rapids/config.yaml

277 lines
13 KiB
YAML
Raw Normal View History

2019-10-24 18:11:24 +02:00
# Participants to include in the analysis
# You must create a file for each participant named pXXX containing their device_id. This can be done manually or automatically
PIDS: [test01]
2019-10-24 22:27:43 +02:00
# Global var with common day segments
DAY_SEGMENTS: &day_segments
[daily, morning, afternoon, evening, night]
2019-11-05 21:17:20 +01:00
# Global timezone
2019-11-06 23:12:06 +01:00
# Use codes from https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
# Double check your code, for example EST is not US Eastern Time.
2019-11-05 21:17:20 +01:00
TIMEZONE: &timezone
2019-11-06 23:12:06 +01:00
America/New_York
2019-11-05 21:17:20 +01:00
DATABASE_GROUP: &database_group
2020-03-09 17:55:43 +01:00
MY_GROUP
DOWNLOAD_PARTICIPANTS:
IGNORED_DEVICE_IDS: [] # for example "5a1dd68c-6cd1-48fe-ae1e-14344ac5215f"
GROUP: *database_group
# Download data config
DOWNLOAD_DATASET:
GROUP: *database_group
# Readable datetime config
READABLE_DATETIME:
2019-11-05 21:17:20 +01:00
FIXED_TIMEZONE: *timezone
2020-07-09 19:01:50 +02:00
PHONE_VALID_SENSED_BINS:
COMPUTE: False # This flag is automatically ignored (set to True) if you are extracting PHONE_VALID_SENSED_DAYS or screen or Barnett's location features
BIN_SIZE: 5 # (in minutes)
# Add as many sensor tables as you have, they all improve the computation of PHONE_VALID_SENSED_BINS and PHONE_VALID_SENSED_DAYS.
# If you are extracting screen or Barnett's/Doryab's location features, screen and locations tables are mandatory.
2020-07-09 19:01:50 +02:00
TABLES: []
PHONE_VALID_SENSED_DAYS:
COMPUTE: False
MIN_VALID_HOURS_PER_DAY: 16 # (out of 24) MIN_HOURS_PER_DAY
MIN_VALID_BINS_PER_HOUR: 6 # (out of 60min/BIN_SIZE bins)
# Communication SMS features config, TYPES and FEATURES keys need to match
MESSAGES:
COMPUTE: False
DB_TABLE: messages
TYPES : [received, sent]
FEATURES:
2020-06-26 18:20:47 +02:00
received: [count, distinctcontacts, timefirstmessage, timelastmessage, countmostfrequentcontact]
sent: [count, distinctcontacts, timefirstmessage, timelastmessage, countmostfrequentcontact]
DAY_SEGMENTS: *day_segments
# Communication call features config, TYPES and FEATURES keys need to match
CALLS:
COMPUTE: False
DB_TABLE: calls
TYPES: [missed, incoming, outgoing]
FEATURES:
missed: [count, distinctcontacts, timefirstcall, timelastcall, countmostfrequentcontact]
incoming: [count, distinctcontacts, meanduration, sumduration, minduration, maxduration, stdduration, modeduration, entropyduration, timefirstcall, timelastcall, countmostfrequentcontact]
outgoing: [count, distinctcontacts, meanduration, sumduration, minduration, maxduration, stdduration, modeduration, entropyduration, timefirstcall, timelastcall, countmostfrequentcontact]
2019-10-25 16:21:09 +02:00
DAY_SEGMENTS: *day_segments
2019-11-05 18:34:22 +01:00
APPLICATION_GENRES:
CATALOGUE_SOURCE: FILE # FILE (genres are read from CATALOGUE_FILE) or GOOGLE (genres are scrapped from the Play Store)
CATALOGUE_FILE: "data/external/stachl_application_genre_catalogue.csv"
UPDATE_CATALOGUE_FILE: false # if CATALOGUE_SOURCE is equal to FILE, whether or not to update CATALOGUE_FILE, if CATALOGUE_SOURCE is equal to GOOGLE all scraped genres will be saved to CATALOGUE_FILE
SCRAPE_MISSING_GENRES: false # whether or not to scrape missing genres, only effective if CATALOGUE_SOURCE is equal to FILE. If CATALOGUE_SOURCE is equal to GOOGLE, all genres are scraped anyway
2019-12-10 00:23:00 +01:00
RESAMPLE_FUSED_LOCATION:
CONSECUTIVE_THRESHOLD: 30 # minutes, only replicate location samples to the next sensed bin if the phone did not stop collecting data for more than this threshold
TIME_SINCE_VALID_LOCATION: 720 # minutes, only replicate location samples to consecutive sensed bins if they were logged within this threshold after a valid location row
2019-12-10 00:23:00 +01:00
TIMEZONE: *timezone
2019-11-05 21:17:20 +01:00
BARNETT_LOCATION:
COMPUTE: False
DB_TABLE: locations
DAY_SEGMENTS: [daily] # These features are only available on a daily basis
FEATURES: ["hometime","disttravelled","rog","maxdiam","maxhomedist","siglocsvisited","avgflightlen","stdflightlen","avgflightdur","stdflightdur","probpause","siglocentropy","circdnrtn","wkenddayrtn"]
2020-06-29 19:50:33 +02:00
LOCATIONS_TO_USE: ALL # ALL, ALL_EXCEPT_FUSED OR RESAMPLE_FUSED
ACCURACY_LIMIT: 51 # meters, drops location coordinates with an accuracy higher than this. This number means there's a 68% probability the true location is within this radius
2019-11-06 18:19:30 +01:00
TIMEZONE: *timezone
MINUTES_DATA_USED: False # Use this for quality control purposes, how many minutes of data (location coordinates gruped by minute) were used to compute features
2019-11-06 18:19:30 +01:00
DORYAB_LOCATION:
COMPUTE: True
DB_TABLE: locations
DAY_SEGMENTS: *day_segments
FEATURES: ["locationvariance","loglocationvariance","totaldistance","averagespeed","varspeed","circadianmovement","numberofsignificantplaces","numberlocationtransitions","radiusgyration","timeattop1location","timeattop2location","timeattop3location","movingtostaticratio","outlierstimepercent","maxlengthstayatclusters","minlengthstayatclusters","meanlengthstayatclusters","stdlengthstayatclusters","locationentropy","normalizedlocationentropy"]
LOCATIONS_TO_USE: RESAMPLE_FUSED # ALL, ALL_EXCEPT_FUSED OR RESAMPLE_FUSED
DBSCAN_EPS: 10 # meters
DBSCAN_MINSAMPLES: 5
THRESHOLD_STATIC : 1 # km/h
2019-11-06 18:19:30 +01:00
BLUETOOTH:
COMPUTE: False
DB_TABLE: bluetooth
2019-11-06 18:19:30 +01:00
DAY_SEGMENTS: *day_segments
FEATURES: ["countscans", "uniquedevices", "countscansmostuniquedevice"]
2019-11-18 20:22:08 +01:00
ACTIVITY_RECOGNITION:
COMPUTE: False
DB_TABLE:
ANDROID: plugin_google_activity_recognition
IOS: plugin_ios_activity_recognition
2019-11-18 20:22:08 +01:00
DAY_SEGMENTS: *day_segments
2020-06-05 01:32:28 +02:00
FEATURES: ["count","mostcommonactivity","countuniqueactivities","activitychangecount","sumstationary","summobile","sumvehicle"]
BATTERY:
COMPUTE: False
DB_TABLE: battery
DAY_SEGMENTS: *day_segments
FEATURES: ["countdischarge", "sumdurationdischarge", "countcharge", "sumdurationcharge", "avgconsumptionrate", "maxconsumptionrate"]
2019-11-27 20:25:17 +01:00
SCREEN:
COMPUTE: False
DB_TABLE: screen
2019-11-27 20:25:17 +01:00
DAY_SEGMENTS: *day_segments
REFERENCE_HOUR_FIRST_USE: 0
FEATURES_DELTAS: ["countepisode", "episodepersensedminutes", "sumduration", "maxduration", "minduration", "avgduration", "stdduration", "firstuseafter"]
EPISODE_TYPES: ["unlock"]
2020-01-14 15:51:39 +01:00
LIGHT:
COMPUTE: False
DB_TABLE: light
2020-01-14 15:51:39 +01:00
DAY_SEGMENTS: *day_segments
FEATURES: ["count", "maxlux", "minlux", "avglux", "medianlux", "stdlux"]
2020-01-15 20:15:24 +01:00
ACCELEROMETER:
COMPUTE: False
DB_TABLE: accelerometer
2020-01-15 20:15:24 +01:00
DAY_SEGMENTS: *day_segments
FEATURES:
MAGNITUDE: ["maxmagnitude", "minmagnitude", "avgmagnitude", "medianmagnitude", "stdmagnitude"]
2020-06-22 19:47:25 +02:00
EXERTIONAL_ACTIVITY_EPISODE: ["sumduration", "maxduration", "minduration", "avgduration", "medianduration", "stdduration"]
NONEXERTIONAL_ACTIVITY_EPISODE: ["sumduration", "maxduration", "minduration", "avgduration", "medianduration", "stdduration"]
VALID_SENSED_MINUTES: False
2020-01-29 22:22:53 +01:00
2020-02-07 17:52:55 +01:00
APPLICATIONS_FOREGROUND:
COMPUTE: False
DB_TABLE: applications_foreground
2020-02-07 17:52:55 +01:00
DAY_SEGMENTS: *day_segments
SINGLE_CATEGORIES: ["all", "email"]
2020-02-07 17:52:55 +01:00
MULTIPLE_CATEGORIES:
social: ["socialnetworks", "socialmediatools"]
entertainment: ["entertainment", "gamingknowledge", "gamingcasual", "gamingadventure", "gamingstrategy", "gamingtoolscommunity", "gamingroleplaying", "gamingaction", "gaminglogic", "gamingsports", "gamingsimulation"]
SINGLE_APPS: ["top1global", "com.facebook.moments", "com.google.android.youtube", "com.twitter.android"] # There's no entropy for single apps
EXCLUDED_CATEGORIES: ["system_apps", "tvvideoapps"]
2020-02-07 17:52:55 +01:00
EXCLUDED_APPS: ["com.fitbit.FitbitMobile", "com.aware.plugin.upmc.cancer"]
FEATURES: ["count", "timeoffirstuse", "timeoflastuse", "frequencyentropy"]
2020-02-07 17:52:55 +01:00
2020-02-07 17:35:15 +01:00
HEARTRATE:
COMPUTE: False
DB_TABLE: fitbit_data
2020-02-07 17:35:15 +01:00
DAY_SEGMENTS: *day_segments
SUMMARY_FEATURES: ["restinghr"] # calories features' accuracy depend on the accuracy of the participants fitbit profile (e.g. heigh, weight) use with care: ["caloriesoutofrange", "caloriesfatburn", "caloriescardio", "caloriespeak"]
2020-06-22 20:15:56 +02:00
INTRADAY_FEATURES: ["maxhr", "minhr", "avghr", "medianhr", "modehr", "stdhr", "diffmaxmodehr", "diffminmodehr", "entropyhr", "minutesonoutofrangezone", "minutesonfatburnzone", "minutesoncardiozone", "minutesonpeakzone"]
2020-02-07 17:35:15 +01:00
2020-01-29 22:22:53 +01:00
STEP:
COMPUTE: False
DB_TABLE: fitbit_data
2020-01-29 22:22:53 +01:00
DAY_SEGMENTS: *day_segments
EXCLUDE_SLEEP:
2020-06-24 19:40:15 +02:00
EXCLUDE: False
TYPE: FIXED # FIXED OR FITBIT_BASED (CONFIGURE FITBIT's SLEEP DB_TABLE)
FIXED:
START: "23:00"
END: "07:00"
FEATURES:
2020-01-29 22:22:53 +01:00
ALL_STEPS: ["sumallsteps", "maxallsteps", "minallsteps", "avgallsteps", "stdallsteps"]
2020-06-26 23:33:30 +02:00
SEDENTARY_BOUT: ["countepisode", "sumduration", "maxduration", "minduration", "avgduration", "stdduration"]
ACTIVE_BOUT: ["countepisode", "sumduration", "maxduration", "minduration", "avgduration", "stdduration"]
THRESHOLD_ACTIVE_BOUT: 10 # steps
2020-06-26 23:33:30 +02:00
INCLUDE_ZERO_STEP_ROWS: False
SLEEP:
COMPUTE: False
DB_TABLE: fitbit_data
DAY_SEGMENTS: *day_segments
SLEEP_TYPES: ["main", "nap", "all"]
2020-06-13 00:44:05 +02:00
SUMMARY_FEATURES: ["sumdurationafterwakeup", "sumdurationasleep", "sumdurationawake", "sumdurationtofallasleep", "sumdurationinbed", "avgefficiency", "countepisode"]
2020-04-13 19:24:52 +02:00
WIFI:
COMPUTE: False
DB_TABLE: wifi
2020-04-13 19:24:52 +02:00
DAY_SEGMENTS: *day_segments
FEATURES: ["countscans", "uniquedevices", "countscansmostuniquedevice"]
CONVERSATION:
COMPUTE: False
DB_TABLE:
ANDROID: plugin_studentlife_audio_android
IOS: plugin_studentlife_audio
DAY_SEGMENTS: *day_segments
FEATURES: ["minutessilence", "minutesnoise", "minutesvoice", "minutesunknown","sumconversationduration","avgconversationduration",
"sdconversationduration","minconversationduration","maxconversationduration","timefirstconversation","timelastconversation","sumenergy",
"avgenergy","sdenergy","minenergy","maxenergy","silencesensedfraction","noisesensedfraction",
"voicesensedfraction","unknownsensedfraction","silenceexpectedfraction","noiseexpectedfraction","voiceexpectedfraction",
2020-06-24 23:03:14 +02:00
"unknownexpectedfraction","countconversation"]
RECORDINGMINUTES: 1
PAUSEDMINUTES : 3
### Analysis ################################################################
PARAMS_FOR_ANALYSIS:
2020-06-24 02:46:42 +02:00
COMPUTE: False
GROUNDTRUTH_TABLE: participant_info
SOURCES: &sources ["phone_features", "fitbit_features", "phone_fitbit_features"]
DAY_SEGMENTS: *day_segments
PHONE_FEATURES: [accelerometer, applications_foreground, battery, call_incoming, call_missed, call_outgoing, activity_recognition, light, location_barnett, screen, sms_received, sms_sent]
FITBIT_FEATURES: [fitbit_heartrate, fitbit_step, fitbit_sleep]
PHONE_FITBIT_FEATURES: "" # This array is merged in the input_merge_features_of_single_participant function in models.snakefile
DEMOGRAPHIC_FEATURES: [age, gender, inpatientdays]
2020-04-30 00:53:54 +02:00
CATEGORICAL_DEMOGRAPHIC_FEATURES: ["gender"]
# Whether or not to include only days with enough valid sensed hours
# logic can be found in rule phone_valid_sensed_days of rules/preprocessing.snakefile
DROP_VALID_SENSED_DAYS:
ENABLED: True
# Whether or not to include certain days in the analysis, logic can be found in rule days_to_analyse of rules/mystudy.snakefile
# If you want to include all days downloaded for each participant, set ENABLED to False
DAYS_TO_ANALYSE:
ENABLED: True
DAYS_BEFORE_SURGERY: 15
DAYS_IN_HOSPITAL: F # T or F
DAYS_AFTER_DISCHARGE: 7
# Cleaning Parameters
2020-06-24 02:46:42 +02:00
COLS_NAN_THRESHOLD: [0.1, 0.3, 0.5]
COLS_VAR_THRESHOLD: True
2020-06-24 02:46:42 +02:00
ROWS_NAN_THRESHOLD: [0.1, 0.3, 0.5]
PARTICIPANT_DAYS_BEFORE_THRESHOLD: 7
PARTICIPANT_DAYS_AFTER_THRESHOLD: 4
2020-04-30 00:53:54 +02:00
# Extract summarised features from daily features with any of the following substrings
NUMERICAL_OPERATORS: ["count", "sum", "length", "avg", "restinghr"]
2020-04-30 00:53:54 +02:00
CATEGORICAL_OPERATORS: ["mostcommon"]
2020-04-30 00:53:54 +02:00
MODEL_NAMES: ["LogReg", "kNN", "SVM", "DT", "RF", "GB", "XGBoost", "LightGBM"]
CV_METHODS: ["LeaveOneOut"]
SUMMARISED: ["summarised"] # "summarised" or "notsummarised"
2020-04-30 00:53:54 +02:00
RESULT_COMPONENTS: ["fold_predictions", "fold_metrics", "overall_results", "fold_feature_importances"]
MODEL_SCALER:
LogReg: ["notnormalized", "minmaxscaler", "standardscaler", "robustscaler"]
kNN: ["minmaxscaler", "standardscaler", "robustscaler"]
SVM: ["minmaxscaler", "standardscaler", "robustscaler"]
DT: ["notnormalized"]
RF: ["notnormalized"]
GB: ["notnormalized"]
XGBoost: ["notnormalized"]
LightGBM: ["notnormalized"]
2020-04-30 00:53:54 +02:00
MODEL_HYPERPARAMS:
LogReg:
{"clf__C": [0.01, 0.1, 1, 10, 100], "clf__solver": ["newton-cg", "lbfgs", "liblinear", "saga"], "clf__penalty": ["l2"]}
kNN:
{"clf__n_neighbors": [1, 3, 5], "clf__weights": ["uniform", "distance"], "clf__metric": ["euclidean", "manhattan", "minkowski"]}
2020-04-30 00:53:54 +02:00
SVM:
{"clf__C": [0.01, 0.1, 1, 10, 100], "clf__gamma": ["scale", "auto"], "clf__kernel": ["rbf", "poly", "sigmoid"]}
DT:
{"clf__criterion": ["gini", "entropy"], "clf__max_depth": [null, 3, 5, 7, 9], "clf__max_features": [null, "auto", "sqrt", "log2"]}
2020-04-30 00:53:54 +02:00
RF:
{"clf__n_estimators": [2, 5, 10, 100],"clf__max_depth": [null, 3, 5, 7, 9]}
2020-04-30 00:53:54 +02:00
GB:
{"clf__learning_rate": [0.01, 0.1, 1], "clf__n_estimators": [5, 10, 100, 200], "clf__subsample": [0.5, 0.7, 1.0], "clf__max_depth": [3, 5, 7, 9]}
XGBoost:
{"clf__learning_rate": [0.01, 0.1, 1], "clf__n_estimators": [5, 10, 100, 200], "clf__num_leaves": [5, 16, 31, 62]}
LightGBM:
{"clf__learning_rate": [0.01, 0.1, 1], "clf__n_estimators": [5, 10, 100, 200], "clf__num_leaves": [5, 16, 31, 62]}
# Target Settings:
# 1 => TARGETS_RATIO_THRESHOLD (ceiling) or more of available CESD scores were TARGETS_VALUE_THRESHOLD or higher; 0 => otherwise
TARGETS_RATIO_THRESHOLD: 0.5
TARGETS_VALUE_THRESHOLD: 16