import datetime import pandas as pd from sklearn.model_selection import cross_val_score import participants.query_db from features import esm, helper, proximity from machine_learning import QUESTIONNAIRE_IDS, QUESTIONNAIRE_IDS_RENAME class MachineLearningPipeline: def __init__( self, labels_questionnaire, labels_scale, data_types, participants_usernames=None, feature_names=None, grouping_variable=None, ): if participants_usernames is None: participants_usernames = participants.query_db.get_usernames( collection_start=datetime.date.fromisoformat("2020-08-01") ) self.participants_usernames = participants_usernames self.labels_questionnaire = labels_questionnaire self.data_types = data_types if feature_names is None: self.feature_names = [] self.df_features = pd.DataFrame() self.labels_scale = labels_scale self.df_labels = pd.DataFrame() self.grouping_variable = grouping_variable self.df_groups = pd.DataFrame() self.model = None self.validation_method = None self.df_esm = pd.DataFrame() self.df_esm_preprocessed = pd.DataFrame() self.df_esm_interest = pd.DataFrame() self.df_esm_clean = pd.DataFrame() self.df_proximity = pd.DataFrame() self.df_full_data_daily_means = pd.DataFrame() self.df_esm_daily_means = pd.DataFrame() self.df_proximity_daily_counts = pd.DataFrame() def get_labels(self): self.df_esm = esm.get_esm_data(self.participants_usernames) self.df_esm_preprocessed = esm.preprocess_esm(self.df_esm) if self.labels_questionnaire == "PANAS": self.df_esm_interest = self.df_esm_preprocessed[ ( self.df_esm_preprocessed["questionnaire_id"] == QUESTIONNAIRE_IDS.get("PANAS").get("PA") ) | ( self.df_esm_preprocessed["questionnaire_id"] == QUESTIONNAIRE_IDS.get("PANAS").get("NA") ) ] self.df_esm_clean = esm.clean_up_esm(self.df_esm_interest) def get_sensor_data(self): if "proximity" in self.data_types: self.df_proximity = proximity.get_proximity_data( self.participants_usernames ) self.df_proximity = helper.get_date_from_timestamp(self.df_proximity) self.df_proximity = proximity.recode_proximity(self.df_proximity) def aggregate_daily(self): self.df_esm_daily_means = ( self.df_esm_clean.groupby(["participant_id", "date_lj", "questionnaire_id"]) .esm_user_answer_numeric.agg("mean") .reset_index() .rename(columns={"esm_user_answer_numeric": "esm_numeric_mean"}) ) self.df_esm_daily_means = ( self.df_esm_daily_means.pivot( index=["participant_id", "date_lj"], columns="questionnaire_id", values="esm_numeric_mean", ) .reset_index(col_level=1) .rename(columns=QUESTIONNAIRE_IDS_RENAME) .set_index(["participant_id", "date_lj"]) ) self.df_full_data_daily_means = self.df_esm_daily_means.copy() if "proximity" in self.data_types: self.df_proximity_daily_counts = proximity.count_proximity( self.df_proximity, ["participant_id", "date_lj"] ) self.df_full_data_daily_means = self.df_full_data_daily_means.join( self.df_proximity_daily_counts ) def assign_columns(self): self.df_features = self.df_full_data_daily_means[self.feature_names] self.df_labels = self.df_full_data_daily_means[self.labels_scale] if self.grouping_variable: self.df_groups = self.df_full_data_daily_means[self.grouping_variable] else: self.df_groups = None def validate_model(self): if self.model is None: raise AttributeError( "Please, specify a machine learning model first, by setting the .model attribute." ) if self.validation_method is None: raise AttributeError( "Please, specify a cross validation method first, by setting the .validation_method attribute." ) cross_val_score( estimator=self.model, X=self.df_features, y=self.df_labels, groups=self.df_groups, cv=self.validation_method, n_jobs=-1, )