Fill in zeroes when joining or unstacking.
If there are no calls or smses for a particular day, there is no corresponding row in the features dataframe. When joining these, however, NaNs were introduced. Since a value of 0 is meaningful for all of these features, replace NaNs with 0's.communication
parent
9a319ac6e5
commit
00015a3b8d
|
@ -164,7 +164,7 @@ def count_comms(comm_df: pd.DataFrame, group_by=None) -> pd.DataFrame:
|
|||
data_type = "calls"
|
||||
comm_counts = (
|
||||
comm_df.value_counts(subset=group_by + ["participant_id", "call_type"])
|
||||
.unstack()
|
||||
.unstack(level="call_type", fill_value=0)
|
||||
.rename(columns=call_types)
|
||||
.add_prefix("no_")
|
||||
)
|
||||
|
@ -179,7 +179,7 @@ def count_comms(comm_df: pd.DataFrame, group_by=None) -> pd.DataFrame:
|
|||
comm_duration_total = (
|
||||
comm_df.groupby(group_by + ["participant_id", "call_type"])
|
||||
.sum()["call_duration"]
|
||||
.unstack()
|
||||
.unstack(level="call_type", fill_value=0)
|
||||
.rename(columns=call_types)
|
||||
.add_prefix("duration_total_")
|
||||
)
|
||||
|
@ -187,7 +187,7 @@ def count_comms(comm_df: pd.DataFrame, group_by=None) -> pd.DataFrame:
|
|||
comm_duration_max = (
|
||||
comm_df.groupby(group_by + ["participant_id", "call_type"])
|
||||
.max()["call_duration"]
|
||||
.unstack()
|
||||
.unstack(level="call_type", fill_value=0)
|
||||
.rename(columns=call_types)
|
||||
.add_prefix("duration_max_")
|
||||
)
|
||||
|
@ -206,7 +206,7 @@ def count_comms(comm_df: pd.DataFrame, group_by=None) -> pd.DataFrame:
|
|||
data_type = "sms"
|
||||
comm_counts = (
|
||||
comm_df.value_counts(subset=group_by + ["participant_id", "message_type"])
|
||||
.unstack()
|
||||
.unstack(level="message_type", fill_value=0)
|
||||
.rename(columns=sms_types)
|
||||
.add_prefix("no_")
|
||||
)
|
||||
|
@ -309,24 +309,33 @@ def calls_sms_features(
|
|||
group_by = []
|
||||
count_calls = count_comms(df_calls, group_by)
|
||||
count_sms = count_comms(df_sms, group_by)
|
||||
count_joined = count_calls.merge(
|
||||
count_sms, how="outer", left_index=True, right_index=True, validate="one_to_one"
|
||||
).assign(
|
||||
proportion_calls_all=(
|
||||
lambda x: x.no_calls_all / (x.no_calls_all + x.no_sms_all)
|
||||
),
|
||||
proportion_calls_incoming=(
|
||||
lambda x: x.no_incoming / (x.no_incoming + x.no_received)
|
||||
),
|
||||
proportion_calls_missed_sms_received=(
|
||||
lambda x: x.no_missed / (x.no_missed + x.no_received)
|
||||
),
|
||||
proportion_calls_outgoing=(
|
||||
lambda x: x.no_outgoing / (x.no_outgoing + x.no_sent)
|
||||
),
|
||||
proportion_calls_contacts=(
|
||||
lambda x: x.no_contacts_calls / (x.no_contacts_calls + x.no_contacts_sms)
|
||||
count_joined = (
|
||||
count_calls.merge(
|
||||
count_sms,
|
||||
how="outer",
|
||||
left_index=True,
|
||||
right_index=True,
|
||||
validate="one_to_one",
|
||||
)
|
||||
.fillna(0, downcast="infer")
|
||||
.assign(
|
||||
proportion_calls_all=(
|
||||
lambda x: x.no_calls_all / (x.no_calls_all + x.no_sms_all)
|
||||
),
|
||||
proportion_calls_incoming=(
|
||||
lambda x: x.no_incoming / (x.no_incoming + x.no_received)
|
||||
),
|
||||
proportion_calls_missed_sms_received=(
|
||||
lambda x: x.no_missed / (x.no_missed + x.no_received)
|
||||
),
|
||||
proportion_calls_outgoing=(
|
||||
lambda x: x.no_outgoing / (x.no_outgoing + x.no_sent)
|
||||
),
|
||||
proportion_calls_contacts=(
|
||||
lambda x: x.no_contacts_calls
|
||||
/ (x.no_contacts_calls + x.no_contacts_sms)
|
||||
)
|
||||
# Calculate new features and create additional columns
|
||||
)
|
||||
# Calculate new features and create additional columns
|
||||
)
|
||||
return count_joined
|
||||
|
|
Loading…
Reference in New Issue