Remove unwanted output or other error producing code.
parent
bfd637eb9c
commit
b92a3aa37a
|
@ -5,15 +5,11 @@ options(scipen=999)
|
|||
|
||||
assign_rows_to_segments <- function(data, segments){
|
||||
# This function is used by all segment types, we use data.tables because they are fast
|
||||
print(nrow(data))
|
||||
print(ncol(data))
|
||||
|
||||
data <- data.table::as.data.table(data)
|
||||
data[, assigned_segments := ""]
|
||||
for(i in seq_len(nrow(segments))) {
|
||||
segment <- segments[i,]
|
||||
print(segment)
|
||||
print(data[segment$segment_start_ts<= timestamp & segment$segment_end_ts >= timestamp])
|
||||
|
||||
data[segment$segment_start_ts<= timestamp & segment$segment_end_ts >= timestamp,
|
||||
assigned_segments := stringi::stri_c(assigned_segments, segment$segment_id, sep = "|")]
|
||||
|
@ -21,12 +17,6 @@ assign_rows_to_segments <- function(data, segments){
|
|||
|
||||
data[,assigned_segments:=substring(assigned_segments, 2)]
|
||||
data
|
||||
|
||||
test <- # print multiple columns
|
||||
data %>%
|
||||
dplyr::filter(is.na(assigned_segments))
|
||||
|
||||
test %>% as_tibble() %>% print(n=50)
|
||||
}
|
||||
|
||||
assign_to_time_segment <- function(sensor_data, time_segments, time_segments_type, include_past_periodic_segments, most_common_tz){
|
||||
|
|
|
@ -14,7 +14,7 @@ def straw_cleaning(sensor_data_files, provider, target):
|
|||
|
||||
features = pd.read_csv(sensor_data_files["sensor_data"][0])
|
||||
|
||||
features = features[features['local_segment_label'] == 'working_day'] # Filtriranje ustreznih časovnih segmentov
|
||||
# features = features[features['local_segment_label'] == 'working_day'] # Filtriranje ustreznih časovnih segmentov
|
||||
|
||||
# print(features)
|
||||
# sys.exit()
|
||||
|
@ -191,7 +191,7 @@ def straw_cleaning(sensor_data_files, provider, target):
|
|||
if esm not in features:
|
||||
features[esm] = esm_cols[esm]
|
||||
|
||||
graph_bf_af(features, "11correlation_drop")
|
||||
graph_bf_af(features, "10correlation_drop")
|
||||
|
||||
# (10) VERIFY IF THERE ARE ANY NANS LEFT IN THE DATAFRAME
|
||||
if features.isna().any().any():
|
||||
|
|
Loading…
Reference in New Issue