Configurations for new standardization path.
parent
92aff93e65
commit
52e11cdcab
|
@ -678,6 +678,7 @@ ALL_CLEANING_INDIVIDUAL:
|
|||
COMPUTE: True
|
||||
MIN_OVERLAP_FOR_CORR_THRESHOLD: 0.5
|
||||
CORR_THRESHOLD: 0.95
|
||||
STANDARDIZATION: True
|
||||
SRC_SCRIPT: src/features/all_cleaning_individual/straw/main.py
|
||||
|
||||
ALL_CLEANING_OVERALL:
|
||||
|
@ -712,6 +713,7 @@ ALL_CLEANING_OVERALL:
|
|||
COMPUTE: True
|
||||
MIN_OVERLAP_FOR_CORR_THRESHOLD: 0.5
|
||||
CORR_THRESHOLD: 0.95
|
||||
STANDARDIZATION: True
|
||||
SRC_SCRIPT: src/features/all_cleaning_overall/straw/main.py
|
||||
|
||||
|
||||
|
|
|
@ -102,7 +102,9 @@ def straw_cleaning(sensor_data_files, provider):
|
|||
## STANDARDIZATION - should it happen before or after kNN imputation?
|
||||
# TODO: check if there are additional columns that need to be excluded from the standardization
|
||||
excluded_columns = ['local_segment', 'local_segment_label', 'local_segment_start_datetime', 'local_segment_end_datetime']
|
||||
features.loc[:, ~features.columns.isin(excluded_columns)] = StandardScaler().fit_transform(features.loc[:, ~features.columns.isin(excluded_columns)])
|
||||
|
||||
if provider["STANDARDIZATION"]:
|
||||
features.loc[:, ~features.columns.isin(excluded_columns)] = StandardScaler().fit_transform(features.loc[:, ~features.columns.isin(excluded_columns)])
|
||||
|
||||
# KNN IMPUTATION
|
||||
impute_cols = [col for col in features.columns if col not in excluded_columns]
|
||||
|
|
Loading…
Reference in New Issue