Further refactor by moving helper functions.
parent
28699a0fdf
commit
20748890a8
|
@ -5,3 +5,4 @@ __pycache__/
|
|||
/exploration/*.ipynb
|
||||
/config/*.ipynb
|
||||
/statistical_analysis/*.ipynb
|
||||
/machine_learning/intermediate_results/
|
||||
|
|
|
@ -8,6 +8,11 @@ from pyprojroot import here
|
|||
|
||||
import participants.query_db
|
||||
from features import communication, helper, proximity
|
||||
from machine_learning.helper import (
|
||||
read_csv_with_settings,
|
||||
safe_outer_merge_on_index,
|
||||
to_csv_with_settings,
|
||||
)
|
||||
|
||||
WARNING_PARTICIPANTS_LABEL = (
|
||||
"Before calculating features, please set participants label using self.set_participants_label() "
|
||||
|
@ -53,7 +58,7 @@ class SensorFeatures:
|
|||
grouping_variable: str,
|
||||
features: dict,
|
||||
participants_usernames: Collection = None,
|
||||
):
|
||||
) -> None:
|
||||
"""
|
||||
Specifies the grouping variable and usernames for which to calculate features.
|
||||
Sets other (implicit) attributes used in other methods.
|
||||
|
@ -97,12 +102,12 @@ class SensorFeatures:
|
|||
self.df_sms = pd.DataFrame()
|
||||
self.df_calls_sms = pd.DataFrame()
|
||||
|
||||
self.folder = None
|
||||
self.folder: Path = Path()
|
||||
self.filename_prefix = ""
|
||||
self.construct_export_path()
|
||||
print("SensorFeatures initialized.")
|
||||
|
||||
def set_sensor_data(self):
|
||||
def set_sensor_data(self) -> None:
|
||||
print("Querying database ...")
|
||||
if "proximity" in self.data_types:
|
||||
self.df_proximity = proximity.get_proximity_data(
|
||||
|
@ -128,7 +133,7 @@ class SensorFeatures:
|
|||
else:
|
||||
raise KeyError("This data type has not been implemented.")
|
||||
|
||||
def calculate_features(self, cached=True):
|
||||
def calculate_features(self, cached=True) -> None:
|
||||
print("Calculating features ...")
|
||||
if not self.participants_label:
|
||||
raise ValueError(WARNING_PARTICIPANTS_LABEL)
|
||||
|
@ -213,7 +218,7 @@ class SensorFeatures:
|
|||
else:
|
||||
raise KeyError("This data type has not been implemented.")
|
||||
|
||||
def construct_export_path(self):
|
||||
def construct_export_path(self) -> None:
|
||||
if not self.participants_label:
|
||||
warnings.warn(WARNING_PARTICIPANTS_LABEL, UserWarning)
|
||||
self.folder = here("machine_learning/intermediate_results/features", warn=True)
|
||||
|
@ -221,59 +226,6 @@ class SensorFeatures:
|
|||
self.participants_label + "_" + self.grouping_variable_name
|
||||
)
|
||||
|
||||
def set_participants_label(self, label: str):
|
||||
def set_participants_label(self, label: str) -> None:
|
||||
self.participants_label = label
|
||||
self.construct_export_path()
|
||||
|
||||
|
||||
def safe_outer_merge_on_index(left, right):
|
||||
if left.empty:
|
||||
return right
|
||||
elif right.empty:
|
||||
return left
|
||||
else:
|
||||
return pd.merge(
|
||||
left,
|
||||
right,
|
||||
how="outer",
|
||||
left_index=True,
|
||||
right_index=True,
|
||||
validate="one_to_one",
|
||||
)
|
||||
|
||||
|
||||
def to_csv_with_settings(
|
||||
df: pd.DataFrame, folder: Path, filename_prefix: str, data_type: str
|
||||
) -> None:
|
||||
full_path = construct_full_path(folder, filename_prefix, data_type)
|
||||
df.to_csv(
|
||||
path_or_buf=full_path,
|
||||
sep=",",
|
||||
na_rep="NA",
|
||||
header=True,
|
||||
index=True,
|
||||
encoding="utf-8",
|
||||
)
|
||||
print("Exported the dataframe to " + str(full_path))
|
||||
|
||||
|
||||
def read_csv_with_settings(
|
||||
folder: Path, filename_prefix: str, data_type: str, grouping_variable: list
|
||||
) -> pd.DataFrame:
|
||||
full_path = construct_full_path(folder, filename_prefix, data_type)
|
||||
return pd.read_csv(
|
||||
filepath_or_buffer=full_path,
|
||||
sep=",",
|
||||
header=0,
|
||||
na_values="NA",
|
||||
encoding="utf-8",
|
||||
index_col=(["participant_id"] + grouping_variable),
|
||||
parse_dates=True,
|
||||
infer_datetime_format=True,
|
||||
)
|
||||
|
||||
|
||||
def construct_full_path(folder: Path, filename_prefix: str, data_type: str) -> Path:
|
||||
export_filename = filename_prefix + "_" + data_type + ".csv"
|
||||
full_path = folder / export_filename
|
||||
return full_path
|
||||
|
|
|
@ -0,0 +1,57 @@
|
|||
from pathlib import Path
|
||||
|
||||
import pandas as pd
|
||||
|
||||
|
||||
def safe_outer_merge_on_index(left: pd.DataFrame, right: pd.DataFrame) -> pd.DataFrame:
|
||||
if left.empty:
|
||||
return right
|
||||
elif right.empty:
|
||||
return left
|
||||
else:
|
||||
return pd.merge(
|
||||
left,
|
||||
right,
|
||||
how="outer",
|
||||
left_index=True,
|
||||
right_index=True,
|
||||
validate="one_to_one",
|
||||
)
|
||||
|
||||
|
||||
def to_csv_with_settings(
|
||||
df: pd.DataFrame, folder: Path, filename_prefix: str, data_type: str
|
||||
) -> None:
|
||||
full_path = construct_full_path(folder, filename_prefix, data_type)
|
||||
df.to_csv(
|
||||
path_or_buf=full_path,
|
||||
sep=",",
|
||||
na_rep="NA",
|
||||
header=True,
|
||||
index=True,
|
||||
encoding="utf-8",
|
||||
)
|
||||
print("Exported the dataframe to " + str(full_path))
|
||||
|
||||
|
||||
def read_csv_with_settings(
|
||||
folder: Path, filename_prefix: str, data_type: str, grouping_variable: list
|
||||
) -> pd.DataFrame:
|
||||
full_path = construct_full_path(folder, filename_prefix, data_type)
|
||||
return pd.read_csv(
|
||||
filepath_or_buffer=full_path,
|
||||
sep=",",
|
||||
header=0,
|
||||
na_values="NA",
|
||||
encoding="utf-8",
|
||||
index_col=(["participant_id"] + grouping_variable),
|
||||
parse_dates=True,
|
||||
infer_datetime_format=True,
|
||||
cache_dates=True,
|
||||
)
|
||||
|
||||
|
||||
def construct_full_path(folder: Path, filename_prefix: str, data_type: str) -> Path:
|
||||
export_filename = filename_prefix + "_" + data_type + ".csv"
|
||||
full_path = folder / export_filename
|
||||
return full_path
|
Loading…
Reference in New Issue