Add additional categorical features (uncomment).
parent
9a218c8e2a
commit
7504aa34cf
|
@ -80,7 +80,7 @@ else:
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
categorical_feature_colnames = ["gender", "startlanguage"]
|
categorical_feature_colnames = ["gender", "startlanguage"]
|
||||||
additional_categorical_features = [] #[col for col in data_x.columns if "mostcommonactivity" in col or "homelabel" in col]
|
additional_categorical_features = [col for col in data_x.columns if "mostcommonactivity" in col or "homelabel" in col]
|
||||||
categorical_feature_colnames += additional_categorical_features
|
categorical_feature_colnames += additional_categorical_features
|
||||||
|
|
||||||
categorical_features = data_x[categorical_feature_colnames].copy()
|
categorical_features = data_x[categorical_feature_colnames].copy()
|
||||||
|
|
|
@ -122,7 +122,7 @@ for k in range(n_clusters):
|
||||||
|
|
||||||
# Treat categorical features
|
# Treat categorical features
|
||||||
categorical_feature_colnames = ["gender", "startlanguage"]
|
categorical_feature_colnames = ["gender", "startlanguage"]
|
||||||
additional_categorical_features = [] #[col for col in data_x.columns if "mostcommonactivity" in col or "homelabel" in col]
|
additional_categorical_features = [col for col in data_x.columns if "mostcommonactivity" in col or "homelabel" in col]
|
||||||
categorical_feature_colnames += additional_categorical_features
|
categorical_feature_colnames += additional_categorical_features
|
||||||
|
|
||||||
categorical_features = data_x[categorical_feature_colnames].copy()
|
categorical_features = data_x[categorical_feature_colnames].copy()
|
||||||
|
|
|
@ -75,8 +75,8 @@ def treat_categorical_features(input_set):
|
||||||
|
|
||||||
# %% [markdown]
|
# %% [markdown]
|
||||||
# ## Set script's parameters
|
# ## Set script's parameters
|
||||||
n_clusters = 4 # Number of clusters (could be regarded as a hyperparameter)
|
n_clusters = 3 # Number of clusters (could be regarded as a hyperparameter)
|
||||||
n_sl = 1 # Number of largest/smallest accuracies (of particular CV) outputs
|
n_sl = 3 # Number of largest/smallest accuracies (of particular CV) outputs
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
model_input = pd.read_csv("../data/intradaily_30_min_all_targets/input_JCQ_job_demand_mean.csv")
|
model_input = pd.read_csv("../data/intradaily_30_min_all_targets/input_JCQ_job_demand_mean.csv")
|
||||||
|
|
Loading…
Reference in New Issue