Add a script for two class train test split clustering classification.
parent
98f78d72fc
commit
9a218c8e2a
|
@ -176,7 +176,7 @@ for k in range(n_clusters):
|
|||
|
||||
cmodels[model_title]['metrics'][0] += np.mean(classifier['test_accuracy'])
|
||||
cmodels[model_title]['metrics'][1] += np.mean(classifier['test_precision'])
|
||||
cmodels[model_title]['metrics'][2] += np.mean(classifier['test_accuracy'])
|
||||
cmodels[model_title]['metrics'][2] += np.mean(classifier['test_recall'])
|
||||
cmodels[model_title]['metrics'][3] += np.mean(classifier['test_f1'])
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
|
|
|
@ -0,0 +1,181 @@
|
|||
# ---
|
||||
# jupyter:
|
||||
# jupytext:
|
||||
# formats: ipynb,py:percent
|
||||
# text_representation:
|
||||
# extension: .py
|
||||
# format_name: percent
|
||||
# format_version: '1.3'
|
||||
# jupytext_version: 1.13.0
|
||||
# kernelspec:
|
||||
# display_name: straw2analysis
|
||||
# language: python
|
||||
# name: straw2analysis
|
||||
# ---
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
# %matplotlib inline
|
||||
import datetime
|
||||
import importlib
|
||||
import os
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
import seaborn as sns
|
||||
from scipy import stats
|
||||
|
||||
from sklearn.model_selection import LeaveOneGroupOut, cross_validate, train_test_split
|
||||
from sklearn.impute import SimpleImputer
|
||||
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
|
||||
|
||||
from sklearn.dummy import DummyClassifier
|
||||
from sklearn import linear_model, svm, naive_bayes, neighbors, tree, ensemble
|
||||
from lightgbm import LGBMClassifier
|
||||
import xgboost as xg
|
||||
|
||||
from sklearn.cluster import KMeans
|
||||
|
||||
from IPython.core.interactiveshell import InteractiveShell
|
||||
InteractiveShell.ast_node_interactivity = "all"
|
||||
|
||||
nb_dir = os.path.split(os.getcwd())[0]
|
||||
if nb_dir not in sys.path:
|
||||
sys.path.append(nb_dir)
|
||||
|
||||
import machine_learning.labels
|
||||
import machine_learning.model
|
||||
from machine_learning.classification_models import ClassificationModels
|
||||
|
||||
# %% [markdown]
|
||||
# # RAPIDS models
|
||||
|
||||
# %% [markdown]
|
||||
# # Useful method
|
||||
def treat_categorical_features(input_set):
|
||||
categorical_feature_colnames = ["gender", "startlanguage"]
|
||||
additional_categorical_features = [col for col in input_set.columns if "mostcommonactivity" in col or "homelabel" in col]
|
||||
categorical_feature_colnames += additional_categorical_features
|
||||
|
||||
categorical_features = input_set[categorical_feature_colnames].copy()
|
||||
mode_categorical_features = categorical_features.mode().iloc[0]
|
||||
|
||||
# fillna with mode
|
||||
categorical_features = categorical_features.fillna(mode_categorical_features)
|
||||
|
||||
# one-hot encoding
|
||||
categorical_features = categorical_features.apply(lambda col: col.astype("category"))
|
||||
if not categorical_features.empty:
|
||||
categorical_features = pd.get_dummies(categorical_features)
|
||||
|
||||
numerical_features = input_set.drop(categorical_feature_colnames, axis=1)
|
||||
|
||||
return pd.concat([numerical_features, categorical_features], axis=1)
|
||||
|
||||
# %% [markdown]
|
||||
# ## Set script's parameters
|
||||
n_clusters = 4 # Number of clusters (could be regarded as a hyperparameter)
|
||||
n_sl = 1 # Number of largest/smallest accuracies (of particular CV) outputs
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
model_input = pd.read_csv("../data/intradaily_30_min_all_targets/input_JCQ_job_demand_mean.csv")
|
||||
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
|
||||
|
||||
clust_col = model_input.set_index(index_columns).var().idxmax() # age is a col with the highest variance
|
||||
|
||||
model_input.columns[list(model_input.columns).index('age'):-1]
|
||||
|
||||
lime_cols = [col for col in model_input if col.startswith('limesurvey')]
|
||||
lime_cols
|
||||
lime_col = 'limesurvey_demand_control_ratio'
|
||||
clust_col = lime_col
|
||||
|
||||
model_input[clust_col].describe()
|
||||
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
|
||||
# Filter-out outlier rows by clust_col
|
||||
model_input = model_input[(np.abs(stats.zscore(model_input[clust_col])) < 3)]
|
||||
|
||||
uniq = model_input[[clust_col, 'pid']].drop_duplicates().reset_index(drop=True)
|
||||
plt.bar(uniq['pid'], uniq[clust_col])
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
# Get clusters by cluster col & and merge the clusters to main df
|
||||
km = KMeans(n_clusters=n_clusters).fit_predict(uniq.set_index('pid'))
|
||||
np.unique(km, return_counts=True)
|
||||
uniq['cluster'] = km
|
||||
uniq
|
||||
|
||||
model_input = model_input.merge(uniq[['pid', 'cluster']])
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
model_input.set_index(index_columns, inplace=True)
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
# Create dict with classification ml models
|
||||
cm = ClassificationModels()
|
||||
cmodels = cm.get_cmodels()
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
for k in range(n_clusters):
|
||||
model_input_subset = model_input[model_input["cluster"] == k].copy()
|
||||
|
||||
# Takes 10th percentile and above 90th percentile as the test set -> the rest for the training set. Only two classes, seperated by z-score of 0.
|
||||
model_input_subset['numerical_target'] = model_input_subset['target']
|
||||
bins = [-10, 0, 10] # bins for z-scored targets
|
||||
model_input_subset.loc[:, 'target'] = \
|
||||
pd.cut(model_input_subset.loc[:, 'target'], bins=bins, labels=[0, 1], right=True)
|
||||
|
||||
p15 = np.percentile(model_input_subset['numerical_target'], 15)
|
||||
p85 = np.percentile(model_input_subset['numerical_target'], 85)
|
||||
|
||||
# Treat categorical features
|
||||
model_input_subset = treat_categorical_features(model_input_subset)
|
||||
|
||||
# Split to train, validate, and test subsets
|
||||
train_set = model_input_subset[(model_input_subset['numerical_target'] > p15) & (model_input_subset['numerical_target'] < p85)].drop(['numerical_target'], axis=1)
|
||||
test_set = model_input_subset[(model_input_subset['numerical_target'] <= p15) | (model_input_subset['numerical_target'] >= p85)].drop(['numerical_target'], axis=1)
|
||||
|
||||
train_set['target'].value_counts()
|
||||
test_set['target'].value_counts()
|
||||
|
||||
train_x, train_y = train_set.drop(["target", "pid"], axis=1), train_set["target"]
|
||||
|
||||
validate_x, test_x, validate_y, test_y = \
|
||||
train_test_split(test_set.drop(["target", "pid"], axis=1), test_set["target"], test_size=0.50, random_state=42)
|
||||
|
||||
# Impute missing values
|
||||
imputer = SimpleImputer(missing_values=np.nan, strategy='median')
|
||||
|
||||
train_x = imputer.fit_transform(train_x)
|
||||
validate_x = imputer.fit_transform(validate_x)
|
||||
test_x = imputer.fit_transform(test_x)
|
||||
|
||||
for model_title, model in cmodels.items():
|
||||
model['model'].fit(train_x, train_y)
|
||||
y_pred = model['model'].predict(validate_x)
|
||||
|
||||
acc = accuracy_score(validate_y, y_pred)
|
||||
prec = precision_score(validate_y, y_pred)
|
||||
rec = recall_score(validate_y, y_pred)
|
||||
f1 = f1_score(validate_y, y_pred)
|
||||
|
||||
print("\n-------------------------------------\n")
|
||||
print("Current cluster:", k, end="\n")
|
||||
print("Current model:", model_title, end="\n")
|
||||
print("Acc", acc)
|
||||
print("Precision", prec)
|
||||
print("Recall", rec)
|
||||
print("F1", f1)
|
||||
|
||||
cmodels[model_title]['metrics'][0] += acc
|
||||
cmodels[model_title]['metrics'][1] += prec
|
||||
cmodels[model_title]['metrics'][2] += rec
|
||||
cmodels[model_title]['metrics'][3] += f1
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
# Get overall results
|
||||
cm.get_total_models_scores(n_clusters=n_clusters)
|
|
@ -18,7 +18,7 @@ class ClassificationModels():
|
|||
'metrics': [0, 0, 0, 0]
|
||||
},
|
||||
'logistic_regression': {
|
||||
'model': linear_model.LogisticRegression(),
|
||||
'model': linear_model.LogisticRegression(max_iter=1000),
|
||||
'metrics': [0, 0, 0, 0]
|
||||
},
|
||||
'support_vector_machine': {
|
||||
|
|
Loading…
Reference in New Issue