Compare commits

..

20 Commits

Author SHA1 Message Date
junos c1bb4ddf0f Save calculated features to csv files. 2021-08-23 16:36:26 +02:00
junos 0152fbe4ac Delete the leftover class.
Add more prints.
2021-08-23 16:09:23 +02:00
junos 3611fc76f7 Fill NaNs after merging all features. 2021-08-21 19:48:57 +02:00
junos ee30c042ea Fill NaNs introduced in merge for proximity. 2021-08-21 19:40:42 +02:00
junos a71e132edf Prepare the first full pipeline. 2021-08-21 19:04:09 +02:00
junos 24c4bef7e2 Print some more messages. 2021-08-21 19:03:44 +02:00
junos 11381d6447 Add some print statements for monitoring progress. 2021-08-21 18:54:02 +02:00
junos d19995385d Account for the case when there is no data for days with labels. 2021-08-21 18:49:57 +02:00
junos f73f86486a Fill communication features with appropriate values. 2021-08-21 18:28:22 +02:00
junos aed73bb7ed Add fill values for communication for rows with no calls/smses. 2021-08-21 18:17:58 +02:00
junos 8507ff5761 Check for NaNs in the data, since sklearn.LinearRegression cannot handle them. 2021-08-21 17:46:00 +02:00
junos 0b85ee8fdc Merge branch 'master' into ml_pipeline 2021-08-21 17:37:45 +02:00
junos e2e268148d Fill in 0.5 for undefined ratio.
When there are no calls and no smses (of a particular type), the ratio is undefined. But since their number is the same, I argue that the ratio can represent that with a 0.5, similarly to the case where no_calls_all = no_sms_all != 0.
2021-08-21 17:33:31 +02:00
junos 00015a3b8d Fill in zeroes when joining or unstacking.
If there are no calls or smses for a particular day, there is no corresponding row in the features dataframe. When joining these, however, NaNs were introduced. Since a value of 0 is meaningful for all of these features, replace NaNs with 0's.
2021-08-21 17:31:15 +02:00
junos 065cd4347e [WIP] Add a class for model validation. 2021-08-20 19:44:50 +02:00
junos 0b98d59aad Aggregate labels using grouping_variable. 2021-08-20 19:17:22 +02:00
junos 08fdec34f1 Merge features into a common df.
But first, group communication by the grouping_variable.
2021-08-20 17:59:00 +02:00
junos 72b16af75c Make group_by consistent with communication. 2021-08-20 17:52:31 +02:00
junos d6337e82ac Merge branch 'master' into ml_pipeline 2021-08-20 17:43:53 +02:00
junos 9a319ac6e5 Add an option to group on other than just participant_id. 2021-08-20 17:41:12 +02:00
10 changed files with 389 additions and 169 deletions

View File

@ -15,6 +15,7 @@ dependencies:
- psycopg2 - psycopg2
- python-dotenv - python-dotenv
- pytz - pytz
- pyprojroot
- pyyaml - pyyaml
- seaborn - seaborn
- scikit-learn - scikit-learn

View File

@ -16,6 +16,7 @@
# %% # %%
# %matplotlib inline # %matplotlib inline
import datetime import datetime
import importlib
import os import os
import sys import sys
@ -156,14 +157,25 @@ lin_reg_proximity.score(
# %% # %%
from machine_learning import pipeline from machine_learning import pipeline
# %%
importlib.reload(pipeline)
# %% # %%
with open("../machine_learning/config/minimal_features.yaml", "r") as file: with open("../machine_learning/config/minimal_features.yaml", "r") as file:
sensor_features_params = yaml.safe_load(file) sensor_features_params = yaml.safe_load(file)
print(sensor_features_params)
# %% # %%
sensor_features = pipeline.SensorFeatures(**sensor_features_params) sensor_features = pipeline.SensorFeatures(**sensor_features_params)
sensor_features.data_types sensor_features.data_types
# %%
sensor_features.set_participants_label("nokia_0000003")
# %%
sensor_features.data_types = ["proximity", "communication"]
sensor_features.participants_usernames = ptcp_2
# %% # %%
sensor_features.get_sensor_data("proximity") sensor_features.get_sensor_data("proximity")
@ -179,12 +191,19 @@ sensor_features.calculate_features()
# %% # %%
sensor_features.get_features("proximity", "all") sensor_features.get_features("proximity", "all")
# %%
sensor_features.get_features("communication", "all")
# %%
sensor_features.get_features("all", "all")
# %% # %%
with open("../machine_learning/config/minimal_labels.yaml", "r") as file: with open("../machine_learning/config/minimal_labels.yaml", "r") as file:
labels_params = yaml.safe_load(file) labels_params = yaml.safe_load(file)
# %% # %%
labels = pipeline.Labels(**labels_params) labels = pipeline.Labels(**labels_params)
labels.participants_usernames = ptcp_2
labels.questionnaires labels.questionnaires
# %% # %%
@ -194,3 +213,25 @@ labels.set_labels()
labels.get_labels("PANAS") labels.get_labels("PANAS")
# %% # %%
labels.aggregate_labels()
# %%
labels.get_aggregated_labels()
# %%
model_validation = pipeline.ModelValidation(
sensor_features.get_features("all", "all"),
labels.get_aggregated_labels(),
group_variable="participant_id",
cv_name="loso",
)
model_validation.model = linear_model.LinearRegression()
model_validation.set_cv_method()
# %%
model_validation.cross_validate()
# %%
model_validation.groups
# %%

View File

@ -13,14 +13,15 @@
# name: straw2analysis # name: straw2analysis
# --- # ---
# %%
import importlib
# %% # %%
# %matplotlib inline # %matplotlib inline
import os import os
import sys import sys
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
# %%
import seaborn as sns import seaborn as sns
nb_dir = os.path.split(os.getcwd())[0] nb_dir = os.path.split(os.getcwd())[0]
@ -28,21 +29,29 @@ if nb_dir not in sys.path:
sys.path.append(nb_dir) sys.path.append(nb_dir)
# %% # %%
from features.communication import * from features import communication, helper
# %%
importlib.reload(communication)
# %% [markdown] # %% [markdown]
# # Example of communication data and feature calculation # # Example of communication data and feature calculation
# %% # %%
df_calls = get_call_data(["nokia_0000003"]) df_calls = communication.get_call_data(["nokia_0000003"])
print(df_calls) print(df_calls)
# %% # %%
count_comms(df_calls) df_calls = helper.get_date_from_timestamp(df_calls)
communication.count_comms(df_calls, ["date_lj"])
# %% # %%
df_sms = get_sms_data(["nokia_0000003"]) df_sms = communication.get_sms_data(["nokia_0000003"])
count_comms(df_sms) df_sms = helper.get_date_from_timestamp(df_sms)
communication.count_comms(df_sms, ["date_lj"])
# %%
communication.calls_sms_features(df_calls, df_sms, ["date_lj"])
# %% [markdown] # %% [markdown]
# # Call data # # Call data

View File

@ -16,6 +16,7 @@
# %% # %%
# %matplotlib inline # %matplotlib inline
import datetime import datetime
import importlib
import os import os
import sys import sys
@ -32,13 +33,16 @@ import participants.query_db
TZ_LJ = timezone("Europe/Ljubljana") TZ_LJ = timezone("Europe/Ljubljana")
# %% # %%
from features.proximity import * from features import helper, proximity
# %%
importlib.reload(proximity)
# %% [markdown] # %% [markdown]
# # Basic characteristics # # Basic characteristics
# %% # %%
df_proximity_nokia = get_proximity_data(["nokia_0000003"]) df_proximity_nokia = proximity.get_proximity_data(["nokia_0000003"])
print(df_proximity_nokia) print(df_proximity_nokia)
# %% # %%
@ -53,7 +57,7 @@ df_proximity_nokia.double_proximity.value_counts()
# %% # %%
participants_inactive_usernames = participants.query_db.get_usernames() participants_inactive_usernames = participants.query_db.get_usernames()
df_proximity_inactive = get_proximity_data(participants_inactive_usernames) df_proximity_inactive = proximity.get_proximity_data(participants_inactive_usernames)
# %% # %%
df_proximity_inactive.double_proximity.describe() df_proximity_inactive.double_proximity.describe()
@ -110,3 +114,13 @@ df_proximity_combinations[
(df_proximity_combinations[5.0] != 0) (df_proximity_combinations[5.0] != 0)
& (df_proximity_combinations[5.00030517578125] != 0) & (df_proximity_combinations[5.00030517578125] != 0)
] ]
# %% [markdown]
# # Features
# %%
df_proximity_inactive = helper.get_date_from_timestamp(df_proximity_inactive)
# %%
df_proximity_features = proximity.count_proximity(df_proximity_inactive, ["date_lj"])
display(df_proximity_features)

View File

@ -8,14 +8,21 @@ from setup import db_engine, session
call_types = {1: "incoming", 2: "outgoing", 3: "missed"} call_types = {1: "incoming", 2: "outgoing", 3: "missed"}
sms_types = {1: "received", 2: "sent"} sms_types = {1: "received", 2: "sent"}
FEATURES_CALLS = ( FILL_NA_CALLS = {
["no_calls_all"] "no_calls_all": 0,
+ ["no_" + call_type for call_type in call_types.values()] "no_" + call_types.get(1): 0,
+ ["duration_total_" + call_types.get(1), "duration_total_" + call_types.get(2)] "no_" + call_types.get(2): 0,
+ ["duration_max_" + call_types.get(1), "duration_max_" + call_types.get(2)] "no_" + call_types.get(3): 0,
+ ["no_" + call_types.get(1) + "_ratio", "no_" + call_types.get(2) + "_ratio"] "duration_total_" + call_types.get(1): 0,
+ ["no_contacts_calls"] "duration_total_" + call_types.get(2): 0,
) "duration_max_" + call_types.get(1): 0,
"duration_max_" + call_types.get(2): 0,
"no_" + call_types.get(1) + "_ratio": 1 / 3, # Three different types
"no_" + call_types.get(2) + "_ratio": 1 / 3,
"no_contacts_calls": 0,
}
FEATURES_CALLS = list(FILL_NA_CALLS.keys())
# FEATURES_CALLS = # FEATURES_CALLS =
# ["no_calls_all", # ["no_calls_all",
@ -23,19 +30,24 @@ FEATURES_CALLS = (
# "duration_total_incoming", "duration_total_outgoing", # "duration_total_incoming", "duration_total_outgoing",
# "duration_max_incoming", "duration_max_outgoing", # "duration_max_incoming", "duration_max_outgoing",
# "no_incoming_ratio", "no_outgoing_ratio", # "no_incoming_ratio", "no_outgoing_ratio",
# "no_contacts"] # "no_contacts_calls"]
FILL_NA_SMS = {
"no_sms_all": 0,
"no_" + sms_types.get(1): 0,
"no_" + sms_types.get(2): 0,
"no_" + sms_types.get(1) + "_ratio": 1 / 2, # Two different types
"no_" + sms_types.get(2) + "_ratio": 1 / 2,
"no_contacts_sms": 0,
}
FEATURES_SMS = list(FILL_NA_SMS.keys())
FEATURES_SMS = (
["no_sms_all"]
+ ["no_" + sms_type for sms_type in sms_types.values()]
+ ["no_" + sms_types.get(1) + "_ratio", "no_" + sms_types.get(2) + "_ratio"]
+ ["no_contacts_sms"]
)
# FEATURES_SMS = # FEATURES_SMS =
# ["no_sms_all", # ["no_sms_all",
# "no_received", "no_sent", # "no_received", "no_sent",
# "no_received_ratio", "no_sent_ratio", # "no_received_ratio", "no_sent_ratio",
# "no_contacts"] # "no_contacts_sms"]
FEATURES_CALLS_SMS_PROP = [ FEATURES_CALLS_SMS_PROP = [
"proportion_calls_all", "proportion_calls_all",
@ -45,8 +57,15 @@ FEATURES_CALLS_SMS_PROP = [
"proportion_calls_missed_sms_received", "proportion_calls_missed_sms_received",
] ]
FILL_NA_CALLS_SMS_PROP = {
key: 1 / 2 for key in FEATURES_CALLS_SMS_PROP
} # All of the form of a / (a + b).
FEATURES_CALLS_SMS_ALL = FEATURES_CALLS + FEATURES_SMS + FEATURES_CALLS_SMS_PROP FEATURES_CALLS_SMS_ALL = FEATURES_CALLS + FEATURES_SMS + FEATURES_CALLS_SMS_PROP
FILL_NA_CALLS_SMS_ALL = FILL_NA_CALLS | FILL_NA_SMS | FILL_NA_CALLS_SMS_PROP
# As per PEP-584 a union for dicts was implemented in Python 3.9.0.
def get_call_data(usernames: Collection) -> pd.DataFrame: def get_call_data(usernames: Collection) -> pd.DataFrame:
""" """
@ -137,7 +156,7 @@ def enumerate_contacts(comm_df: pd.DataFrame) -> pd.DataFrame:
return comm_df return comm_df
def count_comms(comm_df: pd.DataFrame) -> pd.DataFrame: def count_comms(comm_df: pd.DataFrame, group_by=None) -> pd.DataFrame:
""" """
Calculate frequencies (and duration) of messages (or calls), grouped by their types. Calculate frequencies (and duration) of messages (or calls), grouped by their types.
@ -145,6 +164,9 @@ def count_comms(comm_df: pd.DataFrame) -> pd.DataFrame:
---------- ----------
comm_df: pd.DataFrame comm_df: pd.DataFrame
A dataframe of calls or SMSes. A dataframe of calls or SMSes.
group_by: list
A list of strings, specifying by which parameters to group.
By default, the features are calculated per participant, but could be "date_lj" etc.
Returns Returns
------- -------
@ -157,11 +179,13 @@ def count_comms(comm_df: pd.DataFrame) -> pd.DataFrame:
* the number of messages by type (received, sent), and * the number of messages by type (received, sent), and
* the number of communication contacts by type. * the number of communication contacts by type.
""" """
if group_by is None:
group_by = []
if "call_type" in comm_df: if "call_type" in comm_df:
data_type = "calls" data_type = "calls"
comm_counts = ( comm_counts = (
comm_df.value_counts(subset=["participant_id", "call_type"]) comm_df.value_counts(subset=group_by + ["participant_id", "call_type"])
.unstack() .unstack(level="call_type", fill_value=0)
.rename(columns=call_types) .rename(columns=call_types)
.add_prefix("no_") .add_prefix("no_")
) )
@ -174,17 +198,17 @@ def count_comms(comm_df: pd.DataFrame) -> pd.DataFrame:
) )
# Ratio of incoming and outgoing calls to all calls. # Ratio of incoming and outgoing calls to all calls.
comm_duration_total = ( comm_duration_total = (
comm_df.groupby(["participant_id", "call_type"]) comm_df.groupby(group_by + ["participant_id", "call_type"])
.sum()["call_duration"] .sum()["call_duration"]
.unstack() .unstack(level="call_type", fill_value=0)
.rename(columns=call_types) .rename(columns=call_types)
.add_prefix("duration_total_") .add_prefix("duration_total_")
) )
# Total call duration by type. # Total call duration by type.
comm_duration_max = ( comm_duration_max = (
comm_df.groupby(["participant_id", "call_type"]) comm_df.groupby(group_by + ["participant_id", "call_type"])
.max()["call_duration"] .max()["call_duration"]
.unstack() .unstack(level="call_type", fill_value=0)
.rename(columns=call_types) .rename(columns=call_types)
.add_prefix("duration_max_") .add_prefix("duration_max_")
) )
@ -202,8 +226,8 @@ def count_comms(comm_df: pd.DataFrame) -> pd.DataFrame:
elif "message_type" in comm_df: elif "message_type" in comm_df:
data_type = "sms" data_type = "sms"
comm_counts = ( comm_counts = (
comm_df.value_counts(subset=["participant_id", "message_type"]) comm_df.value_counts(subset=group_by + ["participant_id", "message_type"])
.unstack() .unstack(level="message_type", fill_value=0)
.rename(columns=sms_types) .rename(columns=sms_types)
.add_prefix("no_") .add_prefix("no_")
) )
@ -218,7 +242,7 @@ def count_comms(comm_df: pd.DataFrame) -> pd.DataFrame:
raise KeyError("The dataframe contains neither call_type or message_type") raise KeyError("The dataframe contains neither call_type or message_type")
comm_contacts_counts = ( comm_contacts_counts = (
enumerate_contacts(comm_df) enumerate_contacts(comm_df)
.groupby(["participant_id"]) .groupby(group_by + ["participant_id"])
.nunique()["contact_id"] .nunique()["contact_id"]
.rename("no_contacts_" + data_type) .rename("no_contacts_" + data_type)
) )
@ -270,7 +294,9 @@ def contact_features(comm_df: pd.DataFrame) -> pd.DataFrame:
return contacts_count return contacts_count
def calls_sms_features(df_calls: pd.DataFrame, df_sms: pd.DataFrame) -> pd.DataFrame: def calls_sms_features(
df_calls: pd.DataFrame, df_sms: pd.DataFrame, group_by=None
) -> pd.DataFrame:
""" """
Calculates additional features relating calls and sms data. Calculates additional features relating calls and sms data.
@ -280,6 +306,9 @@ def calls_sms_features(df_calls: pd.DataFrame, df_sms: pd.DataFrame) -> pd.DataF
A dataframe of calls (return of get_call_data). A dataframe of calls (return of get_call_data).
df_sms: pd.DataFrame df_sms: pd.DataFrame
A dataframe of SMSes (return of get_sms_data). A dataframe of SMSes (return of get_sms_data).
group_by: list
A list of strings, specifying by which parameters to group.
By default, the features are calculated per participant, but could be "date_lj" etc.
Returns Returns
------- -------
@ -297,9 +326,20 @@ def calls_sms_features(df_calls: pd.DataFrame, df_sms: pd.DataFrame) -> pd.DataF
* proportion_calls_contacts: * proportion_calls_contacts:
proportion of calls contacts in total number of communication contacts proportion of calls contacts in total number of communication contacts
""" """
count_calls = count_comms(df_calls) if group_by is None:
count_sms = count_comms(df_sms) group_by = []
count_joined = count_calls.join(count_sms).assign( count_calls = count_comms(df_calls, group_by)
count_sms = count_comms(df_sms, group_by)
count_joined = (
count_calls.merge(
count_sms,
how="outer",
left_index=True,
right_index=True,
validate="one_to_one",
)
.fillna(0, downcast="infer")
.assign(
proportion_calls_all=( proportion_calls_all=(
lambda x: x.no_calls_all / (x.no_calls_all + x.no_sms_all) lambda x: x.no_calls_all / (x.no_calls_all + x.no_sms_all)
), ),
@ -313,8 +353,11 @@ def calls_sms_features(df_calls: pd.DataFrame, df_sms: pd.DataFrame) -> pd.DataF
lambda x: x.no_outgoing / (x.no_outgoing + x.no_sent) lambda x: x.no_outgoing / (x.no_outgoing + x.no_sent)
), ),
proportion_calls_contacts=( proportion_calls_contacts=(
lambda x: x.no_contacts_calls / (x.no_contacts_calls + x.no_contacts_sms) lambda x: x.no_contacts_calls
/ (x.no_contacts_calls + x.no_contacts_sms)
) )
# Calculate new features and create additional columns # Calculate new features and create additional columns
) )
.fillna(0.5, downcast="infer")
)
return count_joined return count_joined

View File

@ -5,7 +5,12 @@ import pandas as pd
from config.models import Participant, Proximity from config.models import Participant, Proximity
from setup import db_engine, session from setup import db_engine, session
FEATURES_PROXIMITY = ["freq_prox_near", "prop_prox_near"] FILL_NA_PROXIMITY = {
"freq_prox_near": 0,
"prop_prox_near": 1 / 2, # Of the form of a / (a + b).
}
FEATURES_PROXIMITY = list(FILL_NA_PROXIMITY.keys())
def get_proximity_data(usernames: Collection) -> pd.DataFrame: def get_proximity_data(usernames: Collection) -> pd.DataFrame:
@ -78,11 +83,11 @@ def count_proximity(
A dataframe with the count of "near" proximity values and their relative count. A dataframe with the count of "near" proximity values and their relative count.
""" """
if group_by is None: if group_by is None:
group_by = ["participant_id"] group_by = []
if "bool_prox_near" not in df_proximity: if "bool_prox_near" not in df_proximity:
df_proximity = recode_proximity(df_proximity) df_proximity = recode_proximity(df_proximity)
df_proximity["bool_prox_far"] = ~df_proximity["bool_prox_near"] df_proximity["bool_prox_far"] = ~df_proximity["bool_prox_near"]
df_proximity_features = df_proximity.groupby(group_by).sum()[ df_proximity_features = df_proximity.groupby(["participant_id"] + group_by).sum()[
["bool_prox_near", "bool_prox_far"] ["bool_prox_near", "bool_prox_far"]
] ]
df_proximity_features = df_proximity_features.assign( df_proximity_features = df_proximity_features.assign(

View File

@ -1,4 +1,4 @@
grouping_variable: date_lj grouping_variable: [date_lj]
labels: labels:
PANAS: PANAS:
- PA - PA

View File

@ -0,0 +1,6 @@
grouping_variable: [date_lj]
features:
proximity:
all
communication:
all

View File

@ -0,0 +1,5 @@
grouping_variable: [date_lj]
labels:
PANAS:
- PA
- NA

View File

@ -1,13 +1,25 @@
import datetime import datetime
import warnings
from collections.abc import Collection from collections.abc import Collection
from pathlib import Path
import numpy as np
import pandas as pd import pandas as pd
from sklearn.model_selection import cross_val_score import yaml
from pyprojroot import here
from sklearn import linear_model
from sklearn.model_selection import LeaveOneGroupOut, cross_val_score
import participants.query_db import participants.query_db
from features import communication, esm, helper, proximity from features import communication, esm, helper, proximity
from machine_learning import QUESTIONNAIRE_IDS, QUESTIONNAIRE_IDS_RENAME from machine_learning import QUESTIONNAIRE_IDS, QUESTIONNAIRE_IDS_RENAME
WARNING_PARTICIPANTS_LABEL = (
"Before calculating features, please set participants label using self.set_participants_label() "
"to be used as a filename prefix when exporting data. "
"The filename will be of the form: %participants_label_%grouping_variable_%data_type.csv"
)
class SensorFeatures: class SensorFeatures:
def __init__( def __init__(
@ -16,16 +28,22 @@ class SensorFeatures:
features: dict, features: dict,
participants_usernames: Collection = None, participants_usernames: Collection = None,
): ):
self.grouping_variable = grouping_variable
self.grouping_variable_name = grouping_variable
self.grouping_variable = [grouping_variable]
self.data_types = features.keys() self.data_types = features.keys()
self.participants_label: str = ""
if participants_usernames is None: if participants_usernames is None:
participants_usernames = participants.query_db.get_usernames( participants_usernames = participants.query_db.get_usernames(
collection_start=datetime.date.fromisoformat("2020-08-01") collection_start=datetime.date.fromisoformat("2020-08-01")
) )
self.participants_label = "all"
self.participants_usernames = participants_usernames self.participants_usernames = participants_usernames
self.df_features_all = pd.DataFrame()
self.df_proximity = pd.DataFrame() self.df_proximity = pd.DataFrame()
self.df_proximity_counts = pd.DataFrame() self.df_proximity_counts = pd.DataFrame()
@ -33,19 +51,28 @@ class SensorFeatures:
self.df_sms = pd.DataFrame() self.df_sms = pd.DataFrame()
self.df_calls_sms = pd.DataFrame() self.df_calls_sms = pd.DataFrame()
self.folder = None
self.filename_prefix = ""
self.construct_export_path()
print("SensorFeatures initialized.")
def set_sensor_data(self): def set_sensor_data(self):
print("Querying database ...")
if "proximity" in self.data_types: if "proximity" in self.data_types:
self.df_proximity = proximity.get_proximity_data( self.df_proximity = proximity.get_proximity_data(
self.participants_usernames self.participants_usernames
) )
print("Got proximity data from the DB.")
self.df_proximity = helper.get_date_from_timestamp(self.df_proximity) self.df_proximity = helper.get_date_from_timestamp(self.df_proximity)
self.df_proximity = proximity.recode_proximity(self.df_proximity) self.df_proximity = proximity.recode_proximity(self.df_proximity)
if "communication" in self.data_types: if "communication" in self.data_types:
self.df_calls = communication.get_call_data(self.participants_usernames) self.df_calls = communication.get_call_data(self.participants_usernames)
self.df_calls = helper.get_date_from_timestamp(self.df_calls) self.df_calls = helper.get_date_from_timestamp(self.df_calls)
print("Got calls data from the DB.")
self.df_sms = communication.get_sms_data(self.participants_usernames) self.df_sms = communication.get_sms_data(self.participants_usernames)
self.df_sms = helper.get_date_from_timestamp(self.df_sms) self.df_sms = helper.get_date_from_timestamp(self.df_sms)
print("Got sms data from the DB.")
def get_sensor_data(self, data_type) -> pd.DataFrame: def get_sensor_data(self, data_type) -> pd.DataFrame:
if data_type == "proximity": if data_type == "proximity":
@ -56,15 +83,41 @@ class SensorFeatures:
raise KeyError("This data type has not been implemented.") raise KeyError("This data type has not been implemented.")
def calculate_features(self): def calculate_features(self):
print("Calculating features ...")
if not self.participants_label:
raise ValueError(WARNING_PARTICIPANTS_LABEL)
if "proximity" in self.data_types: if "proximity" in self.data_types:
self.df_proximity_counts = proximity.count_proximity( self.df_proximity_counts = proximity.count_proximity(
self.df_proximity, ["participant_id", self.grouping_variable] self.df_proximity, self.grouping_variable
) )
self.df_features_all = safe_outer_merge_on_index(
self.df_features_all, self.df_proximity_counts
)
print("Calculated proximity features.")
to_csv_with_settings(
self.df_proximity, self.folder, self.filename_prefix, data_type="prox"
)
if "communication" in self.data_types: if "communication" in self.data_types:
self.df_calls_sms = communication.calls_sms_features( self.df_calls_sms = communication.calls_sms_features(
df_calls=self.df_calls, df_sms=self.df_sms df_calls=self.df_calls,
df_sms=self.df_sms,
group_by=self.grouping_variable,
)
self.df_features_all = safe_outer_merge_on_index(
self.df_features_all, self.df_calls_sms
)
print("Calculated communication features.")
to_csv_with_settings(
self.df_calls_sms, self.folder, self.filename_prefix, data_type="comm"
)
self.df_features_all.fillna(
value=proximity.FILL_NA_PROXIMITY, inplace=True, downcast="infer",
)
self.df_features_all.fillna(
value=communication.FILL_NA_CALLS_SMS_ALL, inplace=True, downcast="infer",
) )
# TODO Think about joining dataframes.
def get_features(self, data_type, feature_names) -> pd.DataFrame: def get_features(self, data_type, feature_names) -> pd.DataFrame:
if data_type == "proximity": if data_type == "proximity":
@ -75,14 +128,28 @@ class SensorFeatures:
if feature_names == "all": if feature_names == "all":
feature_names = communication.FEATURES_CALLS_SMS_ALL feature_names = communication.FEATURES_CALLS_SMS_ALL
return self.df_calls_sms[feature_names] return self.df_calls_sms[feature_names]
elif data_type == "all":
return self.df_features_all
else: else:
raise KeyError("This data type has not been implemented.") raise KeyError("This data type has not been implemented.")
def construct_export_path(self):
if not self.participants_label:
warnings.warn(WARNING_PARTICIPANTS_LABEL, UserWarning)
self.folder = here("machine_learning/intermediate_results/features", warn=True)
self.filename_prefix = (
self.participants_label + "_" + self.grouping_variable_name
)
def set_participants_label(self, label: str):
self.participants_label = label
self.construct_export_path()
class Labels: class Labels:
def __init__( def __init__(
self, self,
grouping_variable: str, grouping_variable: list,
labels: dict, labels: dict,
participants_usernames: Collection = None, participants_usernames: Collection = None,
): ):
@ -101,9 +168,15 @@ class Labels:
self.df_esm_interest = pd.DataFrame() self.df_esm_interest = pd.DataFrame()
self.df_esm_clean = pd.DataFrame() self.df_esm_clean = pd.DataFrame()
self.df_esm_means = pd.DataFrame()
print("Labels initialized.")
def set_labels(self): def set_labels(self):
print("Querying database ...")
self.df_esm = esm.get_esm_data(self.participants_usernames) self.df_esm = esm.get_esm_data(self.participants_usernames)
print("Got ESM data from the DB.")
self.df_esm_preprocessed = esm.preprocess_esm(self.df_esm) self.df_esm_preprocessed = esm.preprocess_esm(self.df_esm)
print("ESM data preprocessed.")
if "PANAS" in self.questionnaires: if "PANAS" in self.questionnaires:
self.df_esm_interest = self.df_esm_preprocessed[ self.df_esm_interest = self.df_esm_preprocessed[
( (
@ -116,6 +189,7 @@ class Labels:
) )
] ]
self.df_esm_clean = esm.clean_up_esm(self.df_esm_interest) self.df_esm_clean = esm.clean_up_esm(self.df_esm_interest)
print("ESM data cleaned.")
def get_labels(self, questionnaire): def get_labels(self, questionnaire):
if questionnaire == "PANAS": if questionnaire == "PANAS":
@ -123,109 +197,131 @@ class Labels:
else: else:
raise KeyError("This questionnaire has not been implemented as a label.") raise KeyError("This questionnaire has not been implemented as a label.")
def aggregate_labels(self):
class MachineLearningPipeline: print("Aggregating labels ...")
def __init__( self.df_esm_means = (
self, self.df_esm_clean.groupby(
labels_questionnaire, ["participant_id", "questionnaire_id"] + self.grouping_variable
labels_scale,
data_types,
participants_usernames=None,
feature_names=None,
grouping_variable=None,
):
if participants_usernames is None:
participants_usernames = participants.query_db.get_usernames(
collection_start=datetime.date.fromisoformat("2020-08-01")
) )
self.participants_usernames = participants_usernames .esm_user_answer_numeric.agg("mean")
self.labels_questionnaire = labels_questionnaire .reset_index()
self.data_types = data_types .rename(columns={"esm_user_answer_numeric": "esm_numeric_mean"})
)
self.df_esm_means = (
self.df_esm_means.pivot(
index=["participant_id"] + self.grouping_variable,
columns="questionnaire_id",
values="esm_numeric_mean",
)
.reset_index(col_level=1)
.rename(columns=QUESTIONNAIRE_IDS_RENAME)
.set_index(["participant_id"] + self.grouping_variable)
)
print("Labels aggregated.")
if feature_names is None: def get_aggregated_labels(self):
self.feature_names = [] return self.df_esm_means
self.df_features = pd.DataFrame()
self.labels_scale = labels_scale
self.df_labels = pd.DataFrame()
self.grouping_variable = grouping_variable
self.df_groups = pd.DataFrame()
class ModelValidation:
def __init__(self, X, y, group_variable=None, cv_name="loso"):
self.model = None self.model = None
self.validation_method = None self.cv = None
self.df_esm = pd.DataFrame() idx_common = X.index.intersection(y.index)
self.df_esm_preprocessed = pd.DataFrame() self.y = y.loc[idx_common, "NA"]
self.df_esm_interest = pd.DataFrame() # TODO Handle the case of multiple labels.
self.df_esm_clean = pd.DataFrame() self.X = X.loc[idx_common]
self.groups = self.y.index.get_level_values(group_variable)
self.df_full_data_daily_means = pd.DataFrame() self.cv_name = cv_name
self.df_esm_daily_means = pd.DataFrame() print("ModelValidation initialized.")
self.df_proximity_daily_counts = pd.DataFrame()
# def get_labels(self): def set_cv_method(self):
# self.df_esm = esm.get_esm_data(self.participants_usernames) if self.cv_name == "loso":
# self.df_esm_preprocessed = esm.preprocess_esm(self.df_esm) self.cv = LeaveOneGroupOut()
# if self.labels_questionnaire == "PANAS": self.cv.get_n_splits(X=self.X, y=self.y, groups=self.groups)
# self.df_esm_interest = self.df_esm_preprocessed[ print("Validation method set.")
# (
# self.df_esm_preprocessed["questionnaire_id"]
# == QUESTIONNAIRE_IDS.get("PANAS").get("PA")
# )
# | (
# self.df_esm_preprocessed["questionnaire_id"]
# == QUESTIONNAIRE_IDS.get("PANAS").get("NA")
# )
# ]
# self.df_esm_clean = esm.clean_up_esm(self.df_esm_interest)
# def aggregate_daily(self): def cross_validate(self):
# self.df_esm_daily_means = ( print("Running cross validation ...")
# self.df_esm_clean.groupby(["participant_id", "date_lj", "questionnaire_id"])
# .esm_user_answer_numeric.agg("mean")
# .reset_index()
# .rename(columns={"esm_user_answer_numeric": "esm_numeric_mean"})
# )
# self.df_esm_daily_means = (
# self.df_esm_daily_means.pivot(
# index=["participant_id", "date_lj"],
# columns="questionnaire_id",
# values="esm_numeric_mean",
# )
# .reset_index(col_level=1)
# .rename(columns=QUESTIONNAIRE_IDS_RENAME)
# .set_index(["participant_id", "date_lj"])
# )
# self.df_full_data_daily_means = self.df_esm_daily_means.copy()
# if "proximity" in self.data_types:
# self.df_proximity_daily_counts = proximity.count_proximity(
# self.df_proximity, ["participant_id", "date_lj"]
# )
# self.df_full_data_daily_means = self.df_full_data_daily_means.join(
# self.df_proximity_daily_counts
# )
def assign_columns(self):
self.df_features = self.df_full_data_daily_means[self.feature_names]
self.df_labels = self.df_full_data_daily_means[self.labels_scale]
if self.grouping_variable:
self.df_groups = self.df_full_data_daily_means[self.grouping_variable]
else:
self.df_groups = None
def validate_model(self):
if self.model is None: if self.model is None:
raise AttributeError( raise TypeError(
"Please, specify a machine learning model first, by setting the .model attribute. " "Please, specify a machine learning model first, by setting the .model attribute. "
"E.g. self.model = sklearn.linear_model.LinearRegression()"
) )
if self.validation_method is None: if self.cv is None:
raise AttributeError( raise TypeError(
"Please, specify a cross validation method first, by setting the .validation_method attribute." "Please, specify a cross validation method first, by using set_cv_method() first."
) )
cross_val_score( if self.X.isna().any().any() or self.y.isna().any().any():
raise ValueError(
"NaNs were found in either X or y. Please, check your data before continuing."
)
return cross_val_score(
estimator=self.model, estimator=self.model,
X=self.df_features, X=self.X,
y=self.df_labels, y=self.y,
groups=self.df_groups, groups=self.groups,
cv=self.validation_method, cv=self.cv,
n_jobs=-1, n_jobs=-1,
scoring="r2",
) )
def safe_outer_merge_on_index(left, right):
if left.empty:
return right
elif right.empty:
return left
else:
return pd.merge(
left,
right,
how="outer",
left_index=True,
right_index=True,
validate="one_to_one",
)
def to_csv_with_settings(
df: pd.DataFrame, folder: Path, filename_prefix: str, data_type: str
) -> None:
export_filename = filename_prefix + "_" + data_type + ".csv"
full_path = folder / export_filename
df.to_csv(
path_or_buf=full_path,
sep=",",
na_rep="NA",
header=True,
index=False,
encoding="utf-8",
)
print("Exported the dataframe to " + str(full_path))
if __name__ == "__main__":
with open("./config/prox_comm_PANAS_features.yaml", "r") as file:
sensor_features_params = yaml.safe_load(file)
sensor_features = SensorFeatures(**sensor_features_params)
sensor_features.set_sensor_data()
sensor_features.calculate_features()
with open("./config/prox_comm_PANAS_labels.yaml", "r") as file:
labels_params = yaml.safe_load(file)
labels = Labels(**labels_params)
labels.set_labels()
labels.aggregate_labels()
model_validation = ModelValidation(
sensor_features.get_features("all", "all"),
labels.get_aggregated_labels(),
group_variable="participant_id",
cv_name="loso",
)
model_validation.model = linear_model.LinearRegression()
model_validation.set_cv_method()
model_loso_r2 = model_validation.cross_validate()
print(model_loso_r2)
print(np.mean(model_loso_r2))