* Update ChibiOS-Contrib for USB suspend fixes
* Remove S3 wakup workaround
ChibiOS OTGv1 driver has a remote wakeup bug that prevents the device to
resume it's operation. 02516cbc24647f522eee975e69cc0c8a925470eb
introduced a hotfix that forcefully restarted the usb driver as a workaround.
This workaround broke multiple boards which do not use this driver /
peripheral. With the update of ChibiOS this hotfix is now obsolete.
* Remove restart_usb_driver overrides
they are no longer necessary as the workaround is not needed anymore
for stm32f4
* Remove unused RP_USB_USE_SOF_INTR defines
The SOF interrupt is enabled dynamically by the RP2040 usb driver
* Set up Bonsai C4 as a platform board file
* corrections and improvements based on testing and feedback
* Added VBUS sensing as default capability for improved split support using Bonsai C4
* Update clock divisor for SPI flash
Co-authored-by: Nick Brassel <nick@tzarc.org>
Co-authored-by: Nick Brassel <nick@tzarc.org>
Unfortunately, the crippled versions of “Bluepill” boards with
STM32F103C6xx chips instead of STM32F103C8xx are now sold all over the
place, sometimes advertised in a confusing way to make the difference
not noticeable until too late. Add minimal support for these MCUs in
the common “Bluepill with stm32duino” configuration, so that it could be
possible to make something useful from those boards (although fitting
QMK into the available 24 KiB of flash may be rather hard).
(In fact, I'm not sure whether the “STM32” part of the chip name is
actually correct for those boards of uncertain origin, so the onekey
board name is `bluepill_f103c6`; another reason for that name is to
match the existing `blackpill_f401` and `blackpill_f411`.)
The EEPROM emulation support is not included on purpose, because
enabling it without having a working firmware size check would be
irresponsible with such flash size (the chance that someone would build
a firmware where the EEPROM backing store ends up overlapping some
firmware code is really high). Other than that, enabling the EEPROM
emulation code is mostly trivial (the `wear_leveling` driver with the
`embedded_flash` backing store even works without any custom
configuration, although its code is significantly larger than the
`vendor` driver, which may also be important for such flash size).
* Disable RESET keycode because of naming conflicts
* Add Pico SDK as submodule
* Add RP2040 build support to QMK
* Adjust USB endpoint structs for RP2040
* Add RP2040 bootloader and double-tap reset routine
* Add generic and pro micro RP2040 boards
* Add RP2040 onekey keyboard
* Add WS2812 PIO DMA enabled driver and documentation
Supports regular and open-drain output configuration. RP2040 GPIOs are
sadly not 5V tolerant, so this is a bit use-less or needs extra hardware
or you take the risk to fry your hardware.
* Adjust SIO Driver for RP2040
* Adjust I2C Driver for RP2040
* Adjust SPI Driver for RP2040
* Add PIO serial driver and documentation
* Add general RP2040 documentation
* Apply suggestions from code review
Co-authored-by: Nick Brassel <nick@tzarc.org>
Co-authored-by: Nick Brassel <nick@tzarc.org>