stress_at_work_analysis/machine_learning/pipeline.py

126 lines
4.6 KiB
Python

import datetime
import pandas as pd
from sklearn.model_selection import cross_val_score
import participants.query_db
from features import esm, helper, proximity
from machine_learning import QUESTIONNAIRE_IDS, QUESTIONNAIRE_IDS_RENAME
class MachineLearningPipeline:
def __init__(
self,
labels_questionnaire,
labels_scale,
data_types,
participants_usernames=None,
feature_names=None,
grouping_variable=None,
):
if participants_usernames is None:
participants_usernames = participants.query_db.get_usernames(
collection_start=datetime.date.fromisoformat("2020-08-01")
)
self.participants_usernames = participants_usernames
self.labels_questionnaire = labels_questionnaire
self.data_types = data_types
if feature_names is None:
self.feature_names = []
self.df_features = pd.DataFrame()
self.labels_scale = labels_scale
self.df_labels = pd.DataFrame()
self.grouping_variable = grouping_variable
self.df_groups = pd.DataFrame()
self.model = None
self.validation_method = None
self.df_esm = pd.DataFrame()
self.df_esm_preprocessed = pd.DataFrame()
self.df_esm_interest = pd.DataFrame()
self.df_esm_clean = pd.DataFrame()
self.df_proximity = pd.DataFrame()
self.df_full_data_daily_means = pd.DataFrame()
self.df_esm_daily_means = pd.DataFrame()
self.df_proximity_daily_counts = pd.DataFrame()
def get_labels(self):
self.df_esm = esm.get_esm_data(self.participants_usernames)
self.df_esm_preprocessed = esm.preprocess_esm(self.df_esm)
if self.labels_questionnaire == "PANAS":
self.df_esm_interest = self.df_esm_preprocessed[
(
self.df_esm_preprocessed["questionnaire_id"]
== QUESTIONNAIRE_IDS.get("PANAS").get("PA")
)
| (
self.df_esm_preprocessed["questionnaire_id"]
== QUESTIONNAIRE_IDS.get("PANAS").get("NA")
)
]
self.df_esm_clean = esm.clean_up_esm(self.df_esm_interest)
def get_sensor_data(self):
if "proximity" in self.data_types:
self.df_proximity = proximity.get_proximity_data(
self.participants_usernames
)
self.df_proximity = helper.get_date_from_timestamp(self.df_proximity)
self.df_proximity = proximity.recode_proximity(self.df_proximity)
def aggregate_daily(self):
self.df_esm_daily_means = (
self.df_esm_clean.groupby(["participant_id", "date_lj", "questionnaire_id"])
.esm_user_answer_numeric.agg("mean")
.reset_index()
.rename(columns={"esm_user_answer_numeric": "esm_numeric_mean"})
)
self.df_esm_daily_means = (
self.df_esm_daily_means.pivot(
index=["participant_id", "date_lj"],
columns="questionnaire_id",
values="esm_numeric_mean",
)
.reset_index(col_level=1)
.rename(columns=QUESTIONNAIRE_IDS_RENAME)
.set_index(["participant_id", "date_lj"])
)
self.df_full_data_daily_means = self.df_esm_daily_means.copy()
if "proximity" in self.data_types:
self.df_proximity_daily_counts = proximity.count_proximity(
self.df_proximity, ["participant_id", "date_lj"]
)
self.df_full_data_daily_means = self.df_full_data_daily_means.join(
self.df_proximity_daily_counts
)
def assign_columns(self):
self.df_features = self.df_full_data_daily_means[self.feature_names]
self.df_labels = self.df_full_data_daily_means[self.labels_scale]
if self.grouping_variable:
self.df_groups = self.df_full_data_daily_means[self.grouping_variable]
else:
self.df_groups = None
def validate_model(self):
if self.model is None:
raise AttributeError(
"Please, specify a machine learning model first, by setting the .model attribute."
)
if self.validation_method is None:
raise AttributeError(
"Please, specify a cross validation method first, by setting the .validation_method attribute."
)
cross_val_score(
estimator=self.model,
X=self.df_features,
y=self.df_labels,
groups=self.df_groups,
cv=self.validation_method,
n_jobs=-1,
)