2019-11-06 19:34:47 +01:00
|
|
|
import pandas as pd
|
|
|
|
import numpy as np
|
|
|
|
import scipy.stats as stats
|
2019-11-28 00:06:31 +01:00
|
|
|
from features_utils import splitOvernightEpisodes, splitMultiSegmentEpisodes
|
2019-11-06 19:34:47 +01:00
|
|
|
|
2019-11-18 20:22:08 +01:00
|
|
|
day_segment = snakemake.params["segment"]
|
|
|
|
|
2019-11-06 19:34:47 +01:00
|
|
|
#Read csv into a pandas dataframe
|
2019-11-28 00:06:31 +01:00
|
|
|
data = pd.read_csv(snakemake.input['gar_events'],parse_dates=['local_date_time'])
|
|
|
|
ar_deltas = pd.read_csv(snakemake.input['gar_deltas'],parse_dates=["local_start_date_time", "local_end_date_time", "local_start_date", "local_end_date"])
|
|
|
|
columns = ['count','most_common_activity','count_unique_activities','activity_change_count','sumstationary','summobile','sumvehicle']
|
2019-11-18 20:22:08 +01:00
|
|
|
columns = list("ar_" + str(day_segment) + "_" + column for column in columns)
|
2019-11-12 20:48:19 +01:00
|
|
|
|
2019-11-28 00:06:31 +01:00
|
|
|
|
2019-11-12 20:48:19 +01:00
|
|
|
if data.empty:
|
2019-11-18 20:22:08 +01:00
|
|
|
finalDataset = pd.DataFrame(columns = columns)
|
2019-11-12 20:48:19 +01:00
|
|
|
else:
|
2019-11-28 00:06:31 +01:00
|
|
|
|
|
|
|
ar_deltas = splitOvernightEpisodes(ar_deltas, [],['activity'])
|
|
|
|
|
|
|
|
if day_segment != "daily":
|
|
|
|
ar_deltas = splitMultiSegmentEpisodes(ar_deltas, day_segment, [])
|
|
|
|
|
2019-11-12 20:48:19 +01:00
|
|
|
data.local_date_time = pd.to_datetime(data.local_date_time)
|
|
|
|
resampledData = data.set_index(data.local_date_time)
|
|
|
|
resampledData.drop(columns=['local_date_time'],inplace=True)
|
|
|
|
|
2019-11-18 20:22:08 +01:00
|
|
|
if(day_segment!='daily'):
|
|
|
|
resampledData = resampledData.loc[resampledData['local_day_segment'] == str(day_segment)]
|
2019-11-12 20:48:19 +01:00
|
|
|
|
2019-12-04 18:04:20 +01:00
|
|
|
if resampledData.empty:
|
|
|
|
finalDataset = pd.DataFrame(columns = columns)
|
|
|
|
else:
|
|
|
|
count = resampledData['activity_type'].resample('D').count()
|
|
|
|
|
|
|
|
#Finding most common activity of the day
|
|
|
|
mostCommonActivity = resampledData['activity_type'].resample('D').apply(lambda x:stats.mode(x)[0])
|
|
|
|
|
|
|
|
#finding different number of activities during a day
|
|
|
|
uniqueActivities = resampledData['activity_type'].resample('D').nunique()
|
|
|
|
|
|
|
|
#finding Number of times activity changed
|
|
|
|
resampledData['activity_type_shift'] = resampledData['activity_type'].shift().fillna(resampledData['activity_type'].head(1),inplace=True)
|
|
|
|
resampledData['different_activity'] = np.where(resampledData['activity_type']!=resampledData['activity_type_shift'],1,0)
|
|
|
|
countChanges = resampledData['different_activity'].resample('D').sum()
|
|
|
|
finalDataset = pd.concat([count, mostCommonActivity, uniqueActivities, countChanges],axis=1)
|
|
|
|
|
|
|
|
deltas_metrics = {'sumstationary':['still','tilting'],
|
|
|
|
'summobile':['on_foot','running','on_bicycle'],
|
|
|
|
'sumvehicle':['in_vehicle']}
|
2019-11-12 20:48:19 +01:00
|
|
|
|
2019-12-04 18:04:20 +01:00
|
|
|
for column, activity_labels in deltas_metrics.items():
|
|
|
|
metric = (ar_deltas[ar_deltas['activity'].isin(pd.Series(activity_labels))]
|
|
|
|
.groupby(['local_start_date'])['time_diff']
|
|
|
|
.agg({"ar_" + str(day_segment) + "_" + str(column) :'sum'}))
|
|
|
|
finalDataset = finalDataset.merge(metric,how='outer',left_index=True,right_index=True)
|
2019-11-28 00:06:31 +01:00
|
|
|
|
|
|
|
finalDataset.fillna(0,inplace=True)
|
2019-11-18 20:22:08 +01:00
|
|
|
finalDataset.index.names = ['local_date']
|
|
|
|
finalDataset.columns=columns
|
|
|
|
finalDataset.to_csv(snakemake.output[0])
|