Improve general ml classification pipeline script.
parent
40029a8205
commit
183758cd37
|
@ -52,25 +52,20 @@ import machine_learning.model
|
|||
model_input = pd.read_csv("../data/intradaily_30_min_all_targets/input_JCQ_job_demand_mean.csv")
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
bins = [-4, -1, 1, 4] # bins for z-scored targets
|
||||
model_input['target'], edges = pd.cut(model_input.target, bins=bins, labels=['low', 'medium', 'high'], retbins=True, right=False)
|
||||
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
|
||||
model_input.set_index(index_columns, inplace=True)
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
bins = [-10, -1, 1, 10] # bins for z-scored targets
|
||||
model_input['target'], edges = pd.cut(model_input.target, bins=bins, labels=['low', 'medium', 'high'], retbins=True, right=False) #['low', 'medium', 'high']
|
||||
model_input['target'].value_counts(), edges
|
||||
model_input = model_input[model_input['target'] != "medium"]
|
||||
model_input['target'] = model_input['target'].astype(str).apply(lambda x: 0 if x == "low" else 1)
|
||||
|
||||
model_input['target'].value_counts()
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
|
||||
#if "pid" in model_input.columns:
|
||||
# index_columns.append("pid")
|
||||
model_input.set_index(index_columns, inplace=True)
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
cv_method = '5kfold'
|
||||
if cv_method == 'logo':
|
||||
data_x, data_y, data_groups = model_input.drop(["target", "pid"], axis=1), model_input["target"], model_input["pid"]
|
||||
else:
|
||||
cv_method_str = 'logo' # logo, halflogo, 5kfold
|
||||
if cv_method_str == 'halflogo':
|
||||
model_input['pid_index'] = model_input.groupby('pid').cumcount()
|
||||
model_input['pid_count'] = model_input.groupby('pid')['pid'].transform('count')
|
||||
|
||||
|
@ -78,6 +73,9 @@ else:
|
|||
model_input["pid_half"] = model_input["pid"] + "_" + model_input["pid_index"].astype(int).astype(str)
|
||||
|
||||
data_x, data_y, data_groups = model_input.drop(["target", "pid", "pid_index", "pid_half"], axis=1), model_input["target"], model_input["pid_half"]
|
||||
else:
|
||||
data_x, data_y, data_groups = model_input.drop(["target", "pid"], axis=1), model_input["target"], model_input["pid"]
|
||||
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
categorical_feature_colnames = ["gender", "startlanguage"]
|
||||
|
@ -100,19 +98,21 @@ train_x = pd.concat([numerical_features, categorical_features], axis=1)
|
|||
train_x.dtypes
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
logo = LeaveOneGroupOut()
|
||||
logo.get_n_splits(
|
||||
cv_method = None # Defaults to 5 k-folds in cross_validate method
|
||||
if cv_method_str == 'logo' or cv_method_str == 'half_logo':
|
||||
cv_method = LeaveOneGroupOut()
|
||||
cv_method.get_n_splits(
|
||||
train_x,
|
||||
data_y,
|
||||
groups=data_groups,
|
||||
)
|
||||
|
||||
# Defaults to 5 k-folds in cross_validate method
|
||||
if cv_method != 'logo' and cv_method != 'half_logo':
|
||||
logo = None
|
||||
)
|
||||
# %% jupyter={"source_hidden": true}
|
||||
# %% [markdown]
|
||||
# ### Set n for nlargest and nsmallest
|
||||
n = 5
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
|
||||
imputer = SimpleImputer(missing_values=np.nan, strategy='median')
|
||||
|
||||
# %% [markdown]
|
||||
# ### Baseline: Dummy Classifier (most frequent)
|
||||
|
@ -124,8 +124,9 @@ dummy_classifier = cross_validate(
|
|||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
cv=cv_method,
|
||||
n_jobs=-1,
|
||||
error_score='raise',
|
||||
scoring=('accuracy', 'average_precision', 'recall', 'f1')
|
||||
)
|
||||
# %% jupyter={"source_hidden": true}
|
||||
|
@ -133,6 +134,8 @@ print("Acc", np.median(dummy_classifier['test_accuracy']))
|
|||
print("Precision", np.median(dummy_classifier['test_average_precision']))
|
||||
print("Recall", np.median(dummy_classifier['test_recall']))
|
||||
print("F1", np.median(dummy_classifier['test_f1']))
|
||||
print("Largest 5 ACC:", np.sort(-np.partition(-dummy_classifier['test_accuracy'], n)[:n])[::-1])
|
||||
print("Smallest 5 ACC:", np.sort(np.partition(dummy_classifier['test_accuracy'], n)[:n]))
|
||||
|
||||
# %% [markdown]
|
||||
# ### Logistic Regression
|
||||
|
@ -146,7 +149,7 @@ log_reg_scores = cross_validate(
|
|||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
cv=cv_method,
|
||||
n_jobs=-1,
|
||||
scoring=('accuracy', 'precision', 'recall', 'f1')
|
||||
)
|
||||
|
@ -155,6 +158,8 @@ print("Acc", np.median(log_reg_scores['test_accuracy']))
|
|||
print("Precision", np.median(log_reg_scores['test_precision']))
|
||||
print("Recall", np.median(log_reg_scores['test_recall']))
|
||||
print("F1", np.median(log_reg_scores['test_f1']))
|
||||
print("Largest 5 ACC:", np.sort(-np.partition(-log_reg_scores['test_accuracy'], n)[:n])[::-1])
|
||||
print("Smallest 5 ACC:", np.sort(np.partition(log_reg_scores['test_accuracy'], n)[:n]))
|
||||
|
||||
# %% [markdown]
|
||||
# ### Support Vector Machine
|
||||
|
@ -168,7 +173,7 @@ svc_scores = cross_validate(
|
|||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
cv=cv_method,
|
||||
n_jobs=-1,
|
||||
scoring=('accuracy', 'precision', 'recall', 'f1')
|
||||
)
|
||||
|
@ -177,6 +182,8 @@ print("Acc", np.median(svc_scores['test_accuracy']))
|
|||
print("Precision", np.median(svc_scores['test_precision']))
|
||||
print("Recall", np.median(svc_scores['test_recall']))
|
||||
print("F1", np.median(svc_scores['test_f1']))
|
||||
print("Largest 5 ACC:", np.sort(-np.partition(-svc_scores['test_accuracy'], n)[:n])[::-1])
|
||||
print("Smallest 5 ACC:", np.sort(np.partition(svc_scores['test_accuracy'], n)[:n]))
|
||||
|
||||
# %% [markdown]
|
||||
# ### Gaussian Naive Bayes
|
||||
|
@ -190,8 +197,9 @@ gaussian_nb_scores = cross_validate(
|
|||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
cv=cv_method,
|
||||
n_jobs=-1,
|
||||
error_score='raise',
|
||||
scoring=('accuracy', 'precision', 'recall', 'f1')
|
||||
)
|
||||
# %% jupyter={"source_hidden": true}
|
||||
|
@ -199,6 +207,8 @@ print("Acc", np.median(gaussian_nb_scores['test_accuracy']))
|
|||
print("Precision", np.median(gaussian_nb_scores['test_precision']))
|
||||
print("Recall", np.median(gaussian_nb_scores['test_recall']))
|
||||
print("F1", np.median(gaussian_nb_scores['test_f1']))
|
||||
print("Largest 5 ACC:", np.sort(-np.partition(-gaussian_nb_scores['test_accuracy'], n)[:n])[::-1])
|
||||
print("Smallest 5 ACC:", np.sort(np.partition(gaussian_nb_scores['test_accuracy'], n)[:n]))
|
||||
|
||||
# %% [markdown]
|
||||
# ### Stochastic Gradient Descent Classifier
|
||||
|
@ -212,8 +222,9 @@ sgdc_scores = cross_validate(
|
|||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
cv=cv_method,
|
||||
n_jobs=-1,
|
||||
error_score='raise',
|
||||
scoring=('accuracy', 'precision', 'recall', 'f1')
|
||||
)
|
||||
# %% jupyter={"source_hidden": true}
|
||||
|
@ -221,6 +232,8 @@ print("Acc", np.median(sgdc_scores['test_accuracy']))
|
|||
print("Precision", np.median(sgdc_scores['test_precision']))
|
||||
print("Recall", np.median(sgdc_scores['test_recall']))
|
||||
print("F1", np.median(sgdc_scores['test_f1']))
|
||||
print("Largest 5 ACC:", np.sort(-np.partition(-sgdc_scores['test_accuracy'], n)[:n])[::-1])
|
||||
print("Smallest 5 ACC:", np.sort(np.partition(sgdc_scores['test_accuracy'], n)[:n]))
|
||||
|
||||
# %% [markdown]
|
||||
# ### K-nearest neighbors
|
||||
|
@ -229,21 +242,23 @@ print("F1", np.median(sgdc_scores['test_f1']))
|
|||
knn = neighbors.KNeighborsClassifier()
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
knn_scores = cross_validate( # Nekaj ne funkcionira pravilno
|
||||
knn_scores = cross_validate(
|
||||
knn,
|
||||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
cv=cv_method,
|
||||
n_jobs=-1,
|
||||
error_score='raise',
|
||||
scoring=('accuracy', 'precision', 'recall', 'f1')
|
||||
# error_score='raise'
|
||||
)
|
||||
# %% jupyter={"source_hidden": true}
|
||||
print("Acc", np.median(knn_scores['test_accuracy']))
|
||||
print("Precision", np.median(knn_scores['test_precision']))
|
||||
print("Recall", np.median(knn_scores['test_recall']))
|
||||
print("F1", np.median(knn_scores['test_f1']))
|
||||
print("Largest 5 ACC:", np.sort(-np.partition(-knn_scores['test_accuracy'], n)[:n])[::-1])
|
||||
print("Smallest 5 ACC:", np.sort(np.partition(knn_scores['test_accuracy'], n)[:n]))
|
||||
|
||||
# %% [markdown]
|
||||
# ### Decision Tree
|
||||
|
@ -257,8 +272,9 @@ dtree_scores = cross_validate(
|
|||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
cv=cv_method,
|
||||
n_jobs=-1,
|
||||
error_score='raise',
|
||||
scoring=('accuracy', 'precision', 'recall', 'f1')
|
||||
)
|
||||
# %% jupyter={"source_hidden": true}
|
||||
|
@ -266,6 +282,8 @@ print("Acc", np.median(dtree_scores['test_accuracy']))
|
|||
print("Precision", np.median(dtree_scores['test_precision']))
|
||||
print("Recall", np.median(dtree_scores['test_recall']))
|
||||
print("F1", np.median(dtree_scores['test_f1']))
|
||||
print("Largest 5 ACC:", np.sort(-np.partition(-dtree_scores['test_accuracy'], n)[:n])[::-1])
|
||||
print("Smallest 5 ACC:", np.sort(np.partition(dtree_scores['test_accuracy'], n)[:n]))
|
||||
|
||||
# %% [markdown]
|
||||
# ### Random Forest Classifier
|
||||
|
@ -279,8 +297,9 @@ rfc_scores = cross_validate(
|
|||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
cv=cv_method,
|
||||
n_jobs=-1,
|
||||
error_score='raise',
|
||||
scoring=('accuracy', 'precision', 'recall', 'f1')
|
||||
)
|
||||
# %% jupyter={"source_hidden": true}
|
||||
|
@ -288,6 +307,8 @@ print("Acc", np.median(rfc_scores['test_accuracy']))
|
|||
print("Precision", np.median(rfc_scores['test_precision']))
|
||||
print("Recall", np.median(rfc_scores['test_recall']))
|
||||
print("F1", np.median(rfc_scores['test_f1']))
|
||||
print("Largest 5 ACC:", np.sort(-np.partition(-rfc_scores['test_accuracy'], n)[:n])[::-1])
|
||||
print("Smallest 5 ACC:", np.sort(np.partition(rfc_scores['test_accuracy'], n)[:n]))
|
||||
|
||||
# %% [markdown]
|
||||
# ### Gradient Boosting Classifier
|
||||
|
@ -301,8 +322,9 @@ gbc_scores = cross_validate(
|
|||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
cv=cv_method,
|
||||
n_jobs=-1,
|
||||
error_score='raise',
|
||||
scoring=('accuracy', 'precision', 'recall', 'f1')
|
||||
)
|
||||
# %% jupyter={"source_hidden": true}
|
||||
|
@ -310,6 +332,8 @@ print("Acc", np.median(gbc_scores['test_accuracy']))
|
|||
print("Precision", np.median(gbc_scores['test_precision']))
|
||||
print("Recall", np.median(gbc_scores['test_recall']))
|
||||
print("F1", np.median(gbc_scores['test_f1']))
|
||||
print("Largest 5 ACC:", np.sort(-np.partition(-gbc_scores['test_accuracy'], n)[:n])[::-1])
|
||||
print("Smallest 5 ACC:", np.sort(np.partition(gbc_scores['test_accuracy'], n)[:n]))
|
||||
|
||||
# %% [markdown]
|
||||
# ### LGBM Classifier
|
||||
|
@ -323,8 +347,9 @@ lgbm_scores = cross_validate(
|
|||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
cv=cv_method,
|
||||
n_jobs=-1,
|
||||
error_score='raise',
|
||||
scoring=('accuracy', 'precision', 'recall', 'f1')
|
||||
)
|
||||
# %% jupyter={"source_hidden": true}
|
||||
|
@ -332,6 +357,8 @@ print("Acc", np.median(lgbm_scores['test_accuracy']))
|
|||
print("Precision", np.median(lgbm_scores['test_precision']))
|
||||
print("Recall", np.median(lgbm_scores['test_recall']))
|
||||
print("F1", np.median(lgbm_scores['test_f1']))
|
||||
print("Largest 5 ACC:", np.sort(-np.partition(-lgbm_scores['test_accuracy'], n)[:n])[::-1])
|
||||
print("Smallest 5 ACC:", np.sort(np.partition(lgbm_scores['test_accuracy'], n)[:n]))
|
||||
|
||||
# %% [markdown]
|
||||
# ### XGBoost Classifier
|
||||
|
@ -345,8 +372,9 @@ xgb_classifier_scores = cross_validate(
|
|||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
cv=cv_method,
|
||||
n_jobs=-1,
|
||||
error_score='raise',
|
||||
scoring=('accuracy', 'precision', 'recall', 'f1')
|
||||
)
|
||||
# %% jupyter={"source_hidden": true}
|
||||
|
@ -354,3 +382,5 @@ print("Acc", np.median(xgb_classifier_scores['test_accuracy']))
|
|||
print("Precision", np.median(xgb_classifier_scores['test_precision']))
|
||||
print("Recall", np.median(xgb_classifier_scores['test_recall']))
|
||||
print("F1", np.median(xgb_classifier_scores['test_f1']))
|
||||
print("Largest 5 ACC:", np.sort(-np.partition(-xgb_classifier_scores['test_accuracy'], n)[:n])[::-1])
|
||||
print("Smallest 5 ACC:", np.sort(np.partition(xgb_classifier_scores['test_accuracy'], n)[:n]))
|
||||
|
|
Loading…
Reference in New Issue