Added Converstion Features.
Updated config.yaml, Snakefile, Features.Snakefile and documentation.pull/95/head
parent
5627a73a67
commit
1409de2832
|
@ -58,6 +58,9 @@ rule all:
|
|||
expand("data/processed/{pid}/light_{day_segment}.csv",
|
||||
pid = config["PIDS"],
|
||||
day_segment = config["LIGHT"]["DAY_SEGMENTS"]),
|
||||
expand("data/processed/{pid}/conversation_{day_segment}.csv",
|
||||
pid = config["PIDS"],
|
||||
day_segment = config["CONVERSATION"]["DAY_SEGMENTS"]),
|
||||
expand("data/processed/{pid}/accelerometer_{day_segment}.csv",
|
||||
pid = config["PIDS"],
|
||||
day_segment = config["ACCELEROMETER"]["DAY_SEGMENTS"]),
|
||||
|
|
12
config.yaml
12
config.yaml
|
@ -1,5 +1,5 @@
|
|||
# Valid database table names
|
||||
SENSORS: [applications_crashes, applications_foreground, applications_notifications, battery, bluetooth, calls, locations, messages, plugin_ambient_noise, plugin_device_usage, plugin_google_activity_recognition, plugin_ios_activity_recognition, screen]
|
||||
SENSORS: [applications_crashes, applications_foreground, applications_notifications, battery, bluetooth, calls, locations, messages, plugin_ambient_noise, plugin_device_usage, plugin_google_activity_recognition, plugin_ios_activity_recognition, screen,plugin_studentlife_audio]
|
||||
|
||||
FITBIT_TABLE: [fitbit_data]
|
||||
FITBIT_SENSORS: [heartrate, steps, sleep, calories]
|
||||
|
@ -138,6 +138,16 @@ WIFI:
|
|||
DAY_SEGMENTS: *day_segments
|
||||
FEATURES: ["countscans", "uniquedevices", "countscansmostuniquedevice"]
|
||||
|
||||
CONVERSATION:
|
||||
DAY_SEGMENTS: *day_segments
|
||||
FEATURES: ["minutessilence", "minutesnoise", "minutesvoice", "minutesunknown","sumconversationduration","avgconversationduration",
|
||||
"sdconversationduration","minconversationduration","maxconversationduration","timefirstconversation","timelastconversation","sumenergy",
|
||||
"avgenergy","sdenergy","minenergy","maxenergy","silencesensedfraction","noisesensedfraction",
|
||||
"voicesensedfraction","unknownsensedfraction","silenceexpectedfraction","noiseexpectedfraction","voiceexpectedfraction",
|
||||
"unknownexpectedfraction"]
|
||||
RECORDINGMINUTES: 1
|
||||
PAUSEDMINUTES : 3
|
||||
|
||||
PARAMS_FOR_ANALYSIS:
|
||||
GROUNDTRUTH_TABLE: participant_info
|
||||
SOURCES: &sources ["phone_features", "fitbit_features", "phone_fitbit_features"]
|
||||
|
|
|
@ -688,6 +688,78 @@ firstuseafter minutes Seconds until the first unlock e
|
|||
|
||||
An ``unlock`` episode is considered as the time between an ``unlock`` event and a ``lock`` event. iOS recorded these episodes reliably (albeit some duplicated ``lock`` events within milliseconds from each other). However, in Android there are some events unrelated to the screen state because of multiple consecutive ``unlock``/``lock`` events, so we keep the closest pair. In our experiments these cases are less than 10% of the screen events collected. This happens because ``ACTION_SCREEN_OFF`` and ``ON`` are "sent when the device becomes non-interactive which may have nothing to do with the screen turning off". Additionally, in Android it is possible to measure the time spent on the ``lock`` screen before an ``unlock`` event as well as the total screen time (i.e. ``ON`` to ``OFF``) but we are only keeping ``unlock`` episodes (``unlock`` to ``OFF``) to be consistent with iOS.
|
||||
|
||||
.. _conversation-sensor-doc:
|
||||
|
||||
Conversation
|
||||
""""""""
|
||||
|
||||
See `Conversation Config Code`_
|
||||
|
||||
**Available Epochs (day_segment) :** daily, morning, afternoon, evening, night
|
||||
|
||||
**Available Platforms:** Android and iOS
|
||||
|
||||
**Snakefile entry to compute these features:**
|
||||
|
||||
| ``expand("data/processed/{pid}/conversation_{day_segment}.csv",``
|
||||
| ``pid = config["PIDS"],``
|
||||
| ``day_segment = config["CONVERSATION"]["DAY_SEGMENTS"]),``
|
||||
|
||||
**Snakemake rule chain:**
|
||||
|
||||
- Rule ``rules/preprocessing.snakefile/download_dataset``
|
||||
- Rule ``rules/preprocessing.snakefile/readable_datetime``
|
||||
- Rule ``rules/features.snakefile/conversation_features``
|
||||
|
||||
.. _conversation-parameters:
|
||||
|
||||
**Conversation Rule Parameters (conversation_features):**
|
||||
|
||||
========================= ===================
|
||||
Name Description
|
||||
========================= ===================
|
||||
day_segment The particular ``day_segments`` that will be analyzed. The available options are ``daily``, ``morning``, ``afternoon``, ``evening``, ``night``
|
||||
recordingMinutes The current default configuration is 1 min recording/3 min pause.
|
||||
features_deltas Features to be computed, see table below
|
||||
pausedMinutes The current default configuration is 1 min recording/3 min pause.
|
||||
========================= ===================
|
||||
|
||||
.. _conversation-available-features:
|
||||
|
||||
**Available Conversation Features**
|
||||
|
||||
========================= ================= =============
|
||||
Name Units Description
|
||||
========================= ================= =============
|
||||
minutessilence minutes Total duration of all minutes silence.
|
||||
minutesnoise minutes Total duration of all minutes noise.
|
||||
minutesvoice minutes Total duration of all minutes voice.
|
||||
minutesunknown minutes Total duration of all minutes unknown.
|
||||
sumconversationduration minutes Total duration of all the conversation.
|
||||
maxconversationduration minutes Longest duration of all the conversation.
|
||||
minconversationduration minutes Shortest duration of all the conversation.
|
||||
avgconversationduration minutes Average duration of all the conversation.
|
||||
sdconversationduration minutes Standard Deviation duration of all the conversation.
|
||||
timefirstconversation minutes Starting time of first conversation of the Day/Epoch.
|
||||
timelastconversation minutes Starting time of last conversation of the Day/Epoch.
|
||||
sumenergy L2-norm Total sum of all the energy.
|
||||
avgenergy L2-norm Average of all the energy.
|
||||
sdenergy L2-norm Standard Deviation of all the energy.
|
||||
minenergy L2-norm Minimum of all the energy.
|
||||
maxenergy L2-norm Maximum of all the energy.
|
||||
silencesensedfraction minutes
|
||||
noisesensedfraction minutes
|
||||
voicesensedfraction minutes
|
||||
unknownsensedfraction minutes
|
||||
silenceexpectedfraction minutes
|
||||
noiseexpectedfraction minutes
|
||||
voiceexpectedfraction minutes
|
||||
unknownexpectedfraction minutes
|
||||
========================= ================= =============
|
||||
|
||||
**Assumptions/Observations:**
|
||||
|
||||
|
||||
.. ------------------------------- Begin Fitbit Section ----------------------------------- ..
|
||||
|
||||
.. _fitbit-sleep-sensor-doc:
|
||||
|
|
|
@ -9,6 +9,15 @@ def optional_ar_input(wildcards):
|
|||
return ["data/raw/{pid}/plugin_ios_activity_recognition_with_datetime_unified.csv",
|
||||
"data/processed/{pid}/plugin_ios_activity_recognition_deltas.csv"]
|
||||
|
||||
def optional_conversation_input(wildcards):
|
||||
with open("data/external/"+wildcards.pid, encoding="ISO-8859-1") as external_file:
|
||||
external_file_content = external_file.readlines()
|
||||
platform = external_file_content[1].strip()
|
||||
if platform == "android":
|
||||
return ["data/raw/{pid}/plugin_studentlife_audio_android_with_datetime.csv"]
|
||||
else:
|
||||
return ["data/raw/{pid}/plugin_studentlife_audio_with_datetime.csv"]
|
||||
|
||||
def optional_location_input(wildcards):
|
||||
if config["BARNETT_LOCATION"]["LOCATIONS_TO_USE"] == "RESAMPLE_FUSED":
|
||||
return rules.resample_fused_location.output
|
||||
|
@ -146,6 +155,19 @@ rule light_features:
|
|||
script:
|
||||
"../src/features/light_features.py"
|
||||
|
||||
rule conversation_features:
|
||||
input:
|
||||
optional_conversation_input
|
||||
params:
|
||||
day_segment = "{day_segment}",
|
||||
features = config["CONVERSATION"]["FEATURES"],
|
||||
recordingMinutes = config["CONVERSATION"]["RECORDINGMINUTES"],
|
||||
pausedMinutes = config["CONVERSATION"]["PAUSEDMINUTES"],
|
||||
output:
|
||||
"data/processed/{pid}/conversation_{day_segment}.csv"
|
||||
script:
|
||||
"../src/features/conversation_features.py"
|
||||
|
||||
rule accelerometer_features:
|
||||
input:
|
||||
"data/raw/{pid}/accelerometer_with_datetime.csv",
|
||||
|
|
|
@ -0,0 +1,104 @@
|
|||
import pandas as pd
|
||||
|
||||
def base_conversation_features(conversation_data, day_segment, requested_features,recordingMinutes,pausedMinutes,expectedMinutes):
|
||||
# name of the features this function can compute
|
||||
base_features_names = ["minutessilence", "minutesnoise", "minutesvoice", "minutesunknown","sumconversationduration","avgconversationduration",
|
||||
"sdconversationduration","minconversationduration","maxconversationduration","timefirstconversation","timelastconversation","sumenergy",
|
||||
"avgenergy","sdenergy","minenergy","maxenergy","silencesensedfraction","noisesensedfraction",
|
||||
"voicesensedfraction","unknownsensedfraction","silenceexpectedfraction","noiseexpectedfraction","voiceexpectedfraction",
|
||||
"unknownexpectedfraction"]
|
||||
|
||||
# the subset of requested features this function can compute
|
||||
features_to_compute = list(set(requested_features) & set(base_features_names))
|
||||
|
||||
|
||||
if conversation_data.empty:
|
||||
conversation_features = pd.DataFrame(columns=["local_date"] + ["conversation_" + day_segment + "_" + x for x in features_to_compute])
|
||||
else:
|
||||
if day_segment != "daily":
|
||||
conversation_data = conversation_data[conversation_data["local_day_segment"] == day_segment]
|
||||
|
||||
if conversation_data.empty:
|
||||
conversation_features = pd.DataFrame(columns=["local_date"] + ["conversation_" + day_segment + "_" + x for x in features_to_compute])
|
||||
else:
|
||||
conversation_features = pd.DataFrame()
|
||||
|
||||
if "minutessilence" in features_to_compute:
|
||||
conversation_features["conversation_" + day_segment + "_minutessilence"] = conversation_data[conversation_data['inference']==0].groupby(["local_date"])['inference'].count()
|
||||
|
||||
if "minutesnoise" in features_to_compute:
|
||||
conversation_features["conversation_" + day_segment + "_minutesnoise"] = conversation_data[conversation_data['inference']==1].groupby(["local_date"])['inference'].count()
|
||||
|
||||
if "minutesvoice" in features_to_compute:
|
||||
conversation_features["conversation_" + day_segment + "_minutesvoice"] = conversation_data[conversation_data['inference']==2].groupby(["local_date"])['inference'].count()
|
||||
|
||||
if "minutesunknown" in features_to_compute:
|
||||
conversation_features["conversation_" + day_segment + "_minutesunknown"] = conversation_data[conversation_data['inference']==3].groupby(["local_date"])['inference'].count()
|
||||
|
||||
conversation_data['conv_Dur'] = conversation_data['double_convo_end'] - conversation_data['double_convo_start']
|
||||
conversation_data['totalDuration'] = conversation_data[conversation_data['inference']==0].groupby(["local_date"])['inference'].count() + conversation_data[conversation_data['inference']==1].groupby(["local_date"])['inference'].count() + conversation_data[conversation_data['inference']==2].groupby(["local_date"])['inference'].count() + conversation_data[conversation_data['inference']==3].groupby(["local_date"])['inference'].count()
|
||||
|
||||
if "silencesensedfraction" in features_to_compute:
|
||||
conversation_features["conversation_" + day_segment + "_silencesensedfraction"] = conversation_data[conversation_data['inference']==0].groupby(["local_date"])['inference'].count()/ conversation_data['totalDuration']
|
||||
|
||||
if "noisesensedfraction" in features_to_compute:
|
||||
conversation_features["conversation_" + day_segment + "_noisesensedfraction"] = conversation_data[conversation_data['inference']==1].groupby(["local_date"])['inference'].count()/ conversation_data['totalDuration']
|
||||
|
||||
if "voicesensedfraction" in features_to_compute:
|
||||
conversation_features["conversation_" + day_segment + "_voicesensedfraction"] = conversation_data[conversation_data['inference']==2].groupby(["local_date"])['inference'].count()/ conversation_data['totalDuration']
|
||||
|
||||
if "unknownsensedfraction" in features_to_compute:
|
||||
conversation_features["conversation_" + day_segment + "_unknownsensedfraction"] = conversation_data[conversation_data['inference']==3].groupby(["local_date"])['inference'].count()/ conversation_data['totalDuration']
|
||||
|
||||
if "silenceexpectedfraction" in features_to_compute:
|
||||
conversation_features["conversation_" + day_segment + "_silenceexpectedfraction"] = conversation_data[conversation_data['inference']==0].groupby(["local_date"])['inference'].count()/ expectedMinutes
|
||||
|
||||
if "noiseexpectedfraction" in features_to_compute:
|
||||
conversation_features["conversation_" + day_segment + "_noiseexpectedfraction"] = conversation_data[conversation_data['inference']==1].groupby(["local_date"])['inference'].count()/ expectedMinutes
|
||||
|
||||
if "voiceexpectedfraction" in features_to_compute:
|
||||
conversation_features["conversation_" + day_segment + "_voiceexpectedfraction"] = conversation_data[conversation_data['inference']==2].groupby(["local_date"])['inference'].count()/ expectedMinutes
|
||||
|
||||
if "unknownexpectedfraction" in features_to_compute:
|
||||
conversation_features["conversation_" + day_segment + "_unknownexpectedfraction"] = conversation_data[conversation_data['inference']==3].groupby(["local_date"])['inference'].count()/ expectedMinutes
|
||||
|
||||
if "sumconversationduration" in features_to_compute:
|
||||
conversation_features["conversation_" + day_segment + "_sumconversationduration"] = conversation_data.groupby(["local_date"])['conv_Dur'].sum()
|
||||
|
||||
if "avgconversationduration" in features_to_compute:
|
||||
conversation_features["conversation_" + day_segment + "_avgconversationduration"] = conversation_data.groupby(["local_date"])['conv_Dur'].mean()
|
||||
|
||||
if "sdconversationduration" in features_to_compute:
|
||||
conversation_features["conversation_" + day_segment + "_sdconversationduration"] = conversation_data.groupby(["local_date"])['conv_Dur'].std()
|
||||
|
||||
if "minconversationduration" in features_to_compute:
|
||||
conversation_features["conversation_" + day_segment + "_minconversationduration"] = conversation_data.groupby(["local_date"])['conv_Dur'].min()
|
||||
|
||||
if "maxconversationduration" in features_to_compute:
|
||||
conversation_features["conversation_" + day_segment + "_maxconversationduration"] = conversation_data.groupby(["local_date"])['conv_Dur'].max()
|
||||
|
||||
if "timefirstconversation" in features_to_compute:
|
||||
conversation_features["conversation_" + day_segment + "_timefirstconversation"] = conversation_data[conversation_data["double_convo_start"]> 0].groupby(["local_date"])['double_convo_start'].min()
|
||||
|
||||
if "timelastconversation" in features_to_compute:
|
||||
conversation_features["conversation_" + day_segment + "_timelastconversation"] = conversation_data.groupby(["local_date"])['double_convo_start'].max()
|
||||
|
||||
if "sumenergy" in features_to_compute:
|
||||
conversation_features["conversation_" + day_segment + "_sumenergy"] = conversation_data.groupby(["local_date"])['double_energy'].sum()
|
||||
|
||||
if "avgenergy" in features_to_compute:
|
||||
conversation_features["conversation_" + day_segment + "_avgenergy"] = conversation_data.groupby(["local_date"])['double_energy'].mean()
|
||||
|
||||
if "sdenergy" in features_to_compute:
|
||||
conversation_features["conversation_" + day_segment + "_sdenergy"] = conversation_data.groupby(["local_date"])['double_energy'].std()
|
||||
|
||||
if "minenergy" in features_to_compute:
|
||||
conversation_features["conversation_" + day_segment + "_minenergy"] = conversation_data.groupby(["local_date"])['double_energy'].min()
|
||||
|
||||
if "maxenergy" in features_to_compute:
|
||||
conversation_features["conversation_" + day_segment + "_maxenergy"] = conversation_data.groupby(["local_date"])['double_energy'].max()
|
||||
|
||||
|
||||
conversation_features = conversation_features.reset_index()
|
||||
|
||||
return conversation_features
|
|
@ -0,0 +1,15 @@
|
|||
import pandas as pd
|
||||
from conversation.conversation_base import base_conversation_features
|
||||
|
||||
conversation_data = pd.read_csv(snakemake.input[0], parse_dates=["local_date_time", "local_date"])
|
||||
day_segment = snakemake.params["day_segment"]
|
||||
requested_features = snakemake.params["features"]
|
||||
recordingMinutes = snakemake.params["recordingMinutes"]
|
||||
pausedMinutes = snakemake.params["pausedMinutes"]
|
||||
expectedMinutes = 1440 / (recordingMinutes + pausedMinutes)
|
||||
conversation_features = pd.DataFrame(columns=["local_date"])
|
||||
|
||||
conversation_features = conversation_features.merge(base_conversation_features(conversation_data, day_segment, requested_features,recordingMinutes,pausedMinutes,expectedMinutes), on="local_date", how="outer")
|
||||
assert len(requested_features) + 1 == conversation_features.shape[1], "The number of features in the output dataframe (=" + str(conversation_features.shape[1]) + ") does not match the expected value (=" + str(len(requested_features)) + " + 1). Verify your conversation feature extraction functions"
|
||||
|
||||
conversation_features.to_csv(snakemake.output[0], index=False)
|
Loading…
Reference in New Issue