delujoc prototip delca v zemljinem magnetnem polju
parent
145136f70c
commit
70406c0d76
Binary file not shown.
53
boris.py
53
boris.py
|
@ -5,9 +5,12 @@ from matplotlib import rc
|
|||
rc('font',**{'family':'serif','serif':['Computer Modern']})
|
||||
rc('text', usetex=True)
|
||||
|
||||
Q = 1.602176565e-19
|
||||
e = 1.602176565e-19 #osnovni naboj [C]
|
||||
m_pr = 1.672621777e-27 #masa protona [kg]
|
||||
m_el = 9.10938291e-31 #masa elektrona [kg]
|
||||
c = 299792458 #hitrost svetlobe [m/s]
|
||||
|
||||
def boris(x0, v0, E, B, dt, q=1, m=1):
|
||||
def boris(x0, v0, E, B, dt, tdur, q=1, m=1):
|
||||
''' Borisov algoritem zabjega skoka za
|
||||
integracijo diferencialne enačbe
|
||||
|
||||
|
@ -17,7 +20,7 @@ def boris(x0, v0, E, B, dt, q=1, m=1):
|
|||
B : funkcija, ki daje jakost polja B(x)
|
||||
dt: casovni korak '''
|
||||
|
||||
duration = 1000
|
||||
duration = int(tdur/dt)
|
||||
|
||||
X = np.zeros((duration,3))
|
||||
V = np.zeros((duration,3))
|
||||
|
@ -40,7 +43,40 @@ def boris(x0, v0, E, B, dt, q=1, m=1):
|
|||
|
||||
return X, V
|
||||
|
||||
E = lambda x: np.array([0.0,0.0,0.])
|
||||
def B_zemlja(x):
|
||||
''' model zemljinega magnentnega polja aproksimiran z
|
||||
magnetnim dipolom '''
|
||||
B0 = 3.07e-5 # [T]
|
||||
Rz = 6378137 # radii zemlje [m]
|
||||
|
||||
r = np.sqrt(np.sum(x**2))
|
||||
k = -B0*Rz**3/r**5
|
||||
return k*np.array([3*x[0]*x[2],3*x[1]*x[2],2*x[2]**2-x[0]**2-x[1]**2])
|
||||
|
||||
def Wk(m,V):
|
||||
return 0.5*m*np.sum(V**2,1)
|
||||
|
||||
def plot3(X,enote='m',zemlja=False):
|
||||
fig = plt.figure()
|
||||
ax = fig.add_subplot(projection='3d')
|
||||
if zemlja:
|
||||
u = np.linspace(0, 2 * np.pi, 100)
|
||||
v = np.linspace(0, np.pi, 100)
|
||||
x = np.outer(np.cos(u), np.sin(v))
|
||||
y = np.outer(np.sin(u), np.sin(v))
|
||||
z = np.outer(np.ones(np.size(u)), np.cos(v))
|
||||
ax.plot_surface(x,y,z,zorder=-4)
|
||||
|
||||
ax.plot(X[:,0],X[:,1],X[:,2],zorder=4)
|
||||
ax.set_xlabel(r'$x$ [{}]'.format(enote))
|
||||
ax.set_ylabel(r'$y$ [{}]'.format(enote))
|
||||
ax.set_zlabel(r'$z$ [{}]'.format(enote))
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == "__main__": # testni del kode
|
||||
E = lambda x: np.array([0.0,0.2,0.3])
|
||||
B = lambda x: np.array([0.,0.0,1.*x[0]])
|
||||
|
||||
x0 = np.array([-1.,0.,0.])
|
||||
|
@ -48,9 +84,8 @@ v0 = np.array([0.,1.,0.])
|
|||
|
||||
dt = 1e-2
|
||||
|
||||
X, V = boris(x0,v0,E,B,dt)
|
||||
X, V = boris(x0,v0,E,B,dt,20)
|
||||
|
||||
ax = plt.figure().add_subplot(projection='3d')
|
||||
ax.plot(X[:,0],X[:,1],X[:,2])
|
||||
plt.xlabel(r'$x$ label')
|
||||
plt.show()
|
||||
#ax.quiver(X[0:-1:20,0],X[0:-1:20,1],X[0:-1:20,2],V[0:-1:20,0],V[0:-1:20,1],V[0:-1:20,2], color='black',normalize=True,length=.5)
|
||||
# quiver res naredi grdo sliko
|
||||
plot3(X)
|
||||
|
|
|
@ -0,0 +1,32 @@
|
|||
#!/usr/bin/python3
|
||||
|
||||
### koda za generiranje rezultatov za seminar
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib import rc
|
||||
rc('font',**{'family':'serif','serif':['Computer Modern']})
|
||||
rc('text', usetex=True)
|
||||
from boris import *
|
||||
|
||||
Rz = 6378137 # radii zemlje [m]
|
||||
|
||||
q = e
|
||||
m = m_pr
|
||||
|
||||
K = 1e7 # kineticna energija 10MeV
|
||||
K = K*e # v Jouleih
|
||||
|
||||
get_v0 = lambda K: c*np.sqrt(1-1/(K/(m*c**2)+1)**2)
|
||||
|
||||
x0 = np.array([4*Rz,0.,0.])
|
||||
vpad = 30
|
||||
v0 = get_v0(K)*np.array([0., np.sin(vpad*np.pi/180), np.cos(vpad*np.pi/180)])
|
||||
|
||||
E = lambda x: np.array([0.,0.,0.]) # elektricno polje je nula
|
||||
dt = 1e-3
|
||||
tsim = 20
|
||||
|
||||
X, V = boris(x0, v0, E, B_zemlja, dt, tsim, q=q,m=m)
|
||||
plot3(X/Rz,enote="Rz", zemlja=True)
|
||||
|
Loading…
Reference in New Issue