Prepare the first full pipeline.

rapids
junos 2021-08-21 19:04:09 +02:00
parent 24c4bef7e2
commit a71e132edf
3 changed files with 40 additions and 0 deletions

View File

@ -0,0 +1,6 @@
grouping_variable: [date_lj]
features:
proximity:
all
communication:
all

View File

@ -0,0 +1,5 @@
grouping_variable: [date_lj]
labels:
PANAS:
- PA
- NA

View File

@ -1,7 +1,10 @@
import datetime
from collections.abc import Collection
import numpy as np
import pandas as pd
import yaml
from sklearn import linear_model
from sklearn.model_selection import LeaveOneGroupOut, cross_val_score
import participants.query_db
@ -343,3 +346,29 @@ class MachineLearningPipeline:
cv=self.validation_method,
n_jobs=-1,
)
if __name__ == "__main__":
with open("./config/prox_comm_PANAS_features.yaml", "r") as file:
sensor_features_params = yaml.safe_load(file)
sensor_features = SensorFeatures(**sensor_features_params)
sensor_features.set_sensor_data()
sensor_features.calculate_features()
with open("./config/prox_comm_PANAS_labels.yaml", "r") as file:
labels_params = yaml.safe_load(file)
labels = Labels(**labels_params)
labels.set_labels()
labels.aggregate_labels()
model_validation = ModelValidation(
sensor_features.get_features("all", "all"),
labels.get_aggregated_labels(),
group_variable="participant_id",
cv_name="loso",
)
model_validation.model = linear_model.LinearRegression()
model_validation.set_cv_method()
model_loso_r2 = model_validation.cross_validate()
print(model_loso_r2)
print(np.mean(model_loso_r2))