Make group_by consistent with communication.
parent
d6337e82ac
commit
72b16af75c
|
@ -16,6 +16,7 @@
|
|||
# %%
|
||||
# %matplotlib inline
|
||||
import datetime
|
||||
import importlib
|
||||
import os
|
||||
import sys
|
||||
|
||||
|
@ -32,13 +33,16 @@ import participants.query_db
|
|||
TZ_LJ = timezone("Europe/Ljubljana")
|
||||
|
||||
# %%
|
||||
from features.proximity import *
|
||||
from features import helper, proximity
|
||||
|
||||
# %%
|
||||
importlib.reload(proximity)
|
||||
|
||||
# %% [markdown]
|
||||
# # Basic characteristics
|
||||
|
||||
# %%
|
||||
df_proximity_nokia = get_proximity_data(["nokia_0000003"])
|
||||
df_proximity_nokia = proximity.get_proximity_data(["nokia_0000003"])
|
||||
print(df_proximity_nokia)
|
||||
|
||||
# %%
|
||||
|
@ -53,7 +57,7 @@ df_proximity_nokia.double_proximity.value_counts()
|
|||
|
||||
# %%
|
||||
participants_inactive_usernames = participants.query_db.get_usernames()
|
||||
df_proximity_inactive = get_proximity_data(participants_inactive_usernames)
|
||||
df_proximity_inactive = proximity.get_proximity_data(participants_inactive_usernames)
|
||||
|
||||
# %%
|
||||
df_proximity_inactive.double_proximity.describe()
|
||||
|
@ -110,3 +114,13 @@ df_proximity_combinations[
|
|||
(df_proximity_combinations[5.0] != 0)
|
||||
& (df_proximity_combinations[5.00030517578125] != 0)
|
||||
]
|
||||
|
||||
# %% [markdown]
|
||||
# # Features
|
||||
|
||||
# %%
|
||||
df_proximity_inactive = helper.get_date_from_timestamp(df_proximity_inactive)
|
||||
|
||||
# %%
|
||||
df_proximity_features = proximity.count_proximity(df_proximity_inactive, ["date_lj"])
|
||||
display(df_proximity_features)
|
||||
|
|
|
@ -78,11 +78,11 @@ def count_proximity(
|
|||
A dataframe with the count of "near" proximity values and their relative count.
|
||||
"""
|
||||
if group_by is None:
|
||||
group_by = ["participant_id"]
|
||||
group_by = []
|
||||
if "bool_prox_near" not in df_proximity:
|
||||
df_proximity = recode_proximity(df_proximity)
|
||||
df_proximity["bool_prox_far"] = ~df_proximity["bool_prox_near"]
|
||||
df_proximity_features = df_proximity.groupby(group_by).sum()[
|
||||
df_proximity_features = df_proximity.groupby(["participant_id"] + group_by).sum()[
|
||||
["bool_prox_near", "bool_prox_far"]
|
||||
]
|
||||
df_proximity_features = df_proximity_features.assign(
|
||||
|
|
Loading…
Reference in New Issue