Compare commits
33 Commits
1aaf95fe9e
...
577a874288
Author | SHA1 | Date |
---|---|---|
junos | 577a874288 | |
junos | c8bb481508 | |
junos | 98f1df81c6 | |
junos | ad85f79bc5 | |
junos | 070cfdba80 | |
junos | c6d0e4391e | |
junos | af65d0864f | |
junos | a2180aee54 | |
junos | a06ad0800f | |
junos | 06e1fe7410 | |
junos | 02f2607be9 | |
junos | cca5a29483 | |
junos | e3d735163f | |
Ivan Kobe | 1b53865f0a | |
Ivan Kobe | 4ac5f37c19 | |
junos | 2fc80a34e7 | |
junos | fbd9c2fc32 | |
Junos Lukan | d8899fa75b | |
Ivan Kobe | 62af04fe09 | |
junos | 33ebf9caea | |
junos | 40293c4752 | |
junos | 9e87b1f176 | |
Ivan Kobe | 4a2ca581b3 | |
Ivan Kobe | d98b673824 | |
junos | 1bdb334c42 | |
junos | b99136a181 | |
junos | 9bd42afa02 | |
junos | 0f5af21f71 | |
junos | c4f7b6459d | |
junos | 19cddaa634 | |
junos | 763b970a42 | |
junos | 3c12a6e74a | |
junos | 28e9db15f5 |
|
@ -16,6 +16,7 @@ dependencies:
|
||||||
- python-dotenv
|
- python-dotenv
|
||||||
- pytz
|
- pytz
|
||||||
- seaborn
|
- seaborn
|
||||||
|
- scikit-learn
|
||||||
- sqlalchemy
|
- sqlalchemy
|
||||||
- statsmodels
|
- statsmodels
|
||||||
- tabulate
|
- tabulate
|
|
@ -0,0 +1,150 @@
|
||||||
|
# ---
|
||||||
|
# jupyter:
|
||||||
|
# jupytext:
|
||||||
|
# formats: ipynb,py:percent
|
||||||
|
# text_representation:
|
||||||
|
# extension: .py
|
||||||
|
# format_name: percent
|
||||||
|
# format_version: '1.3'
|
||||||
|
# jupytext_version: 1.11.4
|
||||||
|
# kernelspec:
|
||||||
|
# display_name: straw2analysis
|
||||||
|
# language: python
|
||||||
|
# name: straw2analysis
|
||||||
|
# ---
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# %matplotlib inline
|
||||||
|
import datetime
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
|
||||||
|
import seaborn as sns
|
||||||
|
from sklearn import linear_model
|
||||||
|
from sklearn.model_selection import LeaveOneGroupOut, cross_val_score
|
||||||
|
|
||||||
|
nb_dir = os.path.split(os.getcwd())[0]
|
||||||
|
if nb_dir not in sys.path:
|
||||||
|
sys.path.append(nb_dir)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
import participants.query_db
|
||||||
|
from features import esm, helper, proximity
|
||||||
|
|
||||||
|
# %% [markdown]
|
||||||
|
# # 1. Get the relevant data
|
||||||
|
|
||||||
|
# %%
|
||||||
|
participants_inactive_usernames = participants.query_db.get_usernames(
|
||||||
|
collection_start=datetime.date.fromisoformat("2020-08-01")
|
||||||
|
)
|
||||||
|
# Consider only two participants to simplify.
|
||||||
|
ptcp_2 = participants_inactive_usernames[0:2]
|
||||||
|
|
||||||
|
# %% [markdown]
|
||||||
|
# ## 1.1 Labels
|
||||||
|
|
||||||
|
# %%
|
||||||
|
df_esm = esm.get_esm_data(ptcp_2)
|
||||||
|
df_esm_preprocessed = esm.preprocess_esm(df_esm)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
df_esm_PANAS = df_esm_preprocessed[
|
||||||
|
(df_esm_preprocessed["questionnaire_id"] == 8)
|
||||||
|
| (df_esm_preprocessed["questionnaire_id"] == 9)
|
||||||
|
]
|
||||||
|
df_esm_PANAS_clean = esm.clean_up_esm(df_esm_PANAS)
|
||||||
|
|
||||||
|
# %% [markdown]
|
||||||
|
# ## 1.2 Sensor data
|
||||||
|
|
||||||
|
# %%
|
||||||
|
df_proximity = proximity.get_proximity_data(ptcp_2)
|
||||||
|
df_proximity = helper.get_date_from_timestamp(df_proximity)
|
||||||
|
df_proximity = proximity.recode_proximity(df_proximity)
|
||||||
|
|
||||||
|
# %% [markdown]
|
||||||
|
# ## 1.3 Standardization/personalization
|
||||||
|
|
||||||
|
# %% [markdown]
|
||||||
|
# # 2. Grouping/segmentation
|
||||||
|
|
||||||
|
# %%
|
||||||
|
df_esm_PANAS_daily_means = (
|
||||||
|
df_esm_PANAS_clean.groupby(["participant_id", "date_lj", "questionnaire_id"])
|
||||||
|
.esm_user_answer_numeric.agg("mean")
|
||||||
|
.reset_index()
|
||||||
|
.rename(columns={"esm_user_answer_numeric": "esm_numeric_mean"})
|
||||||
|
)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
df_esm_PANAS_daily_means = (
|
||||||
|
df_esm_PANAS_daily_means.pivot(
|
||||||
|
index=["participant_id", "date_lj"],
|
||||||
|
columns="questionnaire_id",
|
||||||
|
values="esm_numeric_mean",
|
||||||
|
)
|
||||||
|
.reset_index(col_level=1)
|
||||||
|
.rename(columns={8.0: "PA", 9.0: "NA"})
|
||||||
|
.set_index(["participant_id", "date_lj"])
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
df_proximity_daily_counts = proximity.count_proximity(
|
||||||
|
df_proximity, ["participant_id", "date_lj"]
|
||||||
|
)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
df_proximity_daily_counts
|
||||||
|
|
||||||
|
# %% [markdown]
|
||||||
|
# # 3. Join features (and export to csv?)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
df_full_data_daily_means = df_esm_PANAS_daily_means.join(
|
||||||
|
df_proximity_daily_counts
|
||||||
|
).reset_index()
|
||||||
|
|
||||||
|
# %% [markdown]
|
||||||
|
# # 4. Machine learning model and parameters
|
||||||
|
|
||||||
|
# %%
|
||||||
|
lin_reg_proximity = linear_model.LinearRegression()
|
||||||
|
|
||||||
|
# %% [markdown]
|
||||||
|
# ## 4.1 Validation method
|
||||||
|
|
||||||
|
# %%
|
||||||
|
logo = LeaveOneGroupOut()
|
||||||
|
logo.get_n_splits(
|
||||||
|
df_full_data_daily_means[["freq_prox_near", "prop_prox_near"]],
|
||||||
|
df_full_data_daily_means["PA"],
|
||||||
|
groups=df_full_data_daily_means["participant_id"],
|
||||||
|
)
|
||||||
|
|
||||||
|
# %% [markdown]
|
||||||
|
# ## 4.2 Fit results (export?)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
cross_val_score(
|
||||||
|
lin_reg_proximity,
|
||||||
|
df_full_data_daily_means[["freq_prox_near", "prop_prox_near"]],
|
||||||
|
df_full_data_daily_means["PA"],
|
||||||
|
groups=df_full_data_daily_means["participant_id"],
|
||||||
|
cv=logo,
|
||||||
|
n_jobs=-1,
|
||||||
|
scoring="r2",
|
||||||
|
)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
lin_reg_proximity.fit(
|
||||||
|
df_full_data_daily_means[["freq_prox_near", "prop_prox_near"]],
|
||||||
|
df_full_data_daily_means["PA"],
|
||||||
|
)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
lin_reg_proximity.score(
|
||||||
|
df_full_data_daily_means[["freq_prox_near", "prop_prox_near"]],
|
||||||
|
df_full_data_daily_means["PA"],
|
||||||
|
)
|
|
@ -0,0 +1,76 @@
|
||||||
|
# ---
|
||||||
|
# jupyter:
|
||||||
|
# jupytext:
|
||||||
|
# formats: ipynb,py:percent
|
||||||
|
# text_representation:
|
||||||
|
# extension: .py
|
||||||
|
# format_name: percent
|
||||||
|
# format_version: '1.3'
|
||||||
|
# jupytext_version: 1.11.4
|
||||||
|
# kernelspec:
|
||||||
|
# display_name: straw2analysis
|
||||||
|
# language: python
|
||||||
|
# name: straw2analysis
|
||||||
|
# ---
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# %matplotlib inline
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import pandas as pd
|
||||||
|
import seaborn as sns
|
||||||
|
|
||||||
|
nb_dir = os.path.split(os.getcwd())[0]
|
||||||
|
if nb_dir not in sys.path:
|
||||||
|
sys.path.append(nb_dir)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
from config.models import AppCategories, Participant
|
||||||
|
from setup import db_engine, session
|
||||||
|
|
||||||
|
# %%
|
||||||
|
query_app_categories = session.query(AppCategories)
|
||||||
|
with db_engine.connect() as connection:
|
||||||
|
df_app_categories = pd.read_sql(query_app_categories.statement, connection)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
df_app_categories.head()
|
||||||
|
|
||||||
|
# %%
|
||||||
|
df_app_categories["play_store_genre"].value_counts()
|
||||||
|
|
||||||
|
# %%
|
||||||
|
df_category_not_found = df_app_categories[
|
||||||
|
df_app_categories["play_store_genre"] == "not_found"
|
||||||
|
]
|
||||||
|
|
||||||
|
# %%
|
||||||
|
df_category_not_found["play_store_response"].value_counts()
|
||||||
|
|
||||||
|
# %%
|
||||||
|
df_category_not_found["package_name"].value_counts()
|
||||||
|
|
||||||
|
# %%
|
||||||
|
manufacturers = [
|
||||||
|
"samsung",
|
||||||
|
"oneplus",
|
||||||
|
"huawei",
|
||||||
|
"xiaomi",
|
||||||
|
"lge",
|
||||||
|
"motorola",
|
||||||
|
"miui",
|
||||||
|
"lenovo",
|
||||||
|
"oppo",
|
||||||
|
"mediatek",
|
||||||
|
]
|
||||||
|
custom_rom = ["coloros", "lineageos", "myos", "cyanogenmod", "foundation.e"]
|
||||||
|
other = ["android", "wssyncmldm"]
|
||||||
|
rows_os_manufacturer = df_category_not_found["package_name"].str.contains(
|
||||||
|
"|".join(manufacturers + custom_rom + other), case=False
|
||||||
|
)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
with pd.option_context("display.max_rows", None, "display.max_columns", None):
|
||||||
|
display(df_category_not_found.loc[~rows_os_manufacturer])
|
|
@ -6,7 +6,7 @@
|
||||||
# extension: .py
|
# extension: .py
|
||||||
# format_name: percent
|
# format_name: percent
|
||||||
# format_version: '1.3'
|
# format_version: '1.3'
|
||||||
# jupytext_version: 1.11.2
|
# jupytext_version: 1.11.4
|
||||||
# kernelspec:
|
# kernelspec:
|
||||||
# display_name: straw2analysis
|
# display_name: straw2analysis
|
||||||
# language: python
|
# language: python
|
||||||
|
@ -14,6 +14,7 @@
|
||||||
# ---
|
# ---
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
|
# %matplotlib inline
|
||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
|
|
||||||
|
@ -53,6 +54,15 @@ import participants.query_db
|
||||||
participants_inactive_usernames = participants.query_db.get_usernames()
|
participants_inactive_usernames = participants.query_db.get_usernames()
|
||||||
df_calls_inactive = get_call_data(participants_inactive_usernames)
|
df_calls_inactive = get_call_data(participants_inactive_usernames)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
participants_inactive_usernames
|
||||||
|
|
||||||
|
# %%
|
||||||
|
df_calls_inactive.head()
|
||||||
|
|
||||||
|
# %%
|
||||||
|
enumerate_contacts(df_calls_inactive).head()
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
df_calls_features = count_comms(df_calls_inactive)
|
df_calls_features = count_comms(df_calls_inactive)
|
||||||
df_calls_features.head()
|
df_calls_features.head()
|
||||||
|
@ -70,6 +80,9 @@ calls_number = pd.wide_to_long(
|
||||||
suffix="\D+",
|
suffix="\D+",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
calls_number
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
sns.displot(calls_number, x="no", hue="call_type", binwidth=5, element="step", height=8)
|
sns.displot(calls_number, x="no", hue="call_type", binwidth=5, element="step", height=8)
|
||||||
|
|
||||||
|
@ -126,3 +139,30 @@ sms_number = pd.wide_to_long(
|
||||||
sns.displot(
|
sns.displot(
|
||||||
sms_number, x="no", hue="message_type", binwidth=5, element="step", height=8
|
sms_number, x="no", hue="message_type", binwidth=5, element="step", height=8
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# %% [markdown]
|
||||||
|
# # Communication features
|
||||||
|
|
||||||
|
# %%
|
||||||
|
df_calls_enumerated = enumerate_contacts(df_calls)
|
||||||
|
display(df_calls_enumerated)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
df_calls_contact_features = contact_features(df_calls_enumerated)
|
||||||
|
display(df_calls_contact_features)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
df_sms_enumerated = enumerate_contacts(df_sms)
|
||||||
|
df_sms_contact_features = contact_features(df_sms_enumerated)
|
||||||
|
display(df_sms_contact_features)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
display(count_comms(df_calls))
|
||||||
|
|
||||||
|
# %%
|
||||||
|
display(count_comms(df_sms))
|
||||||
|
|
||||||
|
# %%
|
||||||
|
display(calls_sms_features(df_calls, df_sms))
|
||||||
|
|
||||||
|
# %%
|
||||||
|
|
|
@ -6,7 +6,7 @@
|
||||||
# extension: .py
|
# extension: .py
|
||||||
# format_name: percent
|
# format_name: percent
|
||||||
# format_version: '1.3'
|
# format_version: '1.3'
|
||||||
# jupytext_version: 1.11.2
|
# jupytext_version: 1.11.4
|
||||||
# kernelspec:
|
# kernelspec:
|
||||||
# display_name: straw2analysis
|
# display_name: straw2analysis
|
||||||
# language: python
|
# language: python
|
||||||
|
@ -14,6 +14,7 @@
|
||||||
# ---
|
# ---
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
|
# %matplotlib inline
|
||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
|
|
||||||
|
|
|
@ -86,7 +86,8 @@ def enumerate_contacts(comm_df: pd.DataFrame) -> pd.DataFrame:
|
||||||
# In other words, recode the contacts into integers from 0 to n_contacts,
|
# In other words, recode the contacts into integers from 0 to n_contacts,
|
||||||
# so that the first one is contacted the most often.
|
# so that the first one is contacted the most often.
|
||||||
contact_ids = (
|
contact_ids = (
|
||||||
contact_counts.groupby("participant_id") # Group again for enumeration.
|
# Group again for enumeration.
|
||||||
|
contact_counts.groupby("participant_id")
|
||||||
.cumcount() # Enumerate (count) rows *within* participants.
|
.cumcount() # Enumerate (count) rows *within* participants.
|
||||||
.to_frame("contact_id")
|
.to_frame("contact_id")
|
||||||
)
|
)
|
||||||
|
@ -176,15 +177,148 @@ def count_comms(comm_df: pd.DataFrame) -> pd.DataFrame:
|
||||||
return comm_features
|
return comm_features
|
||||||
|
|
||||||
|
|
||||||
def contact_features():
|
def contact_features(df_enumerated: pd.DataFrame) -> pd.DataFrame:
|
||||||
# TODO Implement a method that takes a DF with enumerated contacts as argument and calculates:
|
"""
|
||||||
# * Duration of calls per caller (for most common callers)
|
Counts the number of people contacted (for each participant) and, if
|
||||||
# * Determine work vs non-work contacts by work hours heuristics
|
df_enumerated is a dataframe containing calls data, the total duration
|
||||||
# * Number of people contacted
|
of calls between a participant and each of her contacts.
|
||||||
# And similarly for SMS.
|
|
||||||
pass
|
Parameters
|
||||||
|
----------
|
||||||
|
df_enumerated: pd.DataFrame
|
||||||
|
A dataframe of calls or SMSes; return of function enumerate_contacts.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
comm_df: pd.DataFrame
|
||||||
|
The altered dataframe with the column no_contacts and, if df_enumerated
|
||||||
|
contains calls data, an additional column total_call_duration.
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Check whether df contains calls or SMS data since some
|
||||||
|
# features we want to calculate are type-specyfic
|
||||||
|
if "call_duration" in df_enumerated:
|
||||||
|
# Add a column with the total duration of calls between two people
|
||||||
|
duration_count = (
|
||||||
|
df_enumerated.groupby(["participant_id", "contact_id"])
|
||||||
|
# For each participant and for each caller, sum durations of their calls
|
||||||
|
["call_duration"]
|
||||||
|
.sum()
|
||||||
|
.reset_index() # Make index (which is actually the participant id) a normal column
|
||||||
|
.rename(columns={"call_duration": "total_call_duration"})
|
||||||
|
)
|
||||||
|
# The new dataframe now contains columns containing information about
|
||||||
|
# participants, callers and the total duration of their calls. All that
|
||||||
|
# is now left to do is to merge the original df with the new one.
|
||||||
|
df_enumerated = df_enumerated.merge(
|
||||||
|
duration_count, on=["participant_id", "contact_id"]
|
||||||
|
)
|
||||||
|
|
||||||
|
contact_count = (
|
||||||
|
df_enumerated.groupby(["participant_id"])
|
||||||
|
.nunique()[
|
||||||
|
"contact_id"
|
||||||
|
] # For each participant, count the number of distinct contacts
|
||||||
|
.reset_index() # Make index (which is actually the participant id) a normal column
|
||||||
|
.rename(columns={"contact_id": "no_contacts"})
|
||||||
|
)
|
||||||
|
|
||||||
|
df_enumerated = (
|
||||||
|
# Merge df with the newely created df containing info about number of contacts
|
||||||
|
df_enumerated.merge(contact_count, on="participant_id")
|
||||||
|
# Sort first by participant_id and then by contact_id and
|
||||||
|
# thereby restore the inital ordering of input dataframes.
|
||||||
|
.sort_values(["participant_id", "contact_id"])
|
||||||
|
)
|
||||||
|
|
||||||
|
# TODO:Determine work vs non-work contacts by work hours heuristics
|
||||||
|
|
||||||
|
return df_enumerated
|
||||||
|
|
||||||
|
|
||||||
def calls_sms_features():
|
def calls_sms_features(df_calls: pd.DataFrame, df_sms: pd.DataFrame) -> pd.DataFrame:
|
||||||
# TODO Relate the calls and sms data, such as comparing the number of (missed) calls and messages.
|
"""
|
||||||
pass
|
Calculates additional features relating calls and sms data.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
df_calls: pd.DataFrame
|
||||||
|
A dataframe of calls (return of get_call_data).
|
||||||
|
df_sms: pd.DataFrame
|
||||||
|
A dataframe of calls (return of get_sms_data).
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
df_calls_sms: pd.DataFrame
|
||||||
|
The list of features relating calls and sms data for every participant.
|
||||||
|
These are:
|
||||||
|
* proportion_calls:
|
||||||
|
proportion of calls in total number of communications
|
||||||
|
* proportion_calls_incoming:
|
||||||
|
proportion of incoming calls in total number of incoming/received communications
|
||||||
|
* proportion_calls_outgoing:
|
||||||
|
proportion of outgoing calls in total number of outgoing/sent communications
|
||||||
|
* proportion_calls_missed_sms_received:
|
||||||
|
proportion of missed calls to the number of received messages
|
||||||
|
* proportion_calls_contacts:
|
||||||
|
proportion of calls contacts in total number of communication contacts
|
||||||
|
"""
|
||||||
|
|
||||||
|
count_calls = count_comms(df_calls)
|
||||||
|
count_sms = count_comms(df_sms)
|
||||||
|
|
||||||
|
count_joined = (
|
||||||
|
count_calls.merge(
|
||||||
|
count_sms, on="participant_id", suffixes=("_calls", "_sms")
|
||||||
|
) # Merge calls and sms features
|
||||||
|
.reset_index() # Make participant_id a regular column
|
||||||
|
.assign(
|
||||||
|
proportion_calls=(
|
||||||
|
lambda x: x.no_all_calls / (x.no_all_calls + x.no_all_sms)
|
||||||
|
),
|
||||||
|
proportion_calls_incoming=(
|
||||||
|
lambda x: x.no_incoming / (x.no_incoming + x.no_received)
|
||||||
|
),
|
||||||
|
proportion_calls_missed_sms_received=(
|
||||||
|
lambda x: x.no_missed / (x.no_missed + x.no_received)
|
||||||
|
),
|
||||||
|
proportion_calls_outgoing=(
|
||||||
|
lambda x: x.no_outgoing / (x.no_outgoing + x.no_sent)
|
||||||
|
)
|
||||||
|
# Calculate new features and create additional columns
|
||||||
|
)[
|
||||||
|
[
|
||||||
|
"participant_id",
|
||||||
|
"proportion_calls",
|
||||||
|
"proportion_calls_incoming",
|
||||||
|
"proportion_calls_outgoing",
|
||||||
|
"proportion_calls_missed_sms_received",
|
||||||
|
]
|
||||||
|
] # Filter out only the relevant features
|
||||||
|
)
|
||||||
|
|
||||||
|
features_calls = contact_features(enumerate_contacts(df_calls))
|
||||||
|
features_sms = contact_features(enumerate_contacts(df_sms))
|
||||||
|
|
||||||
|
features_joined = (
|
||||||
|
features_calls.merge(
|
||||||
|
features_sms, on="participant_id", suffixes=("_calls", "_sms")
|
||||||
|
) # Merge calls and sms features
|
||||||
|
.reset_index() # Make participant_id a regular column
|
||||||
|
.assign(
|
||||||
|
proportion_calls_contacts=(
|
||||||
|
lambda x: x.no_contacts_calls
|
||||||
|
/ (x.no_contacts_calls + x.no_contacts_sms)
|
||||||
|
) # Calculate new features and create additional columns
|
||||||
|
)[
|
||||||
|
["participant_id", "proportion_calls_contacts"]
|
||||||
|
] # Filter out only the relevant features
|
||||||
|
# Since we are interested only in some features and ignored
|
||||||
|
# others, a lot of duplicate rows were created. Remove them.
|
||||||
|
.drop_duplicates()
|
||||||
|
)
|
||||||
|
|
||||||
|
# Join the newly created dataframes
|
||||||
|
df_calls_sms = count_joined.merge(features_joined, on="participant_id")
|
||||||
|
|
||||||
|
return df_calls_sms
|
||||||
|
|
|
@ -1,14 +1,12 @@
|
||||||
import datetime
|
|
||||||
from collections.abc import Collection
|
from collections.abc import Collection
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
from pytz import timezone
|
|
||||||
|
|
||||||
from config.models import ESM, Participant
|
from config.models import ESM, Participant
|
||||||
|
from features import helper
|
||||||
from setup import db_engine, session
|
from setup import db_engine, session
|
||||||
|
|
||||||
TZ_LJ = timezone("Europe/Ljubljana")
|
|
||||||
ESM_STATUS_ANSWERED = 2
|
ESM_STATUS_ANSWERED = 2
|
||||||
|
|
||||||
GROUP_SESSIONS_BY = ["participant_id", "device_id", "esm_session"]
|
GROUP_SESSIONS_BY = ["participant_id", "device_id", "esm_session"]
|
||||||
|
@ -67,14 +65,8 @@ def preprocess_esm(df_esm: pd.DataFrame) -> pd.DataFrame:
|
||||||
df_esm_preprocessed: pd.DataFrame
|
df_esm_preprocessed: pd.DataFrame
|
||||||
A dataframe with added columns: datetime in Ljubljana timezone and all fields from ESM_JSON column.
|
A dataframe with added columns: datetime in Ljubljana timezone and all fields from ESM_JSON column.
|
||||||
"""
|
"""
|
||||||
df_esm["datetime_lj"] = df_esm["double_esm_user_answer_timestamp"].apply(
|
df_esm = helper.get_date_from_timestamp(df_esm)
|
||||||
lambda x: datetime.datetime.fromtimestamp(x / 1000.0, tz=TZ_LJ)
|
|
||||||
)
|
|
||||||
df_esm = df_esm.assign(
|
|
||||||
date_lj=lambda x: (x.datetime_lj - datetime.timedelta(hours=4)).dt.date
|
|
||||||
)
|
|
||||||
# Since daytime EMAs could *theoretically* last beyond midnight, but never after 4 AM,
|
|
||||||
# the datetime is first translated to 4 h earlier.
|
|
||||||
df_esm_json = pd.json_normalize(df_esm["esm_json"]).drop(
|
df_esm_json = pd.json_normalize(df_esm["esm_json"]).drop(
|
||||||
columns=["esm_trigger"]
|
columns=["esm_trigger"]
|
||||||
) # The esm_trigger column is already present in the main df.
|
) # The esm_trigger column is already present in the main df.
|
||||||
|
@ -256,9 +248,9 @@ def clean_up_esm(df_esm_preprocessed: pd.DataFrame) -> pd.DataFrame:
|
||||||
ESM.ESM_TYPE.get("scale"),
|
ESM.ESM_TYPE.get("scale"),
|
||||||
ESM.ESM_TYPE.get("number"),
|
ESM.ESM_TYPE.get("number"),
|
||||||
]
|
]
|
||||||
df_esm_clean[df_esm_clean["esm_type"].isin(esm_type_numeric)] = df_esm_clean[
|
df_esm_clean.loc[
|
||||||
df_esm_clean["esm_type"].isin(esm_type_numeric)
|
df_esm_clean["esm_type"].isin(esm_type_numeric)
|
||||||
].assign(
|
] = df_esm_clean.loc[df_esm_clean["esm_type"].isin(esm_type_numeric)].assign(
|
||||||
esm_user_answer_numeric=lambda x: x.esm_user_answer.str.slice(stop=1).astype(
|
esm_user_answer_numeric=lambda x: x.esm_user_answer.str.slice(stop=1).astype(
|
||||||
int
|
int
|
||||||
)
|
)
|
||||||
|
|
|
@ -0,0 +1,267 @@
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
import features.esm
|
||||||
|
|
||||||
|
QUESTIONNAIRE_ID_SAM = {
|
||||||
|
"event_stress": 87,
|
||||||
|
"event_threat": 88,
|
||||||
|
"event_challenge": 89,
|
||||||
|
"event_time": 90,
|
||||||
|
"event_duration": 91,
|
||||||
|
"event_work_related": 92,
|
||||||
|
"period_stress": 93,
|
||||||
|
}
|
||||||
|
QUESTIONNAIRE_ID_SAM_LOW = min(QUESTIONNAIRE_ID_SAM.values())
|
||||||
|
QUESTIONNAIRE_ID_SAM_HIGH = max(QUESTIONNAIRE_ID_SAM.values())
|
||||||
|
|
||||||
|
GROUP_QUESTIONNAIRES_BY = [
|
||||||
|
"participant_id",
|
||||||
|
"device_id",
|
||||||
|
"esm_session",
|
||||||
|
]
|
||||||
|
# Each questionnaire occurs only once within each esm_session on the same device within the same participant.
|
||||||
|
|
||||||
|
|
||||||
|
def extract_stressful_events(df_esm: pd.DataFrame) -> pd.DataFrame:
|
||||||
|
# 0. Select only questions from Stress Appraisal Measure.
|
||||||
|
df_esm_preprocessed = features.esm.preprocess_esm(df_esm)
|
||||||
|
df_esm_sam = df_esm_preprocessed[
|
||||||
|
(df_esm_preprocessed["questionnaire_id"] >= QUESTIONNAIRE_ID_SAM_LOW)
|
||||||
|
& (df_esm_preprocessed["questionnaire_id"] <= QUESTIONNAIRE_ID_SAM_HIGH)
|
||||||
|
]
|
||||||
|
|
||||||
|
df_esm_sam_clean = features.esm.clean_up_esm(df_esm_sam)
|
||||||
|
# 1.
|
||||||
|
df_esm_event_threat_challenge_mean_wide = calculate_threat_challenge_means(
|
||||||
|
df_esm_sam_clean
|
||||||
|
)
|
||||||
|
# 2.
|
||||||
|
df_esm_event_stress = detect_stressful_event(df_esm_sam_clean)
|
||||||
|
|
||||||
|
# Join to the previously calculated features related to the events.
|
||||||
|
df_esm_events = df_esm_event_threat_challenge_mean_wide.join(
|
||||||
|
df_esm_event_stress[
|
||||||
|
GROUP_QUESTIONNAIRES_BY + ["event_present", "event_stressfulness"]
|
||||||
|
].set_index(GROUP_QUESTIONNAIRES_BY)
|
||||||
|
)
|
||||||
|
|
||||||
|
# 3.
|
||||||
|
df_esm_event_work_related = detect_event_work_related(df_esm_sam_clean)
|
||||||
|
|
||||||
|
df_esm_events = df_esm_events.join(
|
||||||
|
df_esm_event_work_related[
|
||||||
|
GROUP_QUESTIONNAIRES_BY + ["event_work_related"]
|
||||||
|
].set_index(GROUP_QUESTIONNAIRES_BY)
|
||||||
|
)
|
||||||
|
|
||||||
|
# 4.
|
||||||
|
df_esm_event_time = convert_event_time(df_esm_sam_clean)
|
||||||
|
|
||||||
|
df_esm_events = df_esm_events.join(
|
||||||
|
df_esm_event_time[GROUP_QUESTIONNAIRES_BY + ["event_time"]].set_index(
|
||||||
|
GROUP_QUESTIONNAIRES_BY
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
# 5.
|
||||||
|
df_esm_event_duration = extract_event_duration(df_esm_sam_clean)
|
||||||
|
|
||||||
|
df_esm_events = df_esm_events.join(
|
||||||
|
df_esm_event_duration[
|
||||||
|
GROUP_QUESTIONNAIRES_BY + ["event_duration", "event_duration_info"]
|
||||||
|
].set_index(GROUP_QUESTIONNAIRES_BY)
|
||||||
|
)
|
||||||
|
|
||||||
|
return df_esm_events
|
||||||
|
|
||||||
|
|
||||||
|
def calculate_threat_challenge_means(df_esm_sam_clean: pd.DataFrame) -> pd.DataFrame:
|
||||||
|
"""
|
||||||
|
This function calculates challenge and threat (two Stress Appraisal Measure subscales) means,
|
||||||
|
for each ESM session (within participants and devices).
|
||||||
|
It creates a grouped dataframe with means in two columns.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
df_esm_sam_clean: pd.DataFrame
|
||||||
|
A cleaned up dataframe of Stress Appraisal Measure items.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
df_esm_event_threat_challenge_mean_wide: pd.DataFrame
|
||||||
|
A dataframe of unique ESM sessions (by participants and devices) with threat and challenge means.
|
||||||
|
"""
|
||||||
|
# Select only threat and challenge assessments for events
|
||||||
|
df_esm_event_threat_challenge = df_esm_sam_clean[
|
||||||
|
(
|
||||||
|
df_esm_sam_clean["questionnaire_id"]
|
||||||
|
== QUESTIONNAIRE_ID_SAM.get("event_threat")
|
||||||
|
)
|
||||||
|
| (
|
||||||
|
df_esm_sam_clean["questionnaire_id"]
|
||||||
|
== QUESTIONNAIRE_ID_SAM.get("event_challenge")
|
||||||
|
)
|
||||||
|
]
|
||||||
|
# Calculate mean of threat and challenge subscales for each ESM session.
|
||||||
|
df_esm_event_threat_challenge_mean_wide = pd.pivot_table(
|
||||||
|
df_esm_event_threat_challenge,
|
||||||
|
index=["participant_id", "device_id", "esm_session"],
|
||||||
|
columns=["questionnaire_id"],
|
||||||
|
values=["esm_user_answer_numeric"],
|
||||||
|
aggfunc="mean",
|
||||||
|
)
|
||||||
|
# Drop unnecessary column values.
|
||||||
|
df_esm_event_threat_challenge_mean_wide.columns = df_esm_event_threat_challenge_mean_wide.columns.get_level_values(
|
||||||
|
1
|
||||||
|
)
|
||||||
|
df_esm_event_threat_challenge_mean_wide.columns.name = None
|
||||||
|
df_esm_event_threat_challenge_mean_wide.rename(
|
||||||
|
columns={
|
||||||
|
QUESTIONNAIRE_ID_SAM.get("event_threat"): "threat_mean",
|
||||||
|
QUESTIONNAIRE_ID_SAM.get("event_challenge"): "challenge_mean",
|
||||||
|
},
|
||||||
|
inplace=True,
|
||||||
|
)
|
||||||
|
return df_esm_event_threat_challenge_mean_wide
|
||||||
|
|
||||||
|
|
||||||
|
def detect_stressful_event(df_esm_sam_clean: pd.DataFrame) -> pd.DataFrame:
|
||||||
|
"""
|
||||||
|
Participants were asked: "Was there a particular event that created tension in you?"
|
||||||
|
The following options were available:
|
||||||
|
0 - No,
|
||||||
|
1 - Yes, slightly,
|
||||||
|
2 - Yes, moderately,
|
||||||
|
3 - Yes, considerably,
|
||||||
|
4 - Yes, extremely.
|
||||||
|
This function indicates whether there was a stressful event (True/False)
|
||||||
|
and how stressful it was on a scale of 1 to 4.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
df_esm_sam_clean: pd.DataFrame
|
||||||
|
A cleaned up dataframe of Stress Appraisal Measure items.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
df_esm_event_stress: pd.DataFrame
|
||||||
|
The same dataframe with two new columns:
|
||||||
|
- event_present, indicating whether there was a stressful event at all,
|
||||||
|
- event_stressfulness, a numeric answer (1-4) to the single item question.
|
||||||
|
|
||||||
|
"""
|
||||||
|
df_esm_event_stress = df_esm_sam_clean[
|
||||||
|
df_esm_sam_clean["questionnaire_id"] == QUESTIONNAIRE_ID_SAM.get("event_stress")
|
||||||
|
]
|
||||||
|
df_esm_event_stress = df_esm_event_stress.assign(
|
||||||
|
event_present=lambda x: x.esm_user_answer_numeric > 0,
|
||||||
|
event_stressfulness=lambda x: x.esm_user_answer_numeric,
|
||||||
|
)
|
||||||
|
return df_esm_event_stress
|
||||||
|
|
||||||
|
|
||||||
|
def detect_event_work_related(df_esm_sam_clean: pd.DataFrame) -> pd.DataFrame:
|
||||||
|
"""
|
||||||
|
This function simply adds a column indicating the answer to the question:
|
||||||
|
"Was/is this event work-related?"
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
df_esm_sam_clean: pd.DataFrame
|
||||||
|
A cleaned up dataframe of Stress Appraisal Measure items.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
df_esm_event_stress: pd.DataFrame
|
||||||
|
The same dataframe with a new column event_work_related (True/False).
|
||||||
|
|
||||||
|
"""
|
||||||
|
df_esm_event_stress = df_esm_sam_clean[
|
||||||
|
df_esm_sam_clean["questionnaire_id"]
|
||||||
|
== QUESTIONNAIRE_ID_SAM.get("event_work_related")
|
||||||
|
]
|
||||||
|
df_esm_event_stress = df_esm_event_stress.assign(
|
||||||
|
event_work_related=lambda x: x.esm_user_answer_numeric > 0
|
||||||
|
)
|
||||||
|
return df_esm_event_stress
|
||||||
|
|
||||||
|
|
||||||
|
def convert_event_time(df_esm_sam_clean: pd.DataFrame) -> pd.DataFrame:
|
||||||
|
"""
|
||||||
|
This function only serves to convert the string datetime answer into a real datetime type.
|
||||||
|
Errors during this conversion are coerced, meaning that non-datetime answers are assigned Not a Time (NaT).
|
||||||
|
NOTE: Since the only available non-datetime answer to this question was "0 - I do not remember",
|
||||||
|
the NaTs can be interpreted to mean this.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
df_esm_sam_clean: pd.DataFrame
|
||||||
|
A cleaned up dataframe of Stress Appraisal Measure items.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
df_esm_event_time: pd.DataFrame
|
||||||
|
The same dataframe with a new column event_time of datetime type.
|
||||||
|
"""
|
||||||
|
df_esm_event_time = df_esm_sam_clean[
|
||||||
|
df_esm_sam_clean["questionnaire_id"] == QUESTIONNAIRE_ID_SAM.get("event_time")
|
||||||
|
].assign(
|
||||||
|
event_time=lambda x: pd.to_datetime(
|
||||||
|
x.esm_user_answer, errors="coerce", infer_datetime_format=True, exact=True
|
||||||
|
)
|
||||||
|
)
|
||||||
|
return df_esm_event_time
|
||||||
|
|
||||||
|
|
||||||
|
def extract_event_duration(df_esm_sam_clean: pd.DataFrame) -> pd.DataFrame:
|
||||||
|
"""
|
||||||
|
If participants indicated a stressful events, they were asked:
|
||||||
|
"How long did this event last? (Answer in hours and minutes)"
|
||||||
|
This function extracts this duration time and saves additional answers:
|
||||||
|
0 - I do not remember,
|
||||||
|
1 - It is still going on.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
df_esm_sam_clean: pd.DataFrame
|
||||||
|
A cleaned up dataframe of Stress Appraisal Measure items.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
df_esm_event_duration: pd.DataFrame
|
||||||
|
The same dataframe with two new columns:
|
||||||
|
- event_duration, a time part of a datetime,
|
||||||
|
- event_duration_info, giving other options to this question:
|
||||||
|
0 - I do not remember,
|
||||||
|
1 - It is still going on
|
||||||
|
"""
|
||||||
|
df_esm_event_duration = df_esm_sam_clean[
|
||||||
|
df_esm_sam_clean["questionnaire_id"]
|
||||||
|
== QUESTIONNAIRE_ID_SAM.get("event_duration")
|
||||||
|
].assign(
|
||||||
|
event_duration=lambda x: pd.to_datetime(
|
||||||
|
x.esm_user_answer.str.slice(start=0, stop=-6), errors="coerce"
|
||||||
|
).dt.time
|
||||||
|
)
|
||||||
|
# TODO Explore the values recorded in event_duration and possibly fix mistakes.
|
||||||
|
# For example, participants reported setting 23:50:00 instead of 00:50:00.
|
||||||
|
|
||||||
|
# For the events that no duration was found (i.e. event_duration = NaT),
|
||||||
|
# we can determine whether:
|
||||||
|
# - this event is still going on ("1 - It is still going on")
|
||||||
|
# - the participant couldn't remember it's duration ("0 - I do not remember")
|
||||||
|
# Generally, these answers were converted to esm_user_answer_numeric in clean_up_esm,
|
||||||
|
# but only the numeric types of questions and answers.
|
||||||
|
# Since this was of "datetime" type, convert these specific answers here again.
|
||||||
|
df_esm_event_duration["event_duration_info"] = np.nan
|
||||||
|
df_esm_event_duration[
|
||||||
|
df_esm_event_duration.event_duration.isna()
|
||||||
|
] = df_esm_event_duration[df_esm_event_duration.event_duration.isna()].assign(
|
||||||
|
event_duration_info=lambda x: x.esm_user_answer.str.slice(stop=1).astype(int)
|
||||||
|
)
|
||||||
|
|
||||||
|
return df_esm_event_duration
|
||||||
|
|
||||||
|
|
||||||
|
# TODO: How many questions about the stressfulness of the period were asked and how does this relate to events?
|
|
@ -0,0 +1,41 @@
|
||||||
|
import datetime
|
||||||
|
|
||||||
|
import pandas as pd
|
||||||
|
from pytz import timezone
|
||||||
|
|
||||||
|
TZ_LJ = timezone("Europe/Ljubljana")
|
||||||
|
COLUMN_TIMESTAMP = "timestamp"
|
||||||
|
COLUMN_TIMESTAMP_ESM = "double_esm_user_answer_timestamp"
|
||||||
|
|
||||||
|
|
||||||
|
def get_date_from_timestamp(df_aware) -> pd.DataFrame:
|
||||||
|
"""
|
||||||
|
Transform a UNIX timestamp into a datetime (with Ljubljana timezone).
|
||||||
|
Additionally, extract only the date part, where anything until 4 AM is considered the same day.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
df_aware: pd.DataFrame
|
||||||
|
Any AWARE-type data as defined in models.py.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
df_aware: pd.DataFrame
|
||||||
|
The same dataframe with datetime_lj and date_lj columns added.
|
||||||
|
|
||||||
|
"""
|
||||||
|
if COLUMN_TIMESTAMP_ESM in df_aware:
|
||||||
|
column_timestamp = COLUMN_TIMESTAMP_ESM
|
||||||
|
else:
|
||||||
|
column_timestamp = COLUMN_TIMESTAMP
|
||||||
|
|
||||||
|
df_aware["datetime_lj"] = df_aware[column_timestamp].apply(
|
||||||
|
lambda x: datetime.datetime.fromtimestamp(x / 1000.0, tz=TZ_LJ)
|
||||||
|
)
|
||||||
|
df_aware = df_aware.assign(
|
||||||
|
date_lj=lambda x: (x.datetime_lj - datetime.timedelta(hours=4)).dt.date
|
||||||
|
)
|
||||||
|
# Since daytime EMAs could *theoretically* last beyond midnight, but never after 4 AM,
|
||||||
|
# the datetime is first translated to 4 h earlier.
|
||||||
|
|
||||||
|
return df_aware
|
|
@ -28,3 +28,63 @@ def get_proximity_data(usernames: Collection) -> pd.DataFrame:
|
||||||
with db_engine.connect() as connection:
|
with db_engine.connect() as connection:
|
||||||
df_proximity = pd.read_sql(query_proximity.statement, connection)
|
df_proximity = pd.read_sql(query_proximity.statement, connection)
|
||||||
return df_proximity
|
return df_proximity
|
||||||
|
|
||||||
|
|
||||||
|
def recode_proximity(df_proximity: pd.DataFrame) -> pd.DataFrame:
|
||||||
|
"""
|
||||||
|
This function recodes proximity from a double to a boolean value.
|
||||||
|
Different proximity sensors report different values,
|
||||||
|
but in our data only several distinct values have ever been found.
|
||||||
|
These are therefore converted into "near" and "far" binary values.
|
||||||
|
See expl_proximity.ipynb for additional info.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
df_proximity: pd.DataFrame
|
||||||
|
A dataframe of proximity data.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
df_proximity: pd.DataFrame
|
||||||
|
The same dataframe with an additional column bool_prox_near,
|
||||||
|
indicating whether "near" proximity was reported.
|
||||||
|
False values correspond to "far" reported by this sensor.
|
||||||
|
|
||||||
|
"""
|
||||||
|
df_proximity = df_proximity.assign(bool_prox_near=lambda x: x.double_proximity == 0)
|
||||||
|
return df_proximity
|
||||||
|
|
||||||
|
|
||||||
|
def count_proximity(
|
||||||
|
df_proximity: pd.DataFrame, group_by: Collection = ["participant_id"]
|
||||||
|
) -> pd.DataFrame:
|
||||||
|
"""
|
||||||
|
The function counts how many times a "near" value occurs in proximity
|
||||||
|
and calculates the proportion of this counts to all proximity values (i.e. relative count).
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
df_proximity: pd.DataFrame
|
||||||
|
A dataframe of proximity data.
|
||||||
|
group_by: Collection
|
||||||
|
A list of strings, specifying by which parameters to group.
|
||||||
|
By default, the features are calculated per participant, but could be "date_lj" etc.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
df_proximity_features: pd.DataFrame
|
||||||
|
A dataframe with the count of "near" proximity values and their relative count.
|
||||||
|
"""
|
||||||
|
if "bool_prox_near" not in df_proximity:
|
||||||
|
df_proximity = recode_proximity(df_proximity)
|
||||||
|
df_proximity["bool_prox_far"] = ~df_proximity["bool_prox_near"]
|
||||||
|
df_proximity_features = df_proximity.groupby(group_by).sum()[
|
||||||
|
["bool_prox_near", "bool_prox_far"]
|
||||||
|
]
|
||||||
|
df_proximity_features = df_proximity_features.assign(
|
||||||
|
prop_prox_near=lambda x: x.bool_prox_near / (x.bool_prox_near + x.bool_prox_far)
|
||||||
|
)
|
||||||
|
df_proximity_features = df_proximity_features.rename(
|
||||||
|
columns={"bool_prox_near": "freq_prox_near"}
|
||||||
|
).drop(columns="bool_prox_far", inplace=False)
|
||||||
|
return df_proximity_features
|
||||||
|
|
|
@ -6,7 +6,7 @@
|
||||||
# extension: .py
|
# extension: .py
|
||||||
# format_name: percent
|
# format_name: percent
|
||||||
# format_version: '1.3'
|
# format_version: '1.3'
|
||||||
# jupytext_version: 1.11.2
|
# jupytext_version: 1.11.4
|
||||||
# kernelspec:
|
# kernelspec:
|
||||||
# display_name: straw2analysis
|
# display_name: straw2analysis
|
||||||
# language: python
|
# language: python
|
||||||
|
@ -14,12 +14,12 @@
|
||||||
# ---
|
# ---
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
|
# %matplotlib inline
|
||||||
import datetime
|
import datetime
|
||||||
|
|
||||||
# %%
|
|
||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
|
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import seaborn as sns
|
import seaborn as sns
|
||||||
import statsmodels.api as sm
|
import statsmodels.api as sm
|
||||||
|
@ -31,6 +31,24 @@ if nb_dir not in sys.path:
|
||||||
import participants.query_db
|
import participants.query_db
|
||||||
from features.esm import *
|
from features.esm import *
|
||||||
|
|
||||||
|
# %%
|
||||||
|
SAVE_FIGS = True
|
||||||
|
FIG_HEIGHT = 5
|
||||||
|
FIG_ASPECT = 1.7
|
||||||
|
FIG_COLOUR = "#28827C"
|
||||||
|
|
||||||
|
SMALL_SIZE = 14
|
||||||
|
MEDIUM_SIZE = SMALL_SIZE + 2
|
||||||
|
BIGGER_SIZE = MEDIUM_SIZE + 2
|
||||||
|
|
||||||
|
plt.rc("font", size=SMALL_SIZE) # controls default text sizes
|
||||||
|
plt.rc("axes", titlesize=SMALL_SIZE) # fontsize of the axes title
|
||||||
|
plt.rc("axes", labelsize=MEDIUM_SIZE) # fontsize of the x and y labels
|
||||||
|
plt.rc("xtick", labelsize=SMALL_SIZE) # fontsize of the tick labels
|
||||||
|
plt.rc("ytick", labelsize=SMALL_SIZE) # fontsize of the tick labels
|
||||||
|
plt.rc("legend", fontsize=SMALL_SIZE) # legend fontsize
|
||||||
|
plt.rc("figure", titlesize=BIGGER_SIZE) # fontsize of the figure title
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
baseline_si = pd.read_csv("E:/STRAWbaseline/results-survey637813.csv")
|
baseline_si = pd.read_csv("E:/STRAWbaseline/results-survey637813.csv")
|
||||||
baseline_be_1 = pd.read_csv("E:/STRAWbaseline/results-survey358134.csv")
|
baseline_be_1 = pd.read_csv("E:/STRAWbaseline/results-survey358134.csv")
|
||||||
|
@ -130,7 +148,7 @@ df_adherence.describe()
|
||||||
df_adherence[["gender", "startlanguage"]].value_counts()
|
df_adherence[["gender", "startlanguage"]].value_counts()
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
sns.displot(df_adherence["finished_sessions"], binwidth=5, height=5)
|
sns.displot(df_adherence["finished_sessions"], binwidth=5, height=FIG_HEIGHT)
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
lm_adherence = smf.ols(
|
lm_adherence = smf.ols(
|
||||||
|
@ -224,12 +242,14 @@ df_session_workday = df_session_workday.assign(
|
||||||
g1 = sns.displot(
|
g1 = sns.displot(
|
||||||
df_session_workday["time_diff_minutes"],
|
df_session_workday["time_diff_minutes"],
|
||||||
binwidth=5,
|
binwidth=5,
|
||||||
height=5,
|
height=FIG_HEIGHT,
|
||||||
aspect=1.5,
|
aspect=FIG_ASPECT,
|
||||||
color="#28827C",
|
color=FIG_COLOUR,
|
||||||
)
|
)
|
||||||
g1.set_axis_labels("Time difference [min]", "Session count")
|
g1.set_axis_labels("Time difference [min]", "Session count")
|
||||||
# g1.savefig("WorkdayEMAtimeDiff.pdf")
|
g1.set(xlim=(0, 570))
|
||||||
|
if SAVE_FIGS:
|
||||||
|
g1.savefig("WorkdayEMAtimeDiff.pdf")
|
||||||
|
|
||||||
# %% [markdown]
|
# %% [markdown]
|
||||||
# There are some sessions that are really close together. By design, none should be closer than 30 min. Let's take a look at those.
|
# There are some sessions that are really close together. By design, none should be closer than 30 min. Let's take a look at those.
|
||||||
|
@ -296,12 +316,13 @@ df_mean_daytime_interval.describe()
|
||||||
g2 = sns.displot(
|
g2 = sns.displot(
|
||||||
df_mean_daytime_interval.time_diff_minutes,
|
df_mean_daytime_interval.time_diff_minutes,
|
||||||
binwidth=5,
|
binwidth=5,
|
||||||
height=5,
|
height=FIG_HEIGHT,
|
||||||
aspect=1.5,
|
aspect=FIG_ASPECT,
|
||||||
color="#28827C",
|
color=FIG_COLOUR,
|
||||||
)
|
)
|
||||||
g2.set_axis_labels("Median time difference [min]", "Participant count")
|
g2.set_axis_labels("Median time difference [min]", "Participant count")
|
||||||
# g2.savefig("WorkdayEMAtimeDiffMedianParticip.pdf")
|
if SAVE_FIGS:
|
||||||
|
g2.savefig("WorkdayEMAtimeDiffMedianParticip.pdf")
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
df_adherence = df_adherence.merge(
|
df_adherence = df_adherence.merge(
|
||||||
|
@ -327,9 +348,9 @@ df_count_daytime_per_participant["time"].describe()
|
||||||
sns.displot(
|
sns.displot(
|
||||||
df_count_daytime_per_participant.time,
|
df_count_daytime_per_participant.time,
|
||||||
binwidth=1,
|
binwidth=1,
|
||||||
height=5,
|
height=FIG_HEIGHT,
|
||||||
aspect=1.5,
|
aspect=FIG_ASPECT,
|
||||||
color="#28827C",
|
color=FIG_COLOUR,
|
||||||
)
|
)
|
||||||
|
|
||||||
# %% [markdown]
|
# %% [markdown]
|
||||||
|
@ -364,13 +385,14 @@ s_evening_completed_ratio.describe()
|
||||||
g3 = sns.displot(
|
g3 = sns.displot(
|
||||||
s_evening_completed_ratio - 0.001,
|
s_evening_completed_ratio - 0.001,
|
||||||
binwidth=0.05,
|
binwidth=0.05,
|
||||||
height=5,
|
height=FIG_HEIGHT,
|
||||||
aspect=1.5,
|
aspect=FIG_ASPECT,
|
||||||
color="#28827C",
|
color=FIG_COLOUR,
|
||||||
)
|
)
|
||||||
g3.set_axis_labels("Ratio of days with the evening EMA filled out", "Participant count")
|
g3.set_axis_labels("Ratio of days with the evening EMA filled out", "Participant count")
|
||||||
g3.set(xlim=(1.01, 0.59))
|
g3.set(xlim=(1.01, 0.59))
|
||||||
# g3.savefig("EveningEMAratioParticip.pdf")
|
if SAVE_FIGS:
|
||||||
|
g3.savefig("EveningEMAratioParticip.pdf")
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
df_adherence = df_adherence.merge(
|
df_adherence = df_adherence.merge(
|
||||||
|
@ -386,5 +408,3 @@ lr_ols_evening_ratio = smf.ols(
|
||||||
)
|
)
|
||||||
ls_result_evening_ratio = lr_ols_evening_ratio.fit()
|
ls_result_evening_ratio = lr_ols_evening_ratio.fit()
|
||||||
ls_result_evening_ratio.summary()
|
ls_result_evening_ratio.summary()
|
||||||
|
|
||||||
# %%
|
|
||||||
|
|
|
@ -16,7 +16,16 @@ class EsmFeatures(unittest.TestCase):
|
||||||
|
|
||||||
def test_preprocess_esm(self):
|
def test_preprocess_esm(self):
|
||||||
self.esm_processed = preprocess_esm(self.esm)
|
self.esm_processed = preprocess_esm(self.esm)
|
||||||
|
# Check for columns which should have been extracted from esm_json.
|
||||||
self.assertIn("question_id", self.esm_processed)
|
self.assertIn("question_id", self.esm_processed)
|
||||||
|
self.assertIn("questionnaire_id", self.esm_processed)
|
||||||
|
self.assertIn("esm_instructions", self.esm_processed)
|
||||||
|
self.assertIn("esm_type", self.esm_processed)
|
||||||
|
self.assertIn("time", self.esm_processed)
|
||||||
|
# Check for explicitly added column.
|
||||||
|
self.assertIn("datetime_lj", self.esm_processed)
|
||||||
|
# All of these keys are referenced in other functions, so they are expected to be present in preprocessed ESM.
|
||||||
|
# Since all of these are added in a single function, it should be OK to have many assert statements in one test.
|
||||||
|
|
||||||
def test_classify_sessions_by_completion(self):
|
def test_classify_sessions_by_completion(self):
|
||||||
self.esm_classified_sessions = classify_sessions_by_completion(
|
self.esm_classified_sessions = classify_sessions_by_completion(
|
||||||
|
|
Loading…
Reference in New Issue