Debug assignment of segments to rows
parent
cea451d344
commit
0d81ad5756
|
@ -5,7 +5,7 @@ PHONE:
|
|||
START_DATE: 2021-05-21 09:21:24
|
||||
END_DATE: 2021-07-12 17:32:07
|
||||
EMPATICA:
|
||||
DEVICE_IDS: [empatica1]
|
||||
LABEL: test01
|
||||
START_DATE:
|
||||
END_DATE:
|
||||
DEVICE_IDS: [uploader_53573]
|
||||
LABEL: uploader_53573
|
||||
START_DATE: 2021-05-21 09:21:24
|
||||
END_DATE: 2021-07-12 17:32:07
|
||||
|
|
|
@ -5,15 +5,28 @@ options(scipen=999)
|
|||
|
||||
assign_rows_to_segments <- function(data, segments){
|
||||
# This function is used by all segment types, we use data.tables because they are fast
|
||||
print(nrow(data))
|
||||
print(ncol(data))
|
||||
|
||||
data <- data.table::as.data.table(data)
|
||||
data[, assigned_segments := ""]
|
||||
for(i in seq_len(nrow(segments))) {
|
||||
segment <- segments[i,]
|
||||
print(segment)
|
||||
print(data[segment$segment_start_ts<= timestamp & segment$segment_end_ts >= timestamp])
|
||||
|
||||
data[segment$segment_start_ts<= timestamp & segment$segment_end_ts >= timestamp,
|
||||
assigned_segments := stringi::stri_c(assigned_segments, segment$segment_id, sep = "|")]
|
||||
}
|
||||
|
||||
data[,assigned_segments:=substring(assigned_segments, 2)]
|
||||
data
|
||||
|
||||
test <- # print multiple columns
|
||||
data %>%
|
||||
dplyr::filter(is.na(assigned_segments))
|
||||
|
||||
test %>% as_tibble() %>% print(n=50)
|
||||
}
|
||||
|
||||
assign_to_time_segment <- function(sensor_data, time_segments, time_segments_type, include_past_periodic_segments, most_common_tz){
|
||||
|
|
Binary file not shown.
After Width: | Height: | Size: 12 KiB |
|
@ -0,0 +1,38 @@
|
|||
import numpy as np
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
import sys
|
||||
|
||||
df = pd.read_csv(f"/rapids/data/raw/p03/empatica_accelerometer_raw.csv")
|
||||
|
||||
|
||||
df['date'] = pd.to_datetime(df['timestamp'],unit='ms')
|
||||
df.set_index('date', inplace=True)
|
||||
print(df)
|
||||
df = df['double_values_0'].resample("31ms").mean()
|
||||
print(df)
|
||||
|
||||
st='2021-05-21 12:28:27'
|
||||
en='2021-05-21 12:59:12'
|
||||
|
||||
df = df.loc[(df.index > st) & (df.index < en)]
|
||||
plt.plot(df)
|
||||
|
||||
plt.savefig(f'NaN.png')
|
||||
sys.exit()
|
||||
|
||||
|
||||
plt.plot(df)
|
||||
|
||||
esm = pd.read_csv(f"/rapids/data/raw/p03/phone_esm_raw.csv")
|
||||
|
||||
esm['date'] = pd.to_datetime(esm['timestamp'],unit='ms')
|
||||
esm = esm[esm['date']]
|
||||
esm.set_index('date', inplace=True)
|
||||
print(esm)
|
||||
|
||||
esm = esm['esm_session'].resample("2900ms").mean()
|
||||
|
||||
plt.plot(esm)
|
||||
plt.savefig(f'NaN.png')
|
Loading…
Reference in New Issue