=False, xticklabels=1)
plt.savefig(f'cut_locations_doryab_values', bbox_inches='tight')
plt.close()
# locations_barnett
# Not working
# messages
cols = [col for col in df.columns if "phone_messages" in col]
df_x = df[cols]
print(len(cols))
print(df_x)
df_x = df_x.dropna(axis=0, how="all")
sns.heatmap(df_x.isna(), xticklabels=1)
plt.savefig(f'phone_messages_values', bbox_inches='tight')
df_q = pd.DataFrame()
for col in df_x:
df_q[col] = pd.to_numeric(pd.cut(df_x[col], bins=[-1,0,0.000000000001,1000], labels=[-1,0,1], right=False))
sns.heatmap(df_q, cbar=False, xticklabels=1)
plt.savefig(f'cut_phone_messages_values', bbox_inches='tight')
plt.close()
# screen
cols = [col for col in df.columns if "phone_screen" in col]
df_x = df[cols]
print(len(cols))
print(df_x)
df_x = df_x.dropna(axis=0, how="all")
sns.heatmap(df_x.isna(), xticklabels=1)
plt.savefig(f'phone_screen_values', bbox_inches='tight')
df_q = pd.DataFrame()
for col in df_x:
df_q[col] = pd.to_numeric(pd.cut(df_x[col], bins=[-1,0,0.000000000001,1000], labels=[-1,0,1], right=False))
sns.heatmap(df_q, cbar=False, xticklabels=1)
plt.savefig(f'cut_phone_screen_values', bbox_inches='tight')
plt.close()
# wifi_visible
cols = [col for col in df.columns if "wifi_visible" in col]
df_x = df[cols]
print(len(cols))
print(df_x)
df_x = df_x.dropna(axis=0, how="all")
sns.heatmap(df_x.isna(), xticklabels=1)
plt.savefig(f'wifi_visible_values', bbox_inches='tight')
df_q = pd.DataFrame()
for col in df_x:
df_q[col] = pd.to_numeric(pd.cut(df_x[col], bins=[-1,0,0.000000000001,1000], labels=[-1,0,1], right=False))
sns.heatmap(df_q, cbar=False, xticklabels=1)
plt.savefig(f'cut_wifi_visible_values', bbox_inches='tight')
plt.close()
# All features
print(len(df))
print(df)
# df = df.dropna(axis=0, how="all")
# df = df.dropna(axis=1, how="all")
sns.heatmap(df.isna())
plt.savefig(f'all_features', bbox_inches='tight')
print(df.columns[df.isna().all()].tolist())
print("All NaNs:", df.isna().sum().sum())
print("Df shape NaNs:", df.shape)

View File

@ -0,0 +1,70 @@
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
import sys
sys.path.append('/rapids/')
from src.features import cr_features_helper_methods as crhm
pd.set_option("display.max_columns", None)
features_win = pd.read_csv("data/interim/p031/empatica_temperature_features/empatica_temperature_python_cr_windows.csv", usecols=[0, 1, 2, 3, 4, 5])
# First standardization method
excluded_columns = ['local_segment', 'local_segment_label', 'local_segment_start_datetime', 'local_segment_end_datetime', "empatica_temperature_cr_level_1"]
z1_windows = features_win.copy()
z1_windows.loc[:, ~z1_windows.columns.isin(excluded_columns)] = StandardScaler().fit_transform(z1_windows.loc[:, ~z1_windows.columns.isin(excluded_columns)])
z1 = crhm.extract_second_order_features(z1_windows, ['mean', 'median', 'sd', 'nlargest', 'nsmallest', 'count_windows'], prefix="empatica_temperature_cr_")
z1 = z1.iloc[:,4:]
# print(z1)
# Second standardization method
so_features_reg = crhm.extract_second_order_features(features_win, ['mean', 'median', 'sd', 'nlargest', 'nsmallest', 'count_windows'], prefix="empatica_temperature_cr_")
so_features_reg = so_features_reg.iloc[:,4:]
z2 = pd.DataFrame(StandardScaler().fit_transform(so_features_reg), columns=so_features_reg.columns)
# print(z2)
# Standardization of the first standardization method values
z1_z = pd.DataFrame(StandardScaler().fit_transform(z1), columns=z1.columns)
# print(z1_z)
# For SD
fig, axs = plt.subplots(3, figsize=(8, 10))
axs[0].plot(z1['empatica_temperature_cr_squareSumOfComponent_X_SO_sd'])
axs[0].set_title("Z1 - standardizirana okna, nato ekstrahiranje značilk SO")
axs[1].plot(z2['empatica_temperature_cr_squareSumOfComponent_X_SO_sd'])
axs[1].set_title("Z2 - ekstrahirane značilke SO 'normalnih' vrednosti, nato standardizacija")
axs[2].plot(z1_z['empatica_temperature_cr_squareSumOfComponent_X_SO_sd'])
axs[2].set_title("Standardiziran Z1")
fig.suptitle('Z-Score methods for temperature_squareSumOfComponent_SO_sd')
plt.savefig('z_score_comparison_temperature_squareSumOfComponent_X_SO_sd', bbox_inches='tight')
showcase = pd.DataFrame()
showcase['Z1__SD'] = z1['empatica_temperature_cr_squareSumOfComponent_X_SO_sd']
showcase['Z2__SD'] = z2['empatica_temperature_cr_squareSumOfComponent_X_SO_sd']
showcase['Z1__SD_STANDARDIZED'] = z1_z['empatica_temperature_cr_squareSumOfComponent_X_SO_sd']
print(showcase)
# For
fig, axs = plt.subplots(3, figsize=(8, 10))
axs[0].plot(z1['empatica_temperature_cr_squareSumOfComponent_X_SO_nlargest'])
axs[0].set_title("Z1 - standardizirana okna, nato ekstrahiranje značilk SO")
axs[1].plot(z2['empatica_temperature_cr_squareSumOfComponent_X_SO_nlargest'])
axs[1].set_title("Z2")
axs[2].plot(z1_z['empatica_temperature_cr_squareSumOfComponent_X_SO_nlargest'])
axs[2].set_title("Standardized Z1")
fig.suptitle('Z-Score methods for temperature_squareSumOfComponent_SO_nlargest')
plt.savefig('z_score_comparison_temperature_squareSumOfComponent_X_SO_nlargest', bbox_inches='tight')
showcase2 = pd.DataFrame()
showcase2['Z1__nlargest'] = z1['empatica_temperature_cr_squareSumOfComponent_X_SO_nlargest']
showcase2['Z2__nlargest'] = z2['empatica_temperature_cr_squareSumOfComponent_X_SO_nlargest']
showcase2['Z1__nlargest_STANDARDIZED'] = z1_z['empatica_temperature_cr_squareSumOfComponent_X_SO_nlargest']
print(showcase2)

View File

@ -0,0 +1,38 @@
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import sys
df = pd.read_csv(f"/rapids/data/raw/p03/empatica_accelerometer_raw.csv")
df['date'] = pd.to_datetime(df['timestamp'],unit='ms')
df.set_index('date', inplace=True)
print(df)
df = df['double_values_0'].resample("31ms").mean()
print(df)
st='2021-05-21 12:28:27'
en='2021-05-21 12:59:12'
df = df.loc[(df.index > st) & (df.index < en)]
plt.plot(df)
plt.savefig(f'NaN.png')
sys.exit()
plt.plot(df)
esm = pd.read_csv(f"/rapids/data/raw/p03/phone_esm_raw.csv")
esm['date'] = pd.to_datetime(esm['timestamp'],unit='ms')
esm = esm[esm['date']]
esm.set_index('date', inplace=True)
print(esm)
esm = esm['esm_session'].resample("2900ms").mean()
plt.plot(esm)
plt.savefig(f'NaN.png')