Simplify pivoting a table and fix other mistakes.
parent
0f5af21f71
commit
9bd42afa02
|
@ -1,3 +1,4 @@
|
|||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
import features.esm
|
||||
|
@ -18,7 +19,6 @@ GROUP_QUESTIONNAIRES_BY = [
|
|||
"participant_id",
|
||||
"device_id",
|
||||
"esm_session",
|
||||
"questionnaire_id",
|
||||
]
|
||||
# Each questionnaire occurs only once within each esm_session on the same device within the same participant.
|
||||
|
||||
|
@ -51,7 +51,7 @@ def extract_stressful_events(df_esm: pd.DataFrame) -> pd.DataFrame:
|
|||
|
||||
df_esm_events = df_esm_events.join(
|
||||
df_esm_event_work_related[
|
||||
GROUP_QUESTIONNAIRES_BY.append("event_work_related")
|
||||
GROUP_QUESTIONNAIRES_BY + ["event_work_related"]
|
||||
].set_index(GROUP_QUESTIONNAIRES_BY)
|
||||
)
|
||||
|
||||
|
@ -59,7 +59,7 @@ def extract_stressful_events(df_esm: pd.DataFrame) -> pd.DataFrame:
|
|||
df_esm_event_time = convert_event_time(df_esm_sam_clean)
|
||||
|
||||
df_esm_events = df_esm_events.join(
|
||||
df_esm_event_time[GROUP_QUESTIONNAIRES_BY.append("event_time")].set_index(
|
||||
df_esm_event_time[GROUP_QUESTIONNAIRES_BY + ["event_time"]].set_index(
|
||||
GROUP_QUESTIONNAIRES_BY
|
||||
)
|
||||
)
|
||||
|
@ -89,30 +89,14 @@ def calculate_threat_challenge_means(df_esm_sam_clean: pd.DataFrame) -> pd.DataF
|
|||
)
|
||||
]
|
||||
# Calculate mean of threat and challenge subscales for each ESM session.
|
||||
df_esm_event_threat_challenge_mean = (
|
||||
df_esm_event_threat_challenge.groupby(GROUP_QUESTIONNAIRES_BY)
|
||||
.esm_user_answer_numeric.agg("mean")
|
||||
.reset_index()
|
||||
.rename(columns={"esm_user_answer_numeric": "esm_numeric_mean"})
|
||||
)
|
||||
# Rename questionnaire ID to indicate their names.
|
||||
df_esm_event_threat_challenge_mean[
|
||||
"event_subscale"
|
||||
] = df_esm_event_threat_challenge_mean.questionnaire_id.astype(
|
||||
"category"
|
||||
).cat.rename_categories(
|
||||
{
|
||||
QUESTIONNAIRE_ID_SAM.get("event_threat"): "threat_mean",
|
||||
QUESTIONNAIRE_ID_SAM.get("event_challenge"): "challenge_mean",
|
||||
}
|
||||
)
|
||||
# Pivot a table so that each ESM session is represented by one row with threat and challenge means as two columns.
|
||||
df_esm_event_threat_challenge_mean_wide = pd.pivot(
|
||||
df_esm_event_threat_challenge_mean,
|
||||
index=GROUP_QUESTIONNAIRES_BY,
|
||||
columns=["event_subscale"],
|
||||
values=["esm_numeric_mean"],
|
||||
)
|
||||
df_esm_event_threat_challenge_mean_wide = pd.pivot_table(df_esm_event_threat_challenge, index=["participant_id","device_id", "esm_session"], columns=["questionnaire_id"], values=["esm_user_answer_numeric"], aggfunc="mean")
|
||||
# Drop unnecessary column values.
|
||||
df_esm_event_threat_challenge_mean_wide.columns = df_esm_event_threat_challenge_mean_wide.columns.get_level_values(1)
|
||||
df_esm_event_threat_challenge_mean_wide.columns.name = None
|
||||
df_esm_event_threat_challenge_mean_wide.rename(columns={
|
||||
QUESTIONNAIRE_ID_SAM.get("event_threat"): "threat_mean",
|
||||
QUESTIONNAIRE_ID_SAM.get("event_challenge"): "challenge_mean"
|
||||
}, inplace=True)
|
||||
return df_esm_event_threat_challenge_mean_wide
|
||||
|
||||
|
||||
|
@ -168,6 +152,7 @@ def extract_event_duration(df_esm_sam_clean: pd.DataFrame) -> pd.DataFrame:
|
|||
# Generally, these answers were converted to esm_user_answer_numeric in clean_up_esm,
|
||||
# but only the numeric types of questions and answers.
|
||||
# Since this was of "datetime" type, convert these specific answers here again.
|
||||
df_esm_event_duration["event_duration_info"] = np.nan
|
||||
df_esm_event_duration[
|
||||
df_esm_event_duration.event_duration.isna()
|
||||
] = df_esm_event_duration[df_esm_event_duration.event_duration.isna()].assign(
|
||||
|
|
Loading…
Reference in New Issue