parent
c6d0e4391e
commit
070cfdba80
|
@ -0,0 +1,72 @@
|
|||
# ---
|
||||
# jupyter:
|
||||
# jupytext:
|
||||
# formats: ipynb,py:percent
|
||||
# text_representation:
|
||||
# extension: .py
|
||||
# format_name: percent
|
||||
# format_version: '1.3'
|
||||
# jupytext_version: 1.11.4
|
||||
# kernelspec:
|
||||
# display_name: straw2analysis
|
||||
# language: python
|
||||
# name: straw2analysis
|
||||
# ---
|
||||
|
||||
# %%
|
||||
# %matplotlib inline
|
||||
import datetime
|
||||
import os
|
||||
import sys
|
||||
|
||||
import seaborn as sns
|
||||
|
||||
nb_dir = os.path.split(os.getcwd())[0]
|
||||
if nb_dir not in sys.path:
|
||||
sys.path.append(nb_dir)
|
||||
|
||||
# %%
|
||||
import participants.query_db
|
||||
from features import esm, proximity
|
||||
|
||||
# %% [markdown]
|
||||
# # 1. Get the relevant data
|
||||
|
||||
# %%
|
||||
participants_inactive_usernames = participants.query_db.get_usernames(
|
||||
collection_start=datetime.date.fromisoformat("2020-08-01")
|
||||
)
|
||||
# Consider only two participants to simplify.
|
||||
ptcp_2 = participants_inactive_usernames[0:2]
|
||||
|
||||
# %% [markdown]
|
||||
# ## 1.1 Labels
|
||||
|
||||
# %%
|
||||
df_esm = esm.get_esm_data(ptcp_2)
|
||||
df_esm_preprocessed = esm.preprocess_esm(df_esm)
|
||||
|
||||
# %%
|
||||
df_esm_PANAS = df_esm_preprocessed[
|
||||
(df_esm_preprocessed["questionnaire_id"] == 8)
|
||||
| (df_esm_preprocessed["questionnaire_id"] == 9)
|
||||
]
|
||||
df_esm_PANAS_clean = esm.clean_up_esm(df_esm_PANAS)
|
||||
|
||||
# %% [markdown]
|
||||
# ## 1.2 Sensor data
|
||||
|
||||
# %%
|
||||
df_proximity = proximity.get_proximity_data(ptcp_2)
|
||||
df_proximity = proximity.recode_proximity(df_proximity)
|
||||
|
||||
# %% [markdown]
|
||||
# # 2. Grouping/segmentation
|
||||
|
||||
# %%
|
||||
df_esm_PANAS_daily_means = (
|
||||
df_esm_PANAS_clean.groupby(["participant_id", "date_lj", "questionnaire_id"])
|
||||
.esm_user_answer_numeric.agg("mean")
|
||||
.reset_index()
|
||||
.rename(columns={"esm_user_answer_numeric": "esm_numeric_mean"})
|
||||
)
|
Loading…
Reference in New Issue