Compare commits

...

3 Commits

Author SHA1 Message Date
junos e2e268148d Fill in 0.5 for undefined ratio.
When there are no calls and no smses (of a particular type), the ratio is undefined. But since their number is the same, I argue that the ratio can represent that with a 0.5, similarly to the case where no_calls_all = no_sms_all != 0.
2021-08-21 17:33:31 +02:00
junos 00015a3b8d Fill in zeroes when joining or unstacking.
If there are no calls or smses for a particular day, there is no corresponding row in the features dataframe. When joining these, however, NaNs were introduced. Since a value of 0 is meaningful for all of these features, replace NaNs with 0's.
2021-08-21 17:31:15 +02:00
junos 9a319ac6e5 Add an option to group on other than just participant_id. 2021-08-20 17:41:12 +02:00
2 changed files with 69 additions and 36 deletions

View File

@ -13,14 +13,15 @@
# name: straw2analysis
# ---
# %%
import importlib
# %%
# %matplotlib inline
import os
import sys
import matplotlib.pyplot as plt
# %%
import seaborn as sns
nb_dir = os.path.split(os.getcwd())[0]
@ -28,21 +29,29 @@ if nb_dir not in sys.path:
sys.path.append(nb_dir)
# %%
from features.communication import *
from features import communication, helper
# %%
importlib.reload(communication)
# %% [markdown]
# # Example of communication data and feature calculation
# %%
df_calls = get_call_data(["nokia_0000003"])
df_calls = communication.get_call_data(["nokia_0000003"])
print(df_calls)
# %%
count_comms(df_calls)
df_calls = helper.get_date_from_timestamp(df_calls)
communication.count_comms(df_calls, ["date_lj"])
# %%
df_sms = get_sms_data(["nokia_0000003"])
count_comms(df_sms)
df_sms = communication.get_sms_data(["nokia_0000003"])
df_sms = helper.get_date_from_timestamp(df_sms)
communication.count_comms(df_sms, ["date_lj"])
# %%
communication.calls_sms_features(df_calls, df_sms, ["date_lj"])
# %% [markdown]
# # Call data

View File

@ -135,7 +135,7 @@ def enumerate_contacts(comm_df: pd.DataFrame) -> pd.DataFrame:
return comm_df
def count_comms(comm_df: pd.DataFrame) -> pd.DataFrame:
def count_comms(comm_df: pd.DataFrame, group_by=None) -> pd.DataFrame:
"""
Calculate frequencies (and duration) of messages (or calls), grouped by their types.
@ -143,6 +143,9 @@ def count_comms(comm_df: pd.DataFrame) -> pd.DataFrame:
----------
comm_df: pd.DataFrame
A dataframe of calls or SMSes.
group_by: list
A list of strings, specifying by which parameters to group.
By default, the features are calculated per participant, but could be "date_lj" etc.
Returns
-------
@ -155,11 +158,13 @@ def count_comms(comm_df: pd.DataFrame) -> pd.DataFrame:
* the number of messages by type (received, sent), and
* the number of communication contacts by type.
"""
if group_by is None:
group_by = []
if "call_type" in comm_df:
data_type = "calls"
comm_counts = (
comm_df.value_counts(subset=["participant_id", "call_type"])
.unstack()
comm_df.value_counts(subset=group_by + ["participant_id", "call_type"])
.unstack(level="call_type", fill_value=0)
.rename(columns=call_types)
.add_prefix("no_")
)
@ -172,17 +177,17 @@ def count_comms(comm_df: pd.DataFrame) -> pd.DataFrame:
)
# Ratio of incoming and outgoing calls to all calls.
comm_duration_total = (
comm_df.groupby(["participant_id", "call_type"])
comm_df.groupby(group_by + ["participant_id", "call_type"])
.sum()["call_duration"]
.unstack()
.unstack(level="call_type", fill_value=0)
.rename(columns=call_types)
.add_prefix("duration_total_")
)
# Total call duration by type.
comm_duration_max = (
comm_df.groupby(["participant_id", "call_type"])
comm_df.groupby(group_by + ["participant_id", "call_type"])
.max()["call_duration"]
.unstack()
.unstack(level="call_type", fill_value=0)
.rename(columns=call_types)
.add_prefix("duration_max_")
)
@ -200,8 +205,8 @@ def count_comms(comm_df: pd.DataFrame) -> pd.DataFrame:
elif "message_type" in comm_df:
data_type = "sms"
comm_counts = (
comm_df.value_counts(subset=["participant_id", "message_type"])
.unstack()
comm_df.value_counts(subset=group_by + ["participant_id", "message_type"])
.unstack(level="message_type", fill_value=0)
.rename(columns=sms_types)
.add_prefix("no_")
)
@ -216,7 +221,7 @@ def count_comms(comm_df: pd.DataFrame) -> pd.DataFrame:
raise KeyError("The dataframe contains neither call_type or message_type")
comm_contacts_counts = (
enumerate_contacts(comm_df)
.groupby(["participant_id"])
.groupby(group_by + ["participant_id"])
.nunique()["contact_id"]
.rename("no_contacts_" + data_type)
)
@ -268,7 +273,9 @@ def contact_features(comm_df: pd.DataFrame) -> pd.DataFrame:
return contacts_count
def calls_sms_features(df_calls: pd.DataFrame, df_sms: pd.DataFrame) -> pd.DataFrame:
def calls_sms_features(
df_calls: pd.DataFrame, df_sms: pd.DataFrame, group_by=None
) -> pd.DataFrame:
"""
Calculates additional features relating calls and sms data.
@ -278,6 +285,9 @@ def calls_sms_features(df_calls: pd.DataFrame, df_sms: pd.DataFrame) -> pd.DataF
A dataframe of calls (return of get_call_data).
df_sms: pd.DataFrame
A dataframe of SMSes (return of get_sms_data).
group_by: list
A list of strings, specifying by which parameters to group.
By default, the features are calculated per participant, but could be "date_lj" etc.
Returns
-------
@ -295,9 +305,20 @@ def calls_sms_features(df_calls: pd.DataFrame, df_sms: pd.DataFrame) -> pd.DataF
* proportion_calls_contacts:
proportion of calls contacts in total number of communication contacts
"""
count_calls = count_comms(df_calls)
count_sms = count_comms(df_sms)
count_joined = count_calls.join(count_sms).assign(
if group_by is None:
group_by = []
count_calls = count_comms(df_calls, group_by)
count_sms = count_comms(df_sms, group_by)
count_joined = (
count_calls.merge(
count_sms,
how="outer",
left_index=True,
right_index=True,
validate="one_to_one",
)
.fillna(0, downcast="infer")
.assign(
proportion_calls_all=(
lambda x: x.no_calls_all / (x.no_calls_all + x.no_sms_all)
),
@ -311,8 +332,11 @@ def calls_sms_features(df_calls: pd.DataFrame, df_sms: pd.DataFrame) -> pd.DataF
lambda x: x.no_outgoing / (x.no_outgoing + x.no_sent)
),
proportion_calls_contacts=(
lambda x: x.no_contacts_calls / (x.no_contacts_calls + x.no_contacts_sms)
lambda x: x.no_contacts_calls
/ (x.no_contacts_calls + x.no_contacts_sms)
)
# Calculate new features and create additional columns
)
.fillna(0.5, downcast="infer")
)
return count_joined