Add a script for ml classification pipeline.
parent
ae0f54ecc2
commit
40029a8205
|
@ -0,0 +1,356 @@
|
|||
# ---
|
||||
# jupyter:
|
||||
# jupytext:
|
||||
# formats: ipynb,py:percent
|
||||
# text_representation:
|
||||
# extension: .py
|
||||
# format_name: percent
|
||||
# format_version: '1.3'
|
||||
# jupytext_version: 1.13.0
|
||||
# kernelspec:
|
||||
# display_name: straw2analysis
|
||||
# language: python
|
||||
# name: straw2analysis
|
||||
# ---
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
# %matplotlib inline
|
||||
import datetime
|
||||
import importlib
|
||||
import os
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
import seaborn as sns
|
||||
|
||||
from sklearn import linear_model, svm, naive_bayes, neighbors, tree, ensemble
|
||||
from sklearn.model_selection import LeaveOneGroupOut, cross_validate
|
||||
from sklearn.dummy import DummyClassifier
|
||||
from sklearn.impute import SimpleImputer
|
||||
|
||||
from lightgbm import LGBMClassifier
|
||||
import xgboost as xg
|
||||
from IPython.core.interactiveshell import InteractiveShell
|
||||
InteractiveShell.ast_node_interactivity = "all"
|
||||
|
||||
nb_dir = os.path.split(os.getcwd())[0]
|
||||
if nb_dir not in sys.path:
|
||||
sys.path.append(nb_dir)
|
||||
|
||||
import machine_learning.labels
|
||||
import machine_learning.model
|
||||
|
||||
# %% [markdown]
|
||||
# # RAPIDS models
|
||||
|
||||
# %% [markdown]
|
||||
# ## PANAS negative affect
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
model_input = pd.read_csv("../data/intradaily_30_min_all_targets/input_JCQ_job_demand_mean.csv")
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
bins = [-4, -1, 1, 4] # bins for z-scored targets
|
||||
model_input['target'], edges = pd.cut(model_input.target, bins=bins, labels=['low', 'medium', 'high'], retbins=True, right=False)
|
||||
model_input['target'].value_counts(), edges
|
||||
model_input = model_input[model_input['target'] != "medium"]
|
||||
model_input['target'] = model_input['target'].astype(str).apply(lambda x: 0 if x == "low" else 1)
|
||||
|
||||
model_input['target'].value_counts()
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
|
||||
#if "pid" in model_input.columns:
|
||||
# index_columns.append("pid")
|
||||
model_input.set_index(index_columns, inplace=True)
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
cv_method = '5kfold'
|
||||
if cv_method == 'logo':
|
||||
data_x, data_y, data_groups = model_input.drop(["target", "pid"], axis=1), model_input["target"], model_input["pid"]
|
||||
else:
|
||||
model_input['pid_index'] = model_input.groupby('pid').cumcount()
|
||||
model_input['pid_count'] = model_input.groupby('pid')['pid'].transform('count')
|
||||
|
||||
model_input["pid_index"] = (model_input['pid_index'] / model_input['pid_count'] + 1).round()
|
||||
model_input["pid_half"] = model_input["pid"] + "_" + model_input["pid_index"].astype(int).astype(str)
|
||||
|
||||
data_x, data_y, data_groups = model_input.drop(["target", "pid", "pid_index", "pid_half"], axis=1), model_input["target"], model_input["pid_half"]
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
categorical_feature_colnames = ["gender", "startlanguage"]
|
||||
additional_categorical_features = [] #[col for col in data_x.columns if "mostcommonactivity" in col or "homelabel" in col]
|
||||
categorical_feature_colnames += additional_categorical_features
|
||||
|
||||
categorical_features = data_x[categorical_feature_colnames].copy()
|
||||
mode_categorical_features = categorical_features.mode().iloc[0]
|
||||
|
||||
# fillna with mode
|
||||
categorical_features = categorical_features.fillna(mode_categorical_features)
|
||||
|
||||
# one-hot encoding
|
||||
categorical_features = categorical_features.apply(lambda col: col.astype("category"))
|
||||
if not categorical_features.empty:
|
||||
categorical_features = pd.get_dummies(categorical_features)
|
||||
|
||||
numerical_features = data_x.drop(categorical_feature_colnames, axis=1)
|
||||
train_x = pd.concat([numerical_features, categorical_features], axis=1)
|
||||
train_x.dtypes
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
logo = LeaveOneGroupOut()
|
||||
logo.get_n_splits(
|
||||
train_x,
|
||||
data_y,
|
||||
groups=data_groups,
|
||||
)
|
||||
|
||||
# Defaults to 5 k-folds in cross_validate method
|
||||
if cv_method != 'logo' and cv_method != 'half_logo':
|
||||
logo = None
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
|
||||
|
||||
# %% [markdown]
|
||||
# ### Baseline: Dummy Classifier (most frequent)
|
||||
dummy_class = DummyClassifier(strategy="most_frequent")
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
dummy_classifier = cross_validate(
|
||||
dummy_class,
|
||||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=('accuracy', 'average_precision', 'recall', 'f1')
|
||||
)
|
||||
# %% jupyter={"source_hidden": true}
|
||||
print("Acc", np.median(dummy_classifier['test_accuracy']))
|
||||
print("Precision", np.median(dummy_classifier['test_average_precision']))
|
||||
print("Recall", np.median(dummy_classifier['test_recall']))
|
||||
print("F1", np.median(dummy_classifier['test_f1']))
|
||||
|
||||
# %% [markdown]
|
||||
# ### Logistic Regression
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
logistic_regression = linear_model.LogisticRegression()
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
log_reg_scores = cross_validate(
|
||||
logistic_regression,
|
||||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=('accuracy', 'precision', 'recall', 'f1')
|
||||
)
|
||||
# %% jupyter={"source_hidden": true}
|
||||
print("Acc", np.median(log_reg_scores['test_accuracy']))
|
||||
print("Precision", np.median(log_reg_scores['test_precision']))
|
||||
print("Recall", np.median(log_reg_scores['test_recall']))
|
||||
print("F1", np.median(log_reg_scores['test_f1']))
|
||||
|
||||
# %% [markdown]
|
||||
# ### Support Vector Machine
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
svc = svm.SVC()
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
svc_scores = cross_validate(
|
||||
svc,
|
||||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=('accuracy', 'precision', 'recall', 'f1')
|
||||
)
|
||||
# %% jupyter={"source_hidden": true}
|
||||
print("Acc", np.median(svc_scores['test_accuracy']))
|
||||
print("Precision", np.median(svc_scores['test_precision']))
|
||||
print("Recall", np.median(svc_scores['test_recall']))
|
||||
print("F1", np.median(svc_scores['test_f1']))
|
||||
|
||||
# %% [markdown]
|
||||
# ### Gaussian Naive Bayes
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
gaussian_nb = naive_bayes.GaussianNB()
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
gaussian_nb_scores = cross_validate(
|
||||
gaussian_nb,
|
||||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=('accuracy', 'precision', 'recall', 'f1')
|
||||
)
|
||||
# %% jupyter={"source_hidden": true}
|
||||
print("Acc", np.median(gaussian_nb_scores['test_accuracy']))
|
||||
print("Precision", np.median(gaussian_nb_scores['test_precision']))
|
||||
print("Recall", np.median(gaussian_nb_scores['test_recall']))
|
||||
print("F1", np.median(gaussian_nb_scores['test_f1']))
|
||||
|
||||
# %% [markdown]
|
||||
# ### Stochastic Gradient Descent Classifier
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
sgdc = linear_model.SGDClassifier()
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
sgdc_scores = cross_validate(
|
||||
sgdc,
|
||||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=('accuracy', 'precision', 'recall', 'f1')
|
||||
)
|
||||
# %% jupyter={"source_hidden": true}
|
||||
print("Acc", np.median(sgdc_scores['test_accuracy']))
|
||||
print("Precision", np.median(sgdc_scores['test_precision']))
|
||||
print("Recall", np.median(sgdc_scores['test_recall']))
|
||||
print("F1", np.median(sgdc_scores['test_f1']))
|
||||
|
||||
# %% [markdown]
|
||||
# ### K-nearest neighbors
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
knn = neighbors.KNeighborsClassifier()
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
knn_scores = cross_validate( # Nekaj ne funkcionira pravilno
|
||||
knn,
|
||||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=('accuracy', 'precision', 'recall', 'f1')
|
||||
# error_score='raise'
|
||||
)
|
||||
# %% jupyter={"source_hidden": true}
|
||||
print("Acc", np.median(knn_scores['test_accuracy']))
|
||||
print("Precision", np.median(knn_scores['test_precision']))
|
||||
print("Recall", np.median(knn_scores['test_recall']))
|
||||
print("F1", np.median(knn_scores['test_f1']))
|
||||
|
||||
# %% [markdown]
|
||||
# ### Decision Tree
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
dtree = tree.DecisionTreeClassifier()
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
dtree_scores = cross_validate(
|
||||
dtree,
|
||||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=('accuracy', 'precision', 'recall', 'f1')
|
||||
)
|
||||
# %% jupyter={"source_hidden": true}
|
||||
print("Acc", np.median(dtree_scores['test_accuracy']))
|
||||
print("Precision", np.median(dtree_scores['test_precision']))
|
||||
print("Recall", np.median(dtree_scores['test_recall']))
|
||||
print("F1", np.median(dtree_scores['test_f1']))
|
||||
|
||||
# %% [markdown]
|
||||
# ### Random Forest Classifier
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
rfc = ensemble.RandomForestClassifier()
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
rfc_scores = cross_validate(
|
||||
rfc,
|
||||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=('accuracy', 'precision', 'recall', 'f1')
|
||||
)
|
||||
# %% jupyter={"source_hidden": true}
|
||||
print("Acc", np.median(rfc_scores['test_accuracy']))
|
||||
print("Precision", np.median(rfc_scores['test_precision']))
|
||||
print("Recall", np.median(rfc_scores['test_recall']))
|
||||
print("F1", np.median(rfc_scores['test_f1']))
|
||||
|
||||
# %% [markdown]
|
||||
# ### Gradient Boosting Classifier
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
gbc = ensemble.GradientBoostingClassifier()
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
gbc_scores = cross_validate(
|
||||
gbc,
|
||||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=('accuracy', 'precision', 'recall', 'f1')
|
||||
)
|
||||
# %% jupyter={"source_hidden": true}
|
||||
print("Acc", np.median(gbc_scores['test_accuracy']))
|
||||
print("Precision", np.median(gbc_scores['test_precision']))
|
||||
print("Recall", np.median(gbc_scores['test_recall']))
|
||||
print("F1", np.median(gbc_scores['test_f1']))
|
||||
|
||||
# %% [markdown]
|
||||
# ### LGBM Classifier
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
lgbm = LGBMClassifier()
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
lgbm_scores = cross_validate(
|
||||
lgbm,
|
||||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=('accuracy', 'precision', 'recall', 'f1')
|
||||
)
|
||||
# %% jupyter={"source_hidden": true}
|
||||
print("Acc", np.median(lgbm_scores['test_accuracy']))
|
||||
print("Precision", np.median(lgbm_scores['test_precision']))
|
||||
print("Recall", np.median(lgbm_scores['test_recall']))
|
||||
print("F1", np.median(lgbm_scores['test_f1']))
|
||||
|
||||
# %% [markdown]
|
||||
# ### XGBoost Classifier
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
xgb_classifier = xg.sklearn.XGBClassifier()
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
xgb_classifier_scores = cross_validate(
|
||||
xgb_classifier,
|
||||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=('accuracy', 'precision', 'recall', 'f1')
|
||||
)
|
||||
# %% jupyter={"source_hidden": true}
|
||||
print("Acc", np.median(xgb_classifier_scores['test_accuracy']))
|
||||
print("Precision", np.median(xgb_classifier_scores['test_precision']))
|
||||
print("Recall", np.median(xgb_classifier_scores['test_recall']))
|
||||
print("F1", np.median(xgb_classifier_scores['test_f1']))
|
|
@ -58,8 +58,8 @@ index_columns = ["local_segment", "local_segment_label", "local_segment_start_da
|
|||
# index_columns.append("pid")
|
||||
model_input.set_index(index_columns, inplace=True)
|
||||
|
||||
cv_method = '5kfold'
|
||||
if cv_method == 'half_logo':
|
||||
cv_method = 'half_logo' # logo, half_logo, 5kfold
|
||||
if cv_method == 'logo':
|
||||
data_x, data_y, data_groups = model_input.drop(["target", "pid"], axis=1), model_input["target"], model_input["pid"]
|
||||
else:
|
||||
model_input['pid_index'] = model_input.groupby('pid').cumcount()
|
||||
|
|
Loading…
Reference in New Issue