Merge ambient sensors into one file.

Explore barometer sensor data for one phone.
ambient
junos 2021-10-13 16:57:38 +02:00
parent e2e268148d
commit 6302a0f0d9
3 changed files with 95 additions and 35 deletions

View File

@ -6,7 +6,7 @@
# extension: .py
# format_name: percent
# format_version: '1.3'
# jupytext_version: 1.11.4
# jupytext_version: 1.12.0
# kernelspec:
# display_name: straw2analysis
# language: python
@ -32,18 +32,18 @@ import participants.query_db
TZ_LJ = timezone("Europe/Ljubljana")
# %%
from features.light import *
from features.ambient import *
# %% [markdown]
# # Basic characteristics
# # Light
# %%
df_light_nokia = get_light_data(["nokia_0000003"])
df_light_nokia = get_ambient_data(["nokia_0000003"], "light")
print(df_light_nokia)
# %%
participants_inactive_usernames = participants.query_db.get_usernames()
df_light_inactive = get_light_data(participants_inactive_usernames)
df_light_inactive = get_ambient_data(participants_inactive_usernames, "light")
# %%
df_light_inactive.accuracy.value_counts()
@ -166,3 +166,31 @@ sns.displot(data=df_light_participants, x="std_rel", binwidth=0.005)
# Relative variability is homogeneous.
#
# This means that light data needs to be standardized. Min/max standardization would probably fit best.
# %% [markdown]
# # Barometer
# %% [markdown]
# ## Barometer sensor
# %%
df_barometer_sensor_samsung = get_ambient_data(["samsung_0000002"], "barometer_sensor")
df_barometer_sensor_samsung.shape
# %% [markdown]
# Even though we have many values for this sensor, they are all repeated as seen below.
# %%
barometer_sensor_cols = df_barometer_sensor_samsung.columns.to_list()
barometer_sensor_cols.remove("id")
barometer_sensor_cols.remove("_id")
barometer_sensor_cols.remove("timestamp")
barometer_sensor_cols.remove("device_id")
print(df_barometer_sensor_samsung.drop_duplicates(subset=barometer_sensor_cols))
# %%
## Barometer data
# %%
df_barometer_sensor_samsung = get_ambient_data(["samsung_0000002"], "barometer")
print(df_barometer_sensor_samsung)

View File

@ -0,0 +1,62 @@
from collections.abc import Collection
import pandas as pd
from config.models import Barometer, BarometerSensor, LightSensor, Participant, Temperature, TemperatureSensor
from setup import db_engine, session
def get_ambient_data(usernames: Collection, sensor=None) -> pd.DataFrame:
"""
Read the data from any of the ambient sensor tables and return it in a dataframe.
Parameters
----------
usernames: Collection
A list of usernames to put into the WHERE condition.
sensor: str
One of: barometer, barometer_sensor, light, temperature, temperature_sensor.
Here, the _sensor tables describe the phone sensors, such as their range, dela, resolution, vendor etc.,
whereas barometer, light, and temperature describe the measured characteristics of the environment.
Returns
-------
df_ambient: pd.DataFrame
A dataframe of ambient sensor data.
"""
if sensor == "barometer":
query_ambient = (
session.query(Barometer, Participant.username)
.filter(Participant.id == Barometer.participant_id)
)
elif sensor == "barometer_sensor":
query_ambient = (
session.query(BarometerSensor, Participant.username)
.filter(Participant.id == BarometerSensor.participant_id)
)
elif sensor == "light":
query_ambient = (
session.query(LightSensor, Participant.username)
.filter(Participant.id == LightSensor.participant_id)
)
# Note that LightSensor and its light_sensor table are incorrectly named.
# In this table, we actually find light data, i.e. double_light_lux, the ambient luminance in lux,
# and NOT light sensor data (its range, dela, resolution, vendor etc.) as the name suggests.
# We do not have light sensor data saved in the database.
elif sensor == "temperature":
query_ambient = (
session.query(Temperature, Participant.username)
.filter(Participant.id == Temperature.participant_id)
)
elif sensor == "temperature_sensor":
query_ambient = (
session.query(TemperatureSensor, Participant.username)
.filter(Participant.id == TemperatureSensor.participant_id)
)
else:
raise KeyError("Specify one of the ambient sensors: barometer, barometer_sensor, light, temperature, or temperature_sensor.")
query_ambient = query_ambient.filter(Participant.username.in_(usernames))
with db_engine.connect() as connection:
df_ambient = pd.read_sql(query_ambient.statement, connection)
return df_ambient

View File

@ -1,30 +0,0 @@
from collections.abc import Collection
import pandas as pd
from config.models import LightSensor, Participant
from setup import db_engine, session
def get_light_data(usernames: Collection) -> pd.DataFrame:
"""
Read the data from the light sensor table and return it in a dataframe.
Parameters
----------
usernames: Collection
A list of usernames to put into the WHERE condition.
Returns
-------
df_light: pd.DataFrame
A dataframe of light data.
"""
query_light = (
session.query(LightSensor, Participant.username)
.filter(Participant.id == LightSensor.participant_id)
.filter(Participant.username.in_(usernames))
)
with db_engine.connect() as connection:
df_light = pd.read_sql(query_light.statement, connection)
return df_light