Prepare the first full pipeline.
parent
24c4bef7e2
commit
a71e132edf
|
@ -0,0 +1,6 @@
|
|||
grouping_variable: [date_lj]
|
||||
features:
|
||||
proximity:
|
||||
all
|
||||
communication:
|
||||
all
|
|
@ -0,0 +1,5 @@
|
|||
grouping_variable: [date_lj]
|
||||
labels:
|
||||
PANAS:
|
||||
- PA
|
||||
- NA
|
|
@ -1,7 +1,10 @@
|
|||
import datetime
|
||||
from collections.abc import Collection
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import yaml
|
||||
from sklearn import linear_model
|
||||
from sklearn.model_selection import LeaveOneGroupOut, cross_val_score
|
||||
|
||||
import participants.query_db
|
||||
|
@ -343,3 +346,29 @@ class MachineLearningPipeline:
|
|||
cv=self.validation_method,
|
||||
n_jobs=-1,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
with open("./config/prox_comm_PANAS_features.yaml", "r") as file:
|
||||
sensor_features_params = yaml.safe_load(file)
|
||||
sensor_features = SensorFeatures(**sensor_features_params)
|
||||
sensor_features.set_sensor_data()
|
||||
sensor_features.calculate_features()
|
||||
|
||||
with open("./config/prox_comm_PANAS_labels.yaml", "r") as file:
|
||||
labels_params = yaml.safe_load(file)
|
||||
labels = Labels(**labels_params)
|
||||
labels.set_labels()
|
||||
labels.aggregate_labels()
|
||||
|
||||
model_validation = ModelValidation(
|
||||
sensor_features.get_features("all", "all"),
|
||||
labels.get_aggregated_labels(),
|
||||
group_variable="participant_id",
|
||||
cv_name="loso",
|
||||
)
|
||||
model_validation.model = linear_model.LinearRegression()
|
||||
model_validation.set_cv_method()
|
||||
model_loso_r2 = model_validation.cross_validate()
|
||||
print(model_loso_r2)
|
||||
print(np.mean(model_loso_r2))
|
||||
|
|
Loading…
Reference in New Issue