Small imputation and cleaning corrections.
parent
a96ea508c6
commit
eaf4340afd
12
Snakefile
12
Snakefile
|
@ -410,14 +410,14 @@ for provider in config["ALL_CLEANING_INDIVIDUAL"]["PROVIDERS"].keys():
|
|||
if config["ALL_CLEANING_INDIVIDUAL"]["PROVIDERS"][provider]["COMPUTE"]:
|
||||
if provider == "STRAW":
|
||||
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features_cleaned_" + provider.lower() + "_py.csv", pid=config["PIDS"]))
|
||||
else:
|
||||
else:
|
||||
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features_cleaned_" + provider.lower() + "_R.csv", pid=config["PIDS"]))
|
||||
|
||||
for provider in config["ALL_CLEANING_OVERALL"]["PROVIDERS"].keys():
|
||||
if config["ALL_CLEANING_OVERALL"]["PROVIDERS"][provider]["COMPUTE"]:
|
||||
if provider == "STRAW":
|
||||
files_to_compute.extend(expand("data/processed/features/all_participants/all_sensor_features_cleaned_" + provider.lower() +"_py.csv"))
|
||||
else:
|
||||
else:
|
||||
files_to_compute.extend(expand("data/processed/features/all_participants/all_sensor_features_cleaned_" + provider.lower() +"_R.csv"))
|
||||
|
||||
# Baseline features
|
||||
|
@ -429,10 +429,10 @@ if config["PARAMS_FOR_ANALYSIS"]["BASELINE"]["COMPUTE"]:
|
|||
|
||||
# Targets (labels)
|
||||
if config["PARAMS_FOR_ANALYSIS"]["TARGET"]["COMPUTE"]:
|
||||
# files_to_compute.extend(expand("data/processed/models/individual_model/{pid}/input.csv", pid=config["PIDS"]))
|
||||
# files_to_compute.extend(expand("data/processed/models/population_model/input.csv"))
|
||||
files_to_compute.extend(expand("data/processed/models/individual_model/{pid}/z_input.csv", pid=config["PIDS"]))
|
||||
files_to_compute.extend(expand("data/processed/models/population_model/z_input.csv"))
|
||||
files_to_compute.extend(expand("data/processed/models/individual_model/{pid}/input.csv", pid=config["PIDS"]))
|
||||
files_to_compute.extend(expand("data/processed/models/population_model/input.csv"))
|
||||
# files_to_compute.extend(expand("data/processed/models/individual_model/{pid}/z_input.csv", pid=config["PIDS"]))
|
||||
# files_to_compute.extend(expand("data/processed/models/population_model/z_input.csv"))
|
||||
|
||||
#files_to_compute.extend(expand("data/processed/models/individual_model/{pid}/output_{cv_method}/baselines.csv", pid=config["PIDS"], cv_method=config["PARAMS_FOR_ANALYSIS"]["CV_METHODS"]))
|
||||
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
########################################################################################################################
|
||||
|
||||
# See https://www.rapids.science/latest/setup/configuration/#participant-files
|
||||
PIDS: ['p01'] #['p031', 'p032', 'p033', 'p034', 'p035', 'p036', 'p037', 'p038', 'p039', 'p040', 'p042', 'p043', 'p044', 'p045', 'p046', 'p049', 'p050', 'p052', 'p053', 'p054', 'p055', 'p057', 'p058', 'p059', 'p060', 'p061', 'p062', 'p064', 'p067', 'p068', 'p069', 'p070', 'p071', 'p072', 'p073', 'p074', 'p075', 'p076', 'p077', 'p078', 'p079', 'p080', 'p081', 'p082', 'p083', 'p084', 'p085', 'p086', 'p088', 'p089', 'p090', 'p091', 'p092', 'p093', 'p106', 'p107']
|
||||
PIDS: ['p01', 'p02'] #['p031', 'p032', 'p033', 'p034', 'p035', 'p036', 'p037', 'p038', 'p039', 'p040', 'p042', 'p043', 'p044', 'p045', 'p046', 'p049', 'p050', 'p052', 'p053', 'p054', 'p055', 'p057', 'p058', 'p059', 'p060', 'p061', 'p062', 'p064', 'p067', 'p068', 'p069', 'p070', 'p071', 'p072', 'p073', 'p074', 'p075', 'p076', 'p077', 'p078', 'p079', 'p080', 'p081', 'p082', 'p083', 'p084', 'p085', 'p086', 'p088', 'p089', 'p090', 'p091', 'p092', 'p093', 'p106', 'p107']
|
||||
|
||||
# See https://www.rapids.science/latest/setup/configuration/#automatic-creation-of-participant-files
|
||||
CREATE_PARTICIPANT_FILES:
|
||||
|
@ -70,7 +70,6 @@ PHONE_ACCELEROMETER:
|
|||
COMPUTE: False
|
||||
FEATURES: ["maxmagnitude", "minmagnitude", "avgmagnitude", "medianmagnitude", "stdmagnitude"]
|
||||
SRC_SCRIPT: src/features/phone_accelerometer/rapids/main.py
|
||||
|
||||
PANDA:
|
||||
COMPUTE: False
|
||||
VALID_SENSED_MINUTES: False
|
||||
|
|
|
@ -30,22 +30,22 @@ rule baseline_features:
|
|||
|
||||
rule select_target:
|
||||
input:
|
||||
cleaned_sensor_features = "data/processed/features/{pid}/z_all_sensor_features_cleaned_straw_py.csv"
|
||||
cleaned_sensor_features = "data/processed/features/{pid}/all_sensor_features_cleaned_straw_py.csv"
|
||||
params:
|
||||
target_variable = config["PARAMS_FOR_ANALYSIS"]["TARGET"]["LABEL"]
|
||||
output:
|
||||
"data/processed/models/individual_model/{pid}/z_input.csv"
|
||||
"data/processed/models/individual_model/{pid}/input.csv"
|
||||
script:
|
||||
"../src/models/select_targets.py"
|
||||
|
||||
rule merge_features_and_targets_for_population_model:
|
||||
input:
|
||||
cleaned_sensor_features = "data/processed/features/all_participants/z_all_sensor_features_cleaned_straw_py.csv",
|
||||
cleaned_sensor_features = "data/processed/features/all_participants/all_sensor_features_cleaned_straw_py.csv",
|
||||
demographic_features = expand("data/processed/features/{pid}/baseline_features.csv", pid=config["PIDS"]),
|
||||
params:
|
||||
target_variable=config["PARAMS_FOR_ANALYSIS"]["TARGET"]["LABEL"]
|
||||
output:
|
||||
"data/processed/models/population_model/z_input.csv"
|
||||
"data/processed/models/population_model/input.csv"
|
||||
script:
|
||||
"../src/models/merge_features_and_targets_for_population_model.py"
|
||||
|
||||
|
|
|
@ -116,7 +116,7 @@ def straw_cleaning(sensor_data_files, provider):
|
|||
plt.savefig(f'features_nans_af_knn.png', bbox_inches='tight')
|
||||
|
||||
# VERIFY IF THERE ARE ANY NANS LEFT IN THE DATAFRAME
|
||||
if features.isna.any().any():
|
||||
if features.isna().any().any():
|
||||
raise ValueError
|
||||
|
||||
sys.exit()
|
||||
|
|
|
@ -23,13 +23,6 @@ compute_wifi_feature <- function(data, feature, time_segment){
|
|||
|
||||
data <- data %>% filter_data_by_segment(time_segment)
|
||||
|
||||
print(data %>%
|
||||
filter(bssid == mostuniquedevice) %>%
|
||||
group_by(local_segment) %>%
|
||||
summarise(!!feature := n()))
|
||||
|
||||
raise
|
||||
|
||||
return(data %>%
|
||||
filter(bssid == mostuniquedevice) %>%
|
||||
group_by(local_segment) %>%
|
||||
|
@ -55,6 +48,6 @@ rapids_features <- function(sensor_data_files, time_segment, provider){
|
|||
feature <- compute_wifi_feature(wifi_data, feature_name, time_segment)
|
||||
features <- merge(features, feature, by="local_segment", all = TRUE)
|
||||
}
|
||||
# features <- features %>% mutate_all(~replace(., is.na(.), 0))
|
||||
features <- features %>% mutate_all(~replace(., is.na(.), 0))
|
||||
return(features)
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue