Add Episodes GAR Metrics
parent
e5390ee0e2
commit
80376f0c35
|
@ -42,7 +42,7 @@ rule google_activity_recognition_deltas:
|
|||
input:
|
||||
"data/raw/{pid}/plugin_google_activity_recognition_with_datetime.csv"
|
||||
output:
|
||||
"data/processed/{pid}/google_activity_recognition_deltas.csv"
|
||||
"data/processed/{pid}/plugin_google_activity_recognition_deltas.csv"
|
||||
script:
|
||||
"../src/features/google_activity_recognition_deltas.R"
|
||||
|
||||
|
@ -70,8 +70,8 @@ rule bluetooth_metrics:
|
|||
|
||||
rule activity_metrics:
|
||||
input:
|
||||
"data/raw/{pid}/plugin_google_activity_recognition_with_datetime.csv",
|
||||
"data/raw/{pid}/plugin_google_activity_recognition_deltas.csv"
|
||||
gar_events = "data/raw/{pid}/plugin_google_activity_recognition_with_datetime.csv",
|
||||
gar_deltas = "data/processed/{pid}/plugin_google_activity_recognition_deltas.csv"
|
||||
params:
|
||||
segment = "{day_segment}",
|
||||
metrics = config["GOOGLE_ACTIVITY_RECOGNITION"]["METRICS"]
|
||||
|
|
|
@ -1,17 +1,26 @@
|
|||
import pandas as pd
|
||||
import numpy as np
|
||||
import scipy.stats as stats
|
||||
from features_utils import splitOvernightEpisodes, splitMultiSegmentEpisodes
|
||||
|
||||
day_segment = snakemake.params["segment"]
|
||||
|
||||
#Read csv into a pandas dataframe
|
||||
data = pd.read_csv(snakemake.input[0])
|
||||
columns = ['count','most_common_activity','count_unique_activities','activity_change_count']
|
||||
data = pd.read_csv(snakemake.input['gar_events'],parse_dates=['local_date_time'])
|
||||
ar_deltas = pd.read_csv(snakemake.input['gar_deltas'],parse_dates=["local_start_date_time", "local_end_date_time", "local_start_date", "local_end_date"])
|
||||
columns = ['count','most_common_activity','count_unique_activities','activity_change_count','sumstationary','summobile','sumvehicle']
|
||||
columns = list("ar_" + str(day_segment) + "_" + column for column in columns)
|
||||
|
||||
|
||||
if data.empty:
|
||||
finalDataset = pd.DataFrame(columns = columns)
|
||||
else:
|
||||
|
||||
ar_deltas = splitOvernightEpisodes(ar_deltas, [],['activity'])
|
||||
|
||||
if day_segment != "daily":
|
||||
ar_deltas = splitMultiSegmentEpisodes(ar_deltas, day_segment, [])
|
||||
|
||||
data.local_date_time = pd.to_datetime(data.local_date_time)
|
||||
resampledData = data.set_index(data.local_date_time)
|
||||
resampledData.drop(columns=['local_date_time'],inplace=True)
|
||||
|
@ -33,6 +42,17 @@ else:
|
|||
countChanges = resampledData['different_activity'].resample('D').sum()
|
||||
finalDataset = pd.concat([count, mostCommonActivity, uniqueActivities, countChanges],axis=1)
|
||||
|
||||
deltas_metrics = {'sumstationary':['still','tilting'],
|
||||
'summobile':['on_foot','running','on_bicycle'],
|
||||
'sumvehicle':['on_vehicle']}
|
||||
|
||||
for column, activity_labels in deltas_metrics.items():
|
||||
metric = (ar_deltas[ar_deltas['activity'].isin(pd.Series(activity_labels))]
|
||||
.groupby(['local_start_date'])['time_diff']
|
||||
.agg({"ar_" + str(day_segment) + "_" + str(column) :'sum'}))
|
||||
finalDataset = finalDataset.merge(metric,how='outer',left_index=True,right_index=True)
|
||||
|
||||
finalDataset.fillna(0,inplace=True)
|
||||
finalDataset.index.names = ['local_date']
|
||||
finalDataset.columns=columns
|
||||
finalDataset.to_csv(snakemake.output[0])
|
Loading…
Reference in New Issue