Begin ERS logic for 90-minutes events.
parent
c1c9f4d05a
commit
9f441afc16
|
@ -24,7 +24,7 @@ def format_timestamp(x):
|
|||
|
||||
def extract_ers_from_file(esm_df, device_id):
|
||||
|
||||
# pd.set_option("display.max_rows", None)
|
||||
pd.set_option("display.max_rows", 20)
|
||||
pd.set_option("display.max_columns", None)
|
||||
|
||||
with open('config.yaml', 'r') as stream:
|
||||
|
@ -37,26 +37,55 @@ def extract_ers_from_file(esm_df, device_id):
|
|||
classified = classify_sessions_by_completion_time(esm_preprocessed)
|
||||
esm_filtered_sessions = classified[classified["session_response"] == 'ema_completed'].reset_index()[['device_id', 'esm_session']]
|
||||
esm_df = esm_preprocessed.loc[(esm_preprocessed['device_id'].isin(esm_filtered_sessions['device_id'])) & (esm_preprocessed['esm_session'].isin(esm_filtered_sessions['esm_session']))]
|
||||
|
||||
|
||||
|
||||
# Problem ne bo ekstrahiranje posameznih začetkov in trajanj stresnih dogodkov - večji problem je pridobitev ustreznega targeta,
|
||||
# tako da bo poravnan s tem dogodkom, saj se lahko zgodi, da je timestamp zabeležene intenzitete stresnega dogodka ne pade v okno stresnega dogodka.
|
||||
# Edina izjema tega so, če je označen odgovor "1 - Še vedno traja" pri vprašanju appraisal_event_duration
|
||||
|
||||
# Extract time-relevant information
|
||||
targets_method = config["TIME_SEGMENTS"]["TAILORED_EVENTS"]["TARGETS_METHOD"]
|
||||
|
||||
if targets_method == "thirty_before": # takes 30-minute peroid before the questionnaire + the duration of the questionnaire
|
||||
time_before_questionnaire = 30 * 60 # in seconds (30 minutes)
|
||||
|
||||
extracted_ers = esm_df.groupby(["device_id", "esm_session"])['timestamp'].apply(lambda x: math.ceil((x.max() - x.min()) / 1000)).reset_index() # in rounded up in seconds
|
||||
|
||||
if targets_method in ["30_before", "90_before"]: # takes 30-minute peroid before the questionnaire + the duration of the questionnaire
|
||||
|
||||
extracted_ers = esm_df.groupby(["device_id", "esm_session"])['timestamp'].apply(lambda x: math.ceil((x.max() - x.min()) / 1000)).reset_index() # is rounded up in seconds
|
||||
extracted_ers["label"] = f"straw_event_{targets_method}_" + snakemake.params["pid"] + "_" + extracted_ers.index.astype(str).str.zfill(3)
|
||||
extracted_ers[['event_timestamp', 'device_id']] = esm_df.groupby(["device_id", "esm_session"])['timestamp'].min().reset_index()[['timestamp', 'device_id']]
|
||||
extracted_ers = extracted_ers[extracted_ers["timestamp"] <= 15 * 60].reset_index(drop=True) # ensure that the longest duration of the questionnaire anwsering is 15 min
|
||||
extracted_ers["label"] = "straw_event_" + snakemake.params["pid"] + "_" + extracted_ers.index.astype(str).str.zfill(3)
|
||||
extracted_ers["length"] = (extracted_ers["timestamp"] + time_before_questionnaire).apply(lambda x: format_timestamp(x))
|
||||
extracted_ers["shift"] = time_before_questionnaire
|
||||
extracted_ers["shift"] = extracted_ers["shift"].apply(lambda x: format_timestamp(x))
|
||||
extracted_ers["shift_direction"] = -1
|
||||
|
||||
|
||||
if targets_method == "30_before":
|
||||
time_before_questionnaire = 30 * 60 # in seconds (30 minutes)
|
||||
|
||||
extracted_ers["length"] = (extracted_ers["timestamp"] + time_before_questionnaire).apply(lambda x: format_timestamp(x))
|
||||
extracted_ers["shift"] = time_before_questionnaire
|
||||
extracted_ers["shift"] = extracted_ers["shift"].apply(lambda x: format_timestamp(x))
|
||||
|
||||
elif targets_method == "90_before":
|
||||
time_before_questionnaire = 90 * 60 # in seconds (90 minutes)
|
||||
|
||||
extracted_ers[['end_event_timestamp', 'device_id']] = esm_df.groupby(["device_id", "esm_session"])['timestamp'].max().reset_index()[['timestamp', 'device_id']]
|
||||
|
||||
extracted_ers['diffs'] = extracted_ers['event_timestamp'].astype('int64') - extracted_ers['end_event_timestamp'].shift(1, fill_value=0).astype('int64')
|
||||
extracted_ers.loc[extracted_ers['diffs'] > time_before_questionnaire * 1000, 'diffs'] = time_before_questionnaire * 1000
|
||||
|
||||
# TODO: združi celotno trajanje in formatiraj v HH:MM:SS
|
||||
|
||||
sys.exit()
|
||||
elif targets_method == "stress_events":
|
||||
pass
|
||||
# VV Testiranje različnih povpraševanj za VV
|
||||
# print(esm_df[esm_df.questionnaire_id == 87])
|
||||
# filter_esm = esm_df[(esm_df.esm_type == 7) & ((esm_df.questionnaire_id == 90.) | (esm_df.questionnaire_id == 91.))][['questionnaire_id', 'esm_user_answer', 'esm_session']]
|
||||
# print(filter_esm[filter_esm.esm_user_answer == "1 - Še vedno traja"].shape)
|
||||
# print(filter_esm.shape)
|
||||
|
||||
else:
|
||||
extracted_ers = pd.DataFrame(columns=["label", "event_timestamp", "length", "shift", "shift_direction", "device_id"])
|
||||
|
||||
# sys.exit()
|
||||
sys.exit()
|
||||
return extracted_ers[["label", "event_timestamp", "length", "shift", "shift_direction", "device_id"]]
|
||||
|
||||
if snakemake.params["stage"] == "extract":
|
||||
|
|
Loading…
Reference in New Issue