Compare commits
5 Commits
005b09cfdf
...
e33a49c9fc
Author | SHA1 | Date |
---|---|---|
junos | e33a49c9fc | |
junos | d34c2ec5e9 | |
junos | 6fc0d962ae | |
junos | 92fbda242b | |
junos | 6302a0f0d9 |
|
@ -166,12 +166,43 @@ class Application(Base, AWAREsensor):
|
|||
|
||||
|
||||
class Barometer(Base, AWAREsensor):
|
||||
"""
|
||||
Contains the barometer sensor data.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
double_values_0: float
|
||||
The ambient air pressure in mbar (hPa)
|
||||
accuracy: int
|
||||
Sensor’s accuracy level, either 1, 2, or 3 (see [SensorManager](https://developer.android.com/reference/android/hardware/SensorManager.html#SENSOR_STATUS_ACCURACY_HIGH))
|
||||
"""
|
||||
|
||||
double_values_0 = Column(Float, nullable=False)
|
||||
accuracy = Column(SmallInteger, nullable=True)
|
||||
label = Column(String, nullable=True)
|
||||
|
||||
|
||||
class BarometerSensor(Base, AWAREsensor):
|
||||
"""
|
||||
Contains the barometer sensor capabilities.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
double_sensor_maximum_range: float
|
||||
Maximum sensor value possible
|
||||
double_sensor_minimum_delay: float
|
||||
Minimum sampling delay in microseconds
|
||||
sensor_name: str
|
||||
double_sensor_power_ma: float
|
||||
Sensor’s power drain in mA
|
||||
double_sensor_resolution: float
|
||||
Sensor’s resolution in sensor’s units
|
||||
sensor_type: str
|
||||
sensor_vendor: str
|
||||
Sensor’s manufacturer
|
||||
sensor_version: str
|
||||
"""
|
||||
|
||||
__tablename__ = "barometer_sensor"
|
||||
# Since this table is not really important,
|
||||
# I will leave all columns as nullable. (nullable=True by default.)
|
||||
|
@ -257,6 +288,19 @@ class Imperfection(Base):
|
|||
|
||||
|
||||
class LightSensor(Base, AWAREsensor):
|
||||
"""
|
||||
Contains the light sensor data.
|
||||
Note: Even though this table is named light_sensor, it actually contains what AWARE calls light data
|
||||
(rather than the data about the sensor's capabilities). Cf. Barometer(Sensor) and Temperature(Sensor).
|
||||
|
||||
Attributes
|
||||
----------
|
||||
double_light_lux: float
|
||||
The ambient luminance in lux units
|
||||
accuracy: int
|
||||
Sensor’s accuracy level, either 1, 2, or 3 (see [SensorManager](https://developer.android.com/reference/android/hardware/SensorManager.html#SENSOR_STATUS_ACCURACY_HIGH))
|
||||
"""
|
||||
|
||||
__tablename__ = "light_sensor"
|
||||
double_light_lux = Column(Float, nullable=False)
|
||||
accuracy = Column(Integer, nullable=True)
|
||||
|
@ -376,12 +420,43 @@ class SMS(Base, AWAREsensor):
|
|||
|
||||
|
||||
class Temperature(Base, AWAREsensor):
|
||||
"""
|
||||
Contains the temperature sensor data.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
temperature_celsius: float
|
||||
Measured temperature in °C
|
||||
accuracy: int
|
||||
Sensor’s accuracy level, either 1, 2, or 3 (see [SensorManager](https://developer.android.com/reference/android/hardware/SensorManager.html#SENSOR_STATUS_ACCURACY_HIGH))
|
||||
"""
|
||||
|
||||
temperature_celsius = Column(Float, nullable=False)
|
||||
accuracy = Column(SmallInteger, nullable=True)
|
||||
label = Column(String, nullable=True)
|
||||
|
||||
|
||||
class TemperatureSensor(Base, AWAREsensor):
|
||||
"""
|
||||
Contains the temperature sensor capabilities.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
double_sensor_maximum_range: float
|
||||
Maximum sensor value possible
|
||||
double_sensor_minimum_delay: float
|
||||
Minimum sampling delay in microseconds
|
||||
sensor_name: str
|
||||
double_sensor_power_ma: float
|
||||
Sensor’s power drain in mA
|
||||
double_sensor_resolution: float
|
||||
Sensor’s resolution in sensor’s units
|
||||
sensor_type: str
|
||||
sensor_vendor: str
|
||||
Sensor’s manufacturer
|
||||
sensor_version: str
|
||||
"""
|
||||
|
||||
# I left all of these nullable,
|
||||
# as we haven't seen any data from this sensor anyway.
|
||||
__tablename__ = "temperature_sensor"
|
||||
|
|
|
@ -99,9 +99,7 @@ df_esm_PANAS_daily_means = (
|
|||
|
||||
|
||||
# %%
|
||||
df_proximity_daily_counts = proximity.count_proximity(
|
||||
df_proximity, ["date_lj"]
|
||||
)
|
||||
df_proximity_daily_counts = proximity.count_proximity(df_proximity, ["date_lj"])
|
||||
|
||||
# %%
|
||||
df_proximity_daily_counts
|
||||
|
|
|
@ -6,7 +6,7 @@
|
|||
# extension: .py
|
||||
# format_name: percent
|
||||
# format_version: '1.3'
|
||||
# jupytext_version: 1.11.4
|
||||
# jupytext_version: 1.13.0
|
||||
# kernelspec:
|
||||
# display_name: straw2analysis
|
||||
# language: python
|
||||
|
@ -21,7 +21,6 @@ import sys
|
|||
|
||||
import seaborn as sns
|
||||
from pytz import timezone
|
||||
from tabulate import tabulate
|
||||
|
||||
nb_dir = os.path.split(os.getcwd())[0]
|
||||
if nb_dir not in sys.path:
|
||||
|
@ -32,18 +31,18 @@ import participants.query_db
|
|||
TZ_LJ = timezone("Europe/Ljubljana")
|
||||
|
||||
# %%
|
||||
from features.light import *
|
||||
from features.ambient import *
|
||||
|
||||
# %% [markdown]
|
||||
# # Basic characteristics
|
||||
# # Light
|
||||
|
||||
# %%
|
||||
df_light_nokia = get_light_data(["nokia_0000003"])
|
||||
df_light_nokia = get_ambient_data(["nokia_0000003"], "light")
|
||||
print(df_light_nokia)
|
||||
|
||||
# %%
|
||||
participants_inactive_usernames = participants.query_db.get_usernames()
|
||||
df_light_inactive = get_light_data(participants_inactive_usernames)
|
||||
df_light_inactive = get_ambient_data(participants_inactive_usernames, "light")
|
||||
|
||||
# %%
|
||||
df_light_inactive.accuracy.value_counts()
|
||||
|
@ -103,7 +102,7 @@ df_light_nokia.loc[df_light_nokia["double_light_lux"] == 0, ["datetime_lj"]]
|
|||
# Zeroes are present during the day. It does happens when the sensor is physically blocked.
|
||||
|
||||
# %% [markdown]
|
||||
# # Differences between participants
|
||||
# ## Differences between participants
|
||||
|
||||
# %%
|
||||
df_light_participants = (
|
||||
|
@ -166,3 +165,74 @@ sns.displot(data=df_light_participants, x="std_rel", binwidth=0.005)
|
|||
# Relative variability is homogeneous.
|
||||
#
|
||||
# This means that light data needs to be standardized. Min/max standardization would probably fit best.
|
||||
|
||||
# %% [markdown]
|
||||
# # Barometer
|
||||
|
||||
# %% [markdown]
|
||||
# ## Barometer sensor
|
||||
|
||||
# %%
|
||||
df_barometer_sensor_samsung = get_ambient_data(["samsung_0000002"], "barometer_sensor")
|
||||
df_barometer_sensor_samsung.shape
|
||||
|
||||
# %% [markdown]
|
||||
# Even though we have many values for this sensor, they are all repeated as seen below.
|
||||
|
||||
# %%
|
||||
barometer_sensor_cols = df_barometer_sensor_samsung.columns.to_list()
|
||||
barometer_sensor_cols.remove("id")
|
||||
barometer_sensor_cols.remove("_id")
|
||||
barometer_sensor_cols.remove("timestamp")
|
||||
barometer_sensor_cols.remove("device_id")
|
||||
print(df_barometer_sensor_samsung.drop_duplicates(subset=barometer_sensor_cols))
|
||||
|
||||
# %% [markdown]
|
||||
# ## Barometer data
|
||||
|
||||
# %%
|
||||
df_barometer_samsung = get_ambient_data(["samsung_0000002"], "barometer")
|
||||
print(df_barometer_samsung)
|
||||
|
||||
# %%
|
||||
df_barometer_inactive = get_ambient_data(participants_inactive_usernames, "barometer")
|
||||
|
||||
# %%
|
||||
df_barometer_inactive.accuracy.value_counts()
|
||||
|
||||
# %%
|
||||
df_barometer_inactive.participant_id.nunique()
|
||||
|
||||
# %%
|
||||
df_barometer_inactive.double_values_0.describe()
|
||||
|
||||
# %% [markdown]
|
||||
# From [Wikipedia](https://en.wikipedia.org/wiki/Atmospheric_pressure#Mean_sea-level_pressure):
|
||||
#
|
||||
# > The lowest measurable sea-level pressure is found at the centers of tropical cyclones and tornadoes, with a record low of 870 mbar (87 kPa; 26 inHg).
|
||||
|
||||
# %%
|
||||
df_barometer_inactive[df_barometer_inactive["double_values_0"] < 870]
|
||||
|
||||
# %%
|
||||
sns.displot(
|
||||
data=df_barometer_inactive[df_barometer_inactive["double_values_0"] > 870],
|
||||
x="double_values_0",
|
||||
binwidth=10,
|
||||
height=8,
|
||||
)
|
||||
|
||||
# %% [markdown]
|
||||
# # Temperature data
|
||||
|
||||
# %% [markdown]
|
||||
# ## Temperature sensor
|
||||
|
||||
# %% [markdown]
|
||||
# This table is empty.
|
||||
|
||||
# %% [markdown]
|
||||
# ## Temperature data
|
||||
|
||||
# %% [markdown]
|
||||
# This table is empty.
|
|
@ -0,0 +1,91 @@
|
|||
from collections.abc import Collection
|
||||
|
||||
import pandas as pd
|
||||
|
||||
from config.models import (
|
||||
Barometer,
|
||||
BarometerSensor,
|
||||
LightSensor,
|
||||
Participant,
|
||||
Temperature,
|
||||
TemperatureSensor,
|
||||
)
|
||||
from setup import db_engine, session
|
||||
|
||||
MINIMUM_PRESSURE_MB = 870
|
||||
# The lowest measurable sea-level pressure is found at the centers of tropical cyclones and tornadoes,
|
||||
# with a record low of 870 mbar (87 kPa; 26 inHg).
|
||||
|
||||
|
||||
def get_ambient_data(usernames: Collection, sensor=None) -> pd.DataFrame:
|
||||
"""
|
||||
Read the data from any of the ambient sensor tables and return it in a dataframe.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
usernames: Collection
|
||||
A list of usernames to put into the WHERE condition.
|
||||
sensor: str
|
||||
One of: barometer, barometer_sensor, light, temperature, temperature_sensor.
|
||||
Here, the _sensor tables describe the phone sensors, such as their range, dela, resolution, vendor etc.,
|
||||
whereas barometer, light, and temperature describe the measured characteristics of the environment.
|
||||
|
||||
Returns
|
||||
-------
|
||||
df_ambient: pd.DataFrame
|
||||
A dataframe of ambient sensor data.
|
||||
"""
|
||||
if sensor == "barometer":
|
||||
query_ambient = session.query(Barometer, Participant.username).filter(
|
||||
Participant.id == Barometer.participant_id
|
||||
)
|
||||
elif sensor == "barometer_sensor":
|
||||
query_ambient = session.query(BarometerSensor, Participant.username).filter(
|
||||
Participant.id == BarometerSensor.participant_id
|
||||
)
|
||||
elif sensor == "light":
|
||||
query_ambient = session.query(LightSensor, Participant.username).filter(
|
||||
Participant.id == LightSensor.participant_id
|
||||
)
|
||||
# Note that LightSensor and its light_sensor table are incorrectly named.
|
||||
# In this table, we actually find light data, i.e. double_light_lux, the ambient luminance in lux,
|
||||
# and NOT light sensor data (its range, dela, resolution, vendor etc.) as the name suggests.
|
||||
# We do not have light sensor data saved in the database.
|
||||
elif sensor == "temperature":
|
||||
query_ambient = session.query(Temperature, Participant.username).filter(
|
||||
Participant.id == Temperature.participant_id
|
||||
)
|
||||
elif sensor == "temperature_sensor":
|
||||
query_ambient = session.query(TemperatureSensor, Participant.username).filter(
|
||||
Participant.id == TemperatureSensor.participant_id
|
||||
)
|
||||
else:
|
||||
raise KeyError(
|
||||
"Specify one of the ambient sensors: "
|
||||
"barometer, barometer_sensor, light, temperature, or temperature_sensor."
|
||||
)
|
||||
|
||||
query_ambient = query_ambient.filter(Participant.username.in_(usernames))
|
||||
with db_engine.connect() as connection:
|
||||
df_ambient = pd.read_sql(query_ambient.statement, connection)
|
||||
return df_ambient
|
||||
|
||||
|
||||
def clean_pressure(df_ambient: pd.DataFrame) -> pd.DataFrame:
|
||||
"""
|
||||
Simply removes values lower than MINIMUM_PRESSURE_MB (lowest measured pressure).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
df_ambient: pd.DataFrame
|
||||
A dataframe of barometer data, which includes measured pressure in double_values_0.
|
||||
|
||||
Returns
|
||||
-------
|
||||
df_ambient: pd.DataFrame
|
||||
The same dataframe with rows with low values of pressure removed.
|
||||
"""
|
||||
if "double_values_0" not in df_ambient:
|
||||
raise KeyError("The DF does not seem to hold barometer data.")
|
||||
df_ambient = df_ambient[df_ambient["double_values_0"] > MINIMUM_PRESSURE_MB]
|
||||
return df_ambient
|
|
@ -1,30 +0,0 @@
|
|||
from collections.abc import Collection
|
||||
|
||||
import pandas as pd
|
||||
|
||||
from config.models import LightSensor, Participant
|
||||
from setup import db_engine, session
|
||||
|
||||
|
||||
def get_light_data(usernames: Collection) -> pd.DataFrame:
|
||||
"""
|
||||
Read the data from the light sensor table and return it in a dataframe.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
usernames: Collection
|
||||
A list of usernames to put into the WHERE condition.
|
||||
|
||||
Returns
|
||||
-------
|
||||
df_light: pd.DataFrame
|
||||
A dataframe of light data.
|
||||
"""
|
||||
query_light = (
|
||||
session.query(LightSensor, Participant.username)
|
||||
.filter(Participant.id == LightSensor.participant_id)
|
||||
.filter(Participant.username.in_(usernames))
|
||||
)
|
||||
with db_engine.connect() as connection:
|
||||
df_light = pd.read_sql(query_light.statement, connection)
|
||||
return df_light
|
File diff suppressed because one or more lines are too long
|
@ -96,13 +96,23 @@ df_session_counts_time = classify_sessions_by_completion_time(df_esm_preprocesse
|
|||
# Sessions are now classified according to the type of a session (a true questionnaire or simple single questions) and users response.
|
||||
|
||||
# %%
|
||||
df_session_counts_time["session_response_cat"] = df_session_counts_time["session_response"].astype("category")
|
||||
df_session_counts_time["session_response_cat"] = df_session_counts_time["session_response_cat"].cat.remove_categories(['during_work_first', 'ema_unanswered', 'evening_first', 'morning', 'morning_first'])
|
||||
df_session_counts_time["session_response_cat"] = df_session_counts_time["session_response_cat"].cat.add_categories("interrupted")
|
||||
df_session_counts_time.loc[df_session_counts_time["session_response_cat"].isna(), "session_response_cat"] = "interrupted"
|
||||
#df_session_counts_time["session_response_cat"] = df_session_counts_time["session_response_cat"].cat.rename_categories({
|
||||
# "ema_unanswered": "interrupted",
|
||||
# "morning_first": "interrupted",
|
||||
df_session_counts_time["session_response_cat"] = df_session_counts_time[
|
||||
"session_response"
|
||||
].astype("category")
|
||||
df_session_counts_time["session_response_cat"] = df_session_counts_time[
|
||||
"session_response_cat"
|
||||
].cat.remove_categories(
|
||||
["during_work_first", "ema_unanswered", "evening_first", "morning", "morning_first"]
|
||||
)
|
||||
df_session_counts_time["session_response_cat"] = df_session_counts_time[
|
||||
"session_response_cat"
|
||||
].cat.add_categories("interrupted")
|
||||
df_session_counts_time.loc[
|
||||
df_session_counts_time["session_response_cat"].isna(), "session_response_cat"
|
||||
] = "interrupted"
|
||||
# df_session_counts_time["session_response_cat"] = df_session_counts_time["session_response_cat"].cat.rename_categories({
|
||||
# "ema_unanswered": "interrupted",
|
||||
# "morning_first": "interrupted",
|
||||
# "evening_first": "interrupted",
|
||||
# "morning": "interrupted",
|
||||
# "during_work_first": "interrupted"})
|
||||
|
|
Loading…
Reference in New Issue