Compare commits

..

8 Commits

Author SHA1 Message Date
junos 005b09cfdf [WIP] Fix tests to use pyprojroot. 2021-10-29 12:07:12 +02:00
junos a63a7eac99 [WIP] Add a test for SensorFeatures.
Additional analysis for adherence.
Small corrections.
2021-10-13 13:39:58 +02:00
junos b8c7606664 Add an option to read cached labels from a file. 2021-09-15 15:45:49 +02:00
junos ed062d25ee Add export capabilities to labels.py. 2021-09-15 15:36:36 +02:00
junos 20748890a8 Further refactor by moving helper functions. 2021-09-15 15:14:54 +02:00
junos 28699a0fdf Enable reading features from csv files. 2021-09-14 17:42:34 +02:00
junos af9e81fe40 Document the SensorFeatures class and its __init__ method. 2021-09-13 17:43:47 +02:00
junos b19eebbb92 Refactor machine_learning/pipeline.py by defining one class by file. 2021-09-13 11:41:57 +02:00
15 changed files with 571 additions and 322 deletions

1
.gitignore vendored
View File

@ -5,3 +5,4 @@ __pycache__/
/exploration/*.ipynb
/config/*.ipynb
/statistical_analysis/*.ipynb
/machine_learning/intermediate_results/

View File

@ -12,7 +12,7 @@ dependencies:
- mypy
- nodejs
- pandas
- psycopg2
- psycopg2 >= 2.9.1
- python-dotenv
- pytz
- pyprojroot

View File

@ -6,7 +6,7 @@
# extension: .py
# format_name: percent
# format_version: '1.3'
# jupytext_version: 1.11.4
# jupytext_version: 1.12.0
# kernelspec:
# display_name: straw2analysis
# language: python
@ -20,6 +20,8 @@ import importlib
import os
import sys
import numpy as np
import pandas as pd
import seaborn as sns
import yaml
from sklearn import linear_model
@ -29,11 +31,15 @@ nb_dir = os.path.split(os.getcwd())[0]
if nb_dir not in sys.path:
sys.path.append(nb_dir)
import machine_learning.features_sensor
import machine_learning.labels
import machine_learning.model
# %%
import participants.query_db
from features import esm, helper, proximity
# %% [markdown]
# %% [markdown] tags=[]
# # 1. Get the relevant data
# %%
@ -43,7 +49,7 @@ participants_inactive_usernames = participants.query_db.get_usernames(
# Consider only two participants to simplify.
ptcp_2 = participants_inactive_usernames[0:2]
# %% [markdown]
# %% [markdown] jp-MarkdownHeadingCollapsed=true tags=[]
# ## 1.1 Labels
# %%
@ -94,7 +100,7 @@ df_esm_PANAS_daily_means = (
# %%
df_proximity_daily_counts = proximity.count_proximity(
df_proximity, ["participant_id", "date_lj"]
df_proximity, ["date_lj"]
)
# %%
@ -155,10 +161,10 @@ lin_reg_proximity.score(
# # Merging these into a pipeline
# %%
from machine_learning import pipeline
from machine_learning import features_sensor, labels, model, pipeline
# %%
importlib.reload(pipeline)
importlib.reload(features_sensor)
# %%
with open("../machine_learning/config/minimal_features.yaml", "r") as file:
@ -166,7 +172,9 @@ with open("../machine_learning/config/minimal_features.yaml", "r") as file:
print(sensor_features_params)
# %%
sensor_features = pipeline.SensorFeatures(**sensor_features_params)
sensor_features = machine_learning.features_sensor.SensorFeatures(
**sensor_features_params
)
sensor_features.data_types
# %%
@ -186,24 +194,31 @@ sensor_features.set_sensor_data()
sensor_features.get_sensor_data("proximity")
# %%
sensor_features.calculate_features()
sensor_features.calculate_features(cached=False)
features_all_calculated = sensor_features.get_features("all", "all")
# %%
sensor_features.get_features("proximity", "all")
sensor_features.calculate_features(cached=True)
features_all_read = sensor_features.get_features("all", "all")
# %%
sensor_features.get_features("communication", "all")
features_all_read = features_all_read.reset_index()
features_all_read["date_lj"] = features_all_read["date_lj"].dt.date
features_all_read.set_index(["participant_id", "date_lj"], inplace=True)
# date_lj column is parsed as a date and represented as Timestamp, when read from csv.
# When calculated, it is represented as date.
# %%
sensor_features.get_features("all", "all")
np.isclose(features_all_read, features_all_calculated).all()
# %%
with open("../machine_learning/config/minimal_labels.yaml", "r") as file:
labels_params = yaml.safe_load(file)
# %%
labels = pipeline.Labels(**labels_params)
labels = machine_learning.labels.Labels(**labels_params)
labels.participants_usernames = ptcp_2
labels.set_participants_label("nokia_0000003")
labels.questionnaires
# %%
@ -213,13 +228,23 @@ labels.set_labels()
labels.get_labels("PANAS")
# %%
labels.aggregate_labels()
labels.aggregate_labels(cached=False)
labels_calculated = labels.get_aggregated_labels()
# %%
labels.get_aggregated_labels()
labels.aggregate_labels(cached=True)
labels_read = labels.get_aggregated_labels()
labels_read = labels_read.reset_index()
labels_read["date_lj"] = labels_read["date_lj"].dt.date
labels_read.set_index(["participant_id", "date_lj"], inplace=True)
# date_lj column is parsed as a date and represented as Timestamp, when read from csv.
# When calculated, it is represented as date.
# %%
model_validation = pipeline.ModelValidation(
np.isclose(labels_read, labels_calculated).all()
# %%
model_validation = machine_learning.model.ModelValidation(
sensor_features.get_features("all", "all"),
labels.get_aggregated_labels(),
group_variable="participant_id",

View File

@ -1,4 +1,4 @@
grouping_variable: [date_lj]
grouping_variable: date_lj
labels:
PANAS:
- PA

View File

@ -1,4 +1,4 @@
grouping_variable: [date_lj]
grouping_variable: date_lj
features:
proximity:
all

View File

@ -1,4 +1,4 @@
grouping_variable: [date_lj]
grouping_variable: date_lj
labels:
PANAS:
- PA

View File

@ -0,0 +1,231 @@
import datetime
import warnings
from pathlib import Path
from typing import Collection
import pandas as pd
from pyprojroot import here
import participants.query_db
from features import communication, helper, proximity
from machine_learning.helper import (
read_csv_with_settings,
safe_outer_merge_on_index,
to_csv_with_settings,
)
WARNING_PARTICIPANTS_LABEL = (
"Before calculating features, please set participants label using self.set_participants_label() "
"to be used as a filename prefix when exporting data. "
"The filename will be of the form: %participants_label_%grouping_variable_%data_type.csv"
)
class SensorFeatures:
"""
A class to represent all sensor (AWARE) features.
Attributes
----------
grouping_variable: str
The name of the variable by which to group (segment) data, e.g. date_lj.
features: dict
A dictionary of sensors (data types) and features to calculate.
See config/minimal_features.yaml for an example.
participants_usernames: Collection
A list of usernames for which to calculate features.
If None, use all participants.
Methods
-------
set_sensor_data():
Query the database for data types defined by self.features.
get_sensor_data(data_type): pd.DataFrame
Returns the dataframe of sensor data for specified data_type.
calculate_features():
Calls appropriate functions from features/ and joins them in a single dataframe, df_features_all.
get_features(data_type, feature_names): pd.DataFrame
Returns the dataframe of specified features for selected sensor.
construct_export_path():
Construct a path for exporting the features as csv files.
set_participants_label(label):
Sets a label for the usernames subset. This is used to distinguish feature exports.
"""
def __init__(
self,
grouping_variable: str,
features: dict,
participants_usernames: Collection = None,
) -> None:
"""
Specifies the grouping variable and usernames for which to calculate features.
Sets other (implicit) attributes used in other methods.
If participants_usernames=None, this queries the usernames which belong to the main part of the study,
i.e. from 2020-08-01 on.
Parameters
----------
grouping_variable: str
The name of the variable by which to group (segment) data, e.g. date_lj.
features: dict
A dictionary of sensors (data types) and features to calculate.
See config/minimal_features.yaml for an example.
participants_usernames: Collection
A list of usernames for which to calculate features.
If None, use all participants.
Returns
-------
None
"""
self.grouping_variable_name = grouping_variable
self.grouping_variable = [grouping_variable]
self.data_types = features.keys()
self.participants_label: str = ""
if participants_usernames is None:
participants_usernames = participants.query_db.get_usernames(
collection_start=datetime.date.fromisoformat("2020-08-01")
)
self.participants_label = "all"
self.participants_usernames = participants_usernames
self.df_features_all = pd.DataFrame()
self.df_proximity = pd.DataFrame()
self.df_proximity_counts = pd.DataFrame()
self.df_calls = pd.DataFrame()
self.df_sms = pd.DataFrame()
self.df_calls_sms = pd.DataFrame()
self.folder: Path = Path()
self.filename_prefix = ""
self.construct_export_path()
print("SensorFeatures initialized.")
def set_sensor_data(self) -> None:
print("Querying database ...")
if "proximity" in self.data_types:
self.df_proximity = proximity.get_proximity_data(
self.participants_usernames
)
print("Got proximity data from the DB.")
self.df_proximity = helper.get_date_from_timestamp(self.df_proximity)
self.df_proximity = proximity.recode_proximity(self.df_proximity)
if "communication" in self.data_types:
self.df_calls = communication.get_call_data(self.participants_usernames)
self.df_calls = helper.get_date_from_timestamp(self.df_calls)
print("Got calls data from the DB.")
self.df_sms = communication.get_sms_data(self.participants_usernames)
self.df_sms = helper.get_date_from_timestamp(self.df_sms)
print("Got sms data from the DB.")
def get_sensor_data(self, data_type: str) -> pd.DataFrame:
if data_type == "proximity":
return self.df_proximity
elif data_type == "communication":
return self.df_calls_sms
else:
raise KeyError("This data type has not been implemented.")
def calculate_features(self, cached=True) -> None:
print("Calculating features ...")
if not self.participants_label:
raise ValueError(WARNING_PARTICIPANTS_LABEL)
self.df_features_all = pd.DataFrame()
if "proximity" in self.data_types:
try:
if not cached: # Do not use the file, even if it exists.
raise FileNotFoundError
self.df_proximity_counts = read_csv_with_settings(
self.folder,
self.filename_prefix,
data_type="prox",
grouping_variable=self.grouping_variable,
)
print("Read proximity features from the file.")
except FileNotFoundError:
# We need to recalculate the features in this case.
self.df_proximity_counts = proximity.count_proximity(
self.df_proximity, self.grouping_variable
)
print("Calculated proximity features.")
to_csv_with_settings(
self.df_proximity_counts,
self.folder,
self.filename_prefix,
data_type="prox",
)
finally:
self.df_features_all = safe_outer_merge_on_index(
self.df_features_all, self.df_proximity_counts
)
if "communication" in self.data_types:
try:
if not cached: # Do not use the file, even if it exists.
raise FileNotFoundError
self.df_calls_sms = read_csv_with_settings(
self.folder,
self.filename_prefix,
data_type="comm",
grouping_variable=self.grouping_variable,
)
print("Read communication features from the file.")
except FileNotFoundError:
# We need to recalculate the features in this case.
self.df_calls_sms = communication.calls_sms_features(
df_calls=self.df_calls,
df_sms=self.df_sms,
group_by=self.grouping_variable,
)
print("Calculated communication features.")
to_csv_with_settings(
self.df_calls_sms,
self.folder,
self.filename_prefix,
data_type="comm",
)
finally:
self.df_features_all = safe_outer_merge_on_index(
self.df_features_all, self.df_calls_sms
)
self.df_features_all.fillna(
value=proximity.FILL_NA_PROXIMITY, inplace=True, downcast="infer",
)
self.df_features_all.fillna(
value=communication.FILL_NA_CALLS_SMS_ALL, inplace=True, downcast="infer",
)
def get_features(self, data_type, feature_names) -> pd.DataFrame:
if data_type == "proximity":
if feature_names == "all":
feature_names = proximity.FEATURES_PROXIMITY
return self.df_proximity_counts[feature_names]
elif data_type == "communication":
if feature_names == "all":
feature_names = communication.FEATURES_CALLS_SMS_ALL
return self.df_calls_sms[feature_names]
elif data_type == "all":
return self.df_features_all
else:
raise KeyError("This data type has not been implemented.")
def construct_export_path(self) -> None:
if not self.participants_label:
warnings.warn(WARNING_PARTICIPANTS_LABEL, UserWarning)
self.folder = here("machine_learning/intermediate_results/features", warn=True)
self.filename_prefix = (
self.participants_label + "_" + self.grouping_variable_name
)
def set_participants_label(self, label: str) -> None:
self.participants_label = label
self.construct_export_path()

View File

@ -0,0 +1,57 @@
from pathlib import Path
import pandas as pd
def safe_outer_merge_on_index(left: pd.DataFrame, right: pd.DataFrame) -> pd.DataFrame:
if left.empty:
return right
elif right.empty:
return left
else:
return pd.merge(
left,
right,
how="outer",
left_index=True,
right_index=True,
validate="one_to_one",
)
def to_csv_with_settings(
df: pd.DataFrame, folder: Path, filename_prefix: str, data_type: str
) -> None:
full_path = construct_full_path(folder, filename_prefix, data_type)
df.to_csv(
path_or_buf=full_path,
sep=",",
na_rep="NA",
header=True,
index=True,
encoding="utf-8",
)
print("Exported the dataframe to " + str(full_path))
def read_csv_with_settings(
folder: Path, filename_prefix: str, data_type: str, grouping_variable: list
) -> pd.DataFrame:
full_path = construct_full_path(folder, filename_prefix, data_type)
return pd.read_csv(
filepath_or_buffer=full_path,
sep=",",
header=0,
na_values="NA",
encoding="utf-8",
index_col=(["participant_id"] + grouping_variable),
parse_dates=True,
infer_datetime_format=True,
cache_dates=True,
)
def construct_full_path(folder: Path, filename_prefix: str, data_type: str) -> Path:
export_filename = filename_prefix + "_" + data_type + ".csv"
full_path = folder / export_filename
return full_path

View File

@ -0,0 +1,135 @@
import datetime
import warnings
from pathlib import Path
from typing import Collection
import pandas as pd
from pyprojroot import here
import participants.query_db
from features import esm
from machine_learning import QUESTIONNAIRE_IDS, QUESTIONNAIRE_IDS_RENAME
from machine_learning.helper import read_csv_with_settings, to_csv_with_settings
WARNING_PARTICIPANTS_LABEL = (
"Before aggregating labels, please set participants label using self.set_participants_label() "
"to be used as a filename prefix when exporting data. "
"The filename will be of the form: %participants_label_%grouping_variable_%data_type.csv"
)
class Labels:
def __init__(
self,
grouping_variable: str,
labels: dict,
participants_usernames: Collection = None,
) -> None:
self.grouping_variable_name = grouping_variable
self.grouping_variable = [grouping_variable]
self.questionnaires = labels.keys()
self.participants_label: str = ""
if participants_usernames is None:
participants_usernames = participants.query_db.get_usernames(
collection_start=datetime.date.fromisoformat("2020-08-01")
)
self.participants_label = "all"
self.participants_usernames = participants_usernames
self.df_esm = pd.DataFrame()
self.df_esm_preprocessed = pd.DataFrame()
self.df_esm_interest = pd.DataFrame()
self.df_esm_clean = pd.DataFrame()
self.df_esm_means = pd.DataFrame()
self.folder: Path = Path()
self.filename_prefix = ""
self.construct_export_path()
print("Labels initialized.")
def set_labels(self) -> None:
print("Querying database ...")
self.df_esm = esm.get_esm_data(self.participants_usernames)
print("Got ESM data from the DB.")
self.df_esm_preprocessed = esm.preprocess_esm(self.df_esm)
print("ESM data preprocessed.")
if "PANAS" in self.questionnaires:
self.df_esm_interest = self.df_esm_preprocessed[
(
self.df_esm_preprocessed["questionnaire_id"]
== QUESTIONNAIRE_IDS.get("PANAS").get("PA")
)
| (
self.df_esm_preprocessed["questionnaire_id"]
== QUESTIONNAIRE_IDS.get("PANAS").get("NA")
)
]
self.df_esm_clean = esm.clean_up_esm(self.df_esm_interest)
print("ESM data cleaned.")
def get_labels(self, questionnaire: str) -> pd.DataFrame:
if questionnaire == "PANAS":
return self.df_esm_clean
else:
raise KeyError("This questionnaire has not been implemented as a label.")
def aggregate_labels(self, cached=True) -> None:
print("Aggregating labels ...")
if not self.participants_label:
raise ValueError(WARNING_PARTICIPANTS_LABEL)
try:
if not cached: # Do not use the file, even if it exists.
raise FileNotFoundError
self.df_esm_means = read_csv_with_settings(
self.folder,
self.filename_prefix,
data_type="_".join(self.questionnaires),
grouping_variable=self.grouping_variable,
)
print("Read labels from the file.")
except FileNotFoundError:
# We need to recalculate the features in this case.
self.df_esm_means = (
self.df_esm_clean.groupby(
["participant_id", "questionnaire_id"] + self.grouping_variable
)
.esm_user_answer_numeric.agg("mean")
.reset_index()
.rename(columns={"esm_user_answer_numeric": "esm_numeric_mean"})
)
self.df_esm_means = (
self.df_esm_means.pivot(
index=["participant_id"] + self.grouping_variable,
columns="questionnaire_id",
values="esm_numeric_mean",
)
.reset_index(col_level=1)
.rename(columns=QUESTIONNAIRE_IDS_RENAME)
.set_index(["participant_id"] + self.grouping_variable)
)
print("Labels aggregated.")
to_csv_with_settings(
self.df_esm_means,
self.folder,
self.filename_prefix,
data_type="_".join(self.questionnaires),
)
def get_aggregated_labels(self) -> pd.DataFrame:
return self.df_esm_means
def construct_export_path(self) -> None:
if not self.participants_label:
warnings.warn(WARNING_PARTICIPANTS_LABEL, UserWarning)
self.folder = here("machine_learning/intermediate_results/labels", warn=True)
self.filename_prefix = (
self.participants_label + "_" + self.grouping_variable_name
)
def set_participants_label(self, label: str) -> None:
self.participants_label = label
self.construct_export_path()

View File

@ -0,0 +1,47 @@
from sklearn.model_selection import LeaveOneGroupOut, cross_val_score
class ModelValidation:
def __init__(self, X, y, group_variable=None, cv_name="loso"):
self.model = None
self.cv = None
idx_common = X.index.intersection(y.index)
self.y = y.loc[idx_common, "NA"]
# TODO Handle the case of multiple labels.
self.X = X.loc[idx_common]
self.groups = self.y.index.get_level_values(group_variable)
self.cv_name = cv_name
print("ModelValidation initialized.")
def set_cv_method(self):
if self.cv_name == "loso":
self.cv = LeaveOneGroupOut()
self.cv.get_n_splits(X=self.X, y=self.y, groups=self.groups)
print("Validation method set.")
def cross_validate(self):
print("Running cross validation ...")
if self.model is None:
raise TypeError(
"Please, specify a machine learning model first, by setting the .model attribute. "
"E.g. self.model = sklearn.linear_model.LinearRegression()"
)
if self.cv is None:
raise TypeError(
"Please, specify a cross validation method first, by using set_cv_method() first."
)
if self.X.isna().any().any() or self.y.isna().any().any():
raise ValueError(
"NaNs were found in either X or y. Please, check your data before continuing."
)
return cross_val_score(
estimator=self.model,
X=self.X,
y=self.y,
groups=self.groups,
cv=self.cv,
n_jobs=-1,
scoring="r2",
)

View File

@ -1,305 +1,10 @@
import datetime
import warnings
from collections.abc import Collection
from pathlib import Path
import numpy as np
import pandas as pd
import yaml
from pyprojroot import here
from sklearn import linear_model
from sklearn.model_selection import LeaveOneGroupOut, cross_val_score
import participants.query_db
from features import communication, esm, helper, proximity
from machine_learning import QUESTIONNAIRE_IDS, QUESTIONNAIRE_IDS_RENAME
WARNING_PARTICIPANTS_LABEL = (
"Before calculating features, please set participants label using self.set_participants_label() "
"to be used as a filename prefix when exporting data. "
"The filename will be of the form: %participants_label_%grouping_variable_%data_type.csv"
)
class SensorFeatures:
def __init__(
self,
grouping_variable: str,
features: dict,
participants_usernames: Collection = None,
):
self.grouping_variable_name = grouping_variable
self.grouping_variable = [grouping_variable]
self.data_types = features.keys()
self.participants_label: str = ""
if participants_usernames is None:
participants_usernames = participants.query_db.get_usernames(
collection_start=datetime.date.fromisoformat("2020-08-01")
)
self.participants_label = "all"
self.participants_usernames = participants_usernames
self.df_features_all = pd.DataFrame()
self.df_proximity = pd.DataFrame()
self.df_proximity_counts = pd.DataFrame()
self.df_calls = pd.DataFrame()
self.df_sms = pd.DataFrame()
self.df_calls_sms = pd.DataFrame()
self.folder = None
self.filename_prefix = ""
self.construct_export_path()
print("SensorFeatures initialized.")
def set_sensor_data(self):
print("Querying database ...")
if "proximity" in self.data_types:
self.df_proximity = proximity.get_proximity_data(
self.participants_usernames
)
print("Got proximity data from the DB.")
self.df_proximity = helper.get_date_from_timestamp(self.df_proximity)
self.df_proximity = proximity.recode_proximity(self.df_proximity)
if "communication" in self.data_types:
self.df_calls = communication.get_call_data(self.participants_usernames)
self.df_calls = helper.get_date_from_timestamp(self.df_calls)
print("Got calls data from the DB.")
self.df_sms = communication.get_sms_data(self.participants_usernames)
self.df_sms = helper.get_date_from_timestamp(self.df_sms)
print("Got sms data from the DB.")
def get_sensor_data(self, data_type) -> pd.DataFrame:
if data_type == "proximity":
return self.df_proximity
elif data_type == "communication":
return self.df_calls_sms
else:
raise KeyError("This data type has not been implemented.")
def calculate_features(self):
print("Calculating features ...")
if not self.participants_label:
raise ValueError(WARNING_PARTICIPANTS_LABEL)
if "proximity" in self.data_types:
self.df_proximity_counts = proximity.count_proximity(
self.df_proximity, self.grouping_variable
)
self.df_features_all = safe_outer_merge_on_index(
self.df_features_all, self.df_proximity_counts
)
print("Calculated proximity features.")
to_csv_with_settings(
self.df_proximity, self.folder, self.filename_prefix, data_type="prox"
)
if "communication" in self.data_types:
self.df_calls_sms = communication.calls_sms_features(
df_calls=self.df_calls,
df_sms=self.df_sms,
group_by=self.grouping_variable,
)
self.df_features_all = safe_outer_merge_on_index(
self.df_features_all, self.df_calls_sms
)
print("Calculated communication features.")
to_csv_with_settings(
self.df_calls_sms, self.folder, self.filename_prefix, data_type="comm"
)
self.df_features_all.fillna(
value=proximity.FILL_NA_PROXIMITY, inplace=True, downcast="infer",
)
self.df_features_all.fillna(
value=communication.FILL_NA_CALLS_SMS_ALL, inplace=True, downcast="infer",
)
def get_features(self, data_type, feature_names) -> pd.DataFrame:
if data_type == "proximity":
if feature_names == "all":
feature_names = proximity.FEATURES_PROXIMITY
return self.df_proximity_counts[feature_names]
elif data_type == "communication":
if feature_names == "all":
feature_names = communication.FEATURES_CALLS_SMS_ALL
return self.df_calls_sms[feature_names]
elif data_type == "all":
return self.df_features_all
else:
raise KeyError("This data type has not been implemented.")
def construct_export_path(self):
if not self.participants_label:
warnings.warn(WARNING_PARTICIPANTS_LABEL, UserWarning)
self.folder = here("machine_learning/intermediate_results/features", warn=True)
self.filename_prefix = (
self.participants_label + "_" + self.grouping_variable_name
)
def set_participants_label(self, label: str):
self.participants_label = label
self.construct_export_path()
class Labels:
def __init__(
self,
grouping_variable: list,
labels: dict,
participants_usernames: Collection = None,
):
self.grouping_variable = grouping_variable
self.questionnaires = labels.keys()
if participants_usernames is None:
participants_usernames = participants.query_db.get_usernames(
collection_start=datetime.date.fromisoformat("2020-08-01")
)
self.participants_usernames = participants_usernames
self.df_esm = pd.DataFrame()
self.df_esm_preprocessed = pd.DataFrame()
self.df_esm_interest = pd.DataFrame()
self.df_esm_clean = pd.DataFrame()
self.df_esm_means = pd.DataFrame()
print("Labels initialized.")
def set_labels(self):
print("Querying database ...")
self.df_esm = esm.get_esm_data(self.participants_usernames)
print("Got ESM data from the DB.")
self.df_esm_preprocessed = esm.preprocess_esm(self.df_esm)
print("ESM data preprocessed.")
if "PANAS" in self.questionnaires:
self.df_esm_interest = self.df_esm_preprocessed[
(
self.df_esm_preprocessed["questionnaire_id"]
== QUESTIONNAIRE_IDS.get("PANAS").get("PA")
)
| (
self.df_esm_preprocessed["questionnaire_id"]
== QUESTIONNAIRE_IDS.get("PANAS").get("NA")
)
]
self.df_esm_clean = esm.clean_up_esm(self.df_esm_interest)
print("ESM data cleaned.")
def get_labels(self, questionnaire):
if questionnaire == "PANAS":
return self.df_esm_clean
else:
raise KeyError("This questionnaire has not been implemented as a label.")
def aggregate_labels(self):
print("Aggregating labels ...")
self.df_esm_means = (
self.df_esm_clean.groupby(
["participant_id", "questionnaire_id"] + self.grouping_variable
)
.esm_user_answer_numeric.agg("mean")
.reset_index()
.rename(columns={"esm_user_answer_numeric": "esm_numeric_mean"})
)
self.df_esm_means = (
self.df_esm_means.pivot(
index=["participant_id"] + self.grouping_variable,
columns="questionnaire_id",
values="esm_numeric_mean",
)
.reset_index(col_level=1)
.rename(columns=QUESTIONNAIRE_IDS_RENAME)
.set_index(["participant_id"] + self.grouping_variable)
)
print("Labels aggregated.")
def get_aggregated_labels(self):
return self.df_esm_means
class ModelValidation:
def __init__(self, X, y, group_variable=None, cv_name="loso"):
self.model = None
self.cv = None
idx_common = X.index.intersection(y.index)
self.y = y.loc[idx_common, "NA"]
# TODO Handle the case of multiple labels.
self.X = X.loc[idx_common]
self.groups = self.y.index.get_level_values(group_variable)
self.cv_name = cv_name
print("ModelValidation initialized.")
def set_cv_method(self):
if self.cv_name == "loso":
self.cv = LeaveOneGroupOut()
self.cv.get_n_splits(X=self.X, y=self.y, groups=self.groups)
print("Validation method set.")
def cross_validate(self):
print("Running cross validation ...")
if self.model is None:
raise TypeError(
"Please, specify a machine learning model first, by setting the .model attribute. "
"E.g. self.model = sklearn.linear_model.LinearRegression()"
)
if self.cv is None:
raise TypeError(
"Please, specify a cross validation method first, by using set_cv_method() first."
)
if self.X.isna().any().any() or self.y.isna().any().any():
raise ValueError(
"NaNs were found in either X or y. Please, check your data before continuing."
)
return cross_val_score(
estimator=self.model,
X=self.X,
y=self.y,
groups=self.groups,
cv=self.cv,
n_jobs=-1,
scoring="r2",
)
def safe_outer_merge_on_index(left, right):
if left.empty:
return right
elif right.empty:
return left
else:
return pd.merge(
left,
right,
how="outer",
left_index=True,
right_index=True,
validate="one_to_one",
)
def to_csv_with_settings(
df: pd.DataFrame, folder: Path, filename_prefix: str, data_type: str
) -> None:
export_filename = filename_prefix + "_" + data_type + ".csv"
full_path = folder / export_filename
df.to_csv(
path_or_buf=full_path,
sep=",",
na_rep="NA",
header=True,
index=False,
encoding="utf-8",
)
print("Exported the dataframe to " + str(full_path))
from machine_learning.features_sensor import SensorFeatures
from machine_learning.labels import Labels
from machine_learning.model import ModelValidation
if __name__ == "__main__":
with open("./config/prox_comm_PANAS_features.yaml", "r") as file:

View File

@ -6,7 +6,7 @@
# extension: .py
# format_name: percent
# format_version: '1.3'
# jupytext_version: 1.11.4
# jupytext_version: 1.12.0
# kernelspec:
# display_name: straw2analysis
# language: python
@ -96,13 +96,31 @@ df_session_counts_time = classify_sessions_by_completion_time(df_esm_preprocesse
# Sessions are now classified according to the type of a session (a true questionnaire or simple single questions) and users response.
# %%
df_session_counts_time
df_session_counts_time["session_response_cat"] = df_session_counts_time["session_response"].astype("category")
df_session_counts_time["session_response_cat"] = df_session_counts_time["session_response_cat"].cat.remove_categories(['during_work_first', 'ema_unanswered', 'evening_first', 'morning', 'morning_first'])
df_session_counts_time["session_response_cat"] = df_session_counts_time["session_response_cat"].cat.add_categories("interrupted")
df_session_counts_time.loc[df_session_counts_time["session_response_cat"].isna(), "session_response_cat"] = "interrupted"
#df_session_counts_time["session_response_cat"] = df_session_counts_time["session_response_cat"].cat.rename_categories({
# "ema_unanswered": "interrupted",
# "morning_first": "interrupted",
# "evening_first": "interrupted",
# "morning": "interrupted",
# "during_work_first": "interrupted"})
# %%
df_session_counts_time.session_response_cat
# %%
tbl_session_outcomes = df_session_counts_time.reset_index()[
"session_response"
"session_response_cat"
].value_counts()
# %%
tbl_session_outcomes_relative = tbl_session_outcomes / len(df_session_counts_time)
# %%
print(tbl_session_outcomes_relative.to_latex(escape=True))
# %%
print("All sessions:", len(df_session_counts_time))
print("-------------------------------------")

View File

@ -1,6 +1,7 @@
import unittest
from pandas.testing import assert_series_equal
from pyprojroot import here
from features.esm import *
from features.esm_JCQ import *
@ -9,7 +10,7 @@ from features.esm_JCQ import *
class EsmFeatures(unittest.TestCase):
@classmethod
def setUpClass(cls) -> None:
cls.esm = pd.read_csv("../data/example_esm.csv", sep=";")
cls.esm = pd.read_csv(here("data/example_esm.csv"), sep=";")
cls.esm["esm_json"] = cls.esm["esm_json"].apply(eval)
cls.esm_processed = preprocess_esm(cls.esm)
cls.esm_clean = clean_up_esm(cls.esm_processed)

View File

@ -0,0 +1,27 @@
import unittest
import yaml
from pyprojroot import here
from machine_learning.features_sensor import *
class SensorFeaturesTest(unittest.TestCase):
@classmethod
def setUpClass(cls) -> None:
with open(here("machine_learning/config/minimal_features.yaml"), "r") as file:
cls.sensor_features_params = yaml.safe_load(file)
def test_yaml(self):
with open(here("machine_learning/config/minimal_features.yaml"), "r") as file:
sensor_features_params = yaml.safe_load(file)
self.assertIsInstance(sensor_features_params, dict)
self.assertIsInstance(sensor_features_params.get("grouping_variable"), str)
self.assertIsInstance(sensor_features_params.get("features"), dict)
self.assertIsInstance(
sensor_features_params.get("participants_usernames"), list
)
def test_participants_label(self):
sensor_features = SensorFeatures(**self.sensor_features_params)
self.assertRaises(ValueError, sensor_features.calculate_features)

View File

@ -1,5 +1,7 @@
import unittest
from pyprojroot import here
from features.proximity import *
@ -10,7 +12,7 @@ class ProximityFeatures(unittest.TestCase):
@classmethod
def setUpClass(cls) -> None:
cls.df_proximity = pd.read_csv("../data/example_proximity.csv")
cls.df_proximity = pd.read_csv(here("data/example_proximity.csv"))
cls.df_proximity["participant_id"] = 99
def test_recode_proximity(self):