2019-11-06 19:34:47 +01:00
|
|
|
import pandas as pd
|
|
|
|
import numpy as np
|
|
|
|
import scipy.stats as stats
|
|
|
|
|
2019-11-18 20:22:08 +01:00
|
|
|
day_segment = snakemake.params["segment"]
|
|
|
|
|
2019-11-06 19:34:47 +01:00
|
|
|
#Read csv into a pandas dataframe
|
|
|
|
data = pd.read_csv(snakemake.input[0])
|
2019-11-18 20:22:08 +01:00
|
|
|
columns = ['count','most_common_activity','count_unique_activities','activity_change_count']
|
|
|
|
columns = list("ar_" + str(day_segment) + "_" + column for column in columns)
|
2019-11-12 20:48:19 +01:00
|
|
|
|
|
|
|
if data.empty:
|
2019-11-18 20:22:08 +01:00
|
|
|
finalDataset = pd.DataFrame(columns = columns)
|
2019-11-12 20:48:19 +01:00
|
|
|
else:
|
|
|
|
data.local_date_time = pd.to_datetime(data.local_date_time)
|
|
|
|
resampledData = data.set_index(data.local_date_time)
|
|
|
|
resampledData.drop(columns=['local_date_time'],inplace=True)
|
|
|
|
|
2019-11-18 20:22:08 +01:00
|
|
|
if(day_segment!='daily'):
|
|
|
|
resampledData = resampledData.loc[resampledData['local_day_segment'] == str(day_segment)]
|
|
|
|
|
2019-11-12 20:48:19 +01:00
|
|
|
count = resampledData['activity_type'].resample('D').count()
|
|
|
|
|
|
|
|
#Finding most common activity of the day
|
|
|
|
mostCommonActivity = resampledData['activity_type'].resample('D').apply(lambda x:stats.mode(x)[0])
|
|
|
|
|
|
|
|
#finding different number of activities during a day
|
|
|
|
uniqueActivities = resampledData['activity_type'].resample('D').nunique()
|
|
|
|
|
|
|
|
#finding Number of times activity changed
|
2019-11-18 20:22:08 +01:00
|
|
|
resampledData['activity_type_shift'] = resampledData['activity_type'].shift().fillna(resampledData['activity_type'].head(1),inplace=True)
|
|
|
|
resampledData['different_activity'] = np.where(resampledData['activity_type']!=resampledData['activity_type_shift'],1,0)
|
2019-11-12 20:48:19 +01:00
|
|
|
countChanges = resampledData['different_activity'].resample('D').sum()
|
2019-11-18 20:22:08 +01:00
|
|
|
finalDataset = pd.concat([count, mostCommonActivity, uniqueActivities, countChanges],axis=1)
|
2019-11-12 20:48:19 +01:00
|
|
|
|
2019-11-18 20:22:08 +01:00
|
|
|
finalDataset.index.names = ['local_date']
|
|
|
|
finalDataset.columns=columns
|
|
|
|
finalDataset.to_csv(snakemake.output[0])
|