Merge branch 'ml_pipeline' of repo.ijs.si:junoslukan/straw2analysis into ml_pipeline
# Conflicts: # exploration/ml_pipeline_daily.py - deletedml_pipeline
commit
12f2c927fa
|
@ -0,0 +1,385 @@
|
||||||
|
# ---
|
||||||
|
# jupyter:
|
||||||
|
# jupytext:
|
||||||
|
# formats: ipynb,py:percent
|
||||||
|
# text_representation:
|
||||||
|
# extension: .py
|
||||||
|
# format_name: percent
|
||||||
|
# format_version: '1.3'
|
||||||
|
# jupytext_version: 1.13.0
|
||||||
|
# kernelspec:
|
||||||
|
# display_name: straw2analysis
|
||||||
|
# language: python
|
||||||
|
# name: straw2analysis
|
||||||
|
# ---
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
# %matplotlib inline
|
||||||
|
import datetime
|
||||||
|
import importlib
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import pandas as pd
|
||||||
|
import seaborn as sns
|
||||||
|
|
||||||
|
from sklearn import linear_model, svm, naive_bayes, neighbors, tree, ensemble
|
||||||
|
from sklearn.model_selection import LeaveOneGroupOut, cross_validate
|
||||||
|
from sklearn.dummy import DummyClassifier
|
||||||
|
from sklearn.impute import SimpleImputer
|
||||||
|
|
||||||
|
from lightgbm import LGBMClassifier
|
||||||
|
import xgboost as xg
|
||||||
|
from IPython.core.interactiveshell import InteractiveShell
|
||||||
|
InteractiveShell.ast_node_interactivity = "all"
|
||||||
|
|
||||||
|
nb_dir = os.path.split(os.getcwd())[0]
|
||||||
|
if nb_dir not in sys.path:
|
||||||
|
sys.path.append(nb_dir)
|
||||||
|
|
||||||
|
import machine_learning.labels
|
||||||
|
import machine_learning.model
|
||||||
|
|
||||||
|
# %% [markdown]
|
||||||
|
# # RAPIDS models
|
||||||
|
|
||||||
|
# %% [markdown]
|
||||||
|
# ## Set script's parameters
|
||||||
|
cv_method_str = 'logo' # logo, halflogo, 5kfold # Cross-validation method (could be regarded as a hyperparameter)
|
||||||
|
n_sl = 1 # Number of largest/smallest accuracies (of particular CV) outputs
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
model_input = pd.read_csv("../data/stressfulness_event_nonstandardized/input_appraisal_stressfulness_event_mean.csv")
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
|
||||||
|
model_input.set_index(index_columns, inplace=True)
|
||||||
|
model_input['target'].value_counts()
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
# bins = [-10, -1, 1, 10] # bins for z-scored targets
|
||||||
|
bins = [0, 1, 4] # bins for stressfulness (1-4) target
|
||||||
|
model_input['target'], edges = pd.cut(model_input.target, bins=bins, labels=['low', 'high'], retbins=True, right=True) #['low', 'medium', 'high']
|
||||||
|
model_input['target'].value_counts(), edges
|
||||||
|
# model_input = model_input[model_input['target'] != "medium"]
|
||||||
|
model_input['target'] = model_input['target'].astype(str).apply(lambda x: 0 if x == "low" else 1)
|
||||||
|
|
||||||
|
model_input['target'].value_counts()
|
||||||
|
|
||||||
|
if cv_method_str == 'halflogo':
|
||||||
|
model_input['pid_index'] = model_input.groupby('pid').cumcount()
|
||||||
|
model_input['pid_count'] = model_input.groupby('pid')['pid'].transform('count')
|
||||||
|
|
||||||
|
model_input["pid_index"] = (model_input['pid_index'] / model_input['pid_count'] + 1).round()
|
||||||
|
model_input["pid_half"] = model_input["pid"] + "_" + model_input["pid_index"].astype(int).astype(str)
|
||||||
|
|
||||||
|
data_x, data_y, data_groups = model_input.drop(["target", "pid", "pid_index", "pid_half"], axis=1), model_input["target"], model_input["pid_half"]
|
||||||
|
else:
|
||||||
|
data_x, data_y, data_groups = model_input.drop(["target", "pid"], axis=1), model_input["target"], model_input["pid"]
|
||||||
|
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
categorical_feature_colnames = ["gender", "startlanguage"]
|
||||||
|
additional_categorical_features = [col for col in data_x.columns if "mostcommonactivity" in col or "homelabel" in col]
|
||||||
|
categorical_feature_colnames += additional_categorical_features
|
||||||
|
|
||||||
|
categorical_features = data_x[categorical_feature_colnames].copy()
|
||||||
|
mode_categorical_features = categorical_features.mode().iloc[0]
|
||||||
|
|
||||||
|
# fillna with mode
|
||||||
|
categorical_features = categorical_features.fillna(mode_categorical_features)
|
||||||
|
|
||||||
|
# one-hot encoding
|
||||||
|
categorical_features = categorical_features.apply(lambda col: col.astype("category"))
|
||||||
|
if not categorical_features.empty:
|
||||||
|
categorical_features = pd.get_dummies(categorical_features)
|
||||||
|
|
||||||
|
numerical_features = data_x.drop(categorical_feature_colnames, axis=1)
|
||||||
|
train_x = pd.concat([numerical_features, categorical_features], axis=1)
|
||||||
|
train_x.dtypes
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
cv_method = None # Defaults to 5 k-folds in cross_validate method
|
||||||
|
if cv_method_str == 'logo' or cv_method_str == 'half_logo':
|
||||||
|
cv_method = LeaveOneGroupOut()
|
||||||
|
cv_method.get_n_splits(
|
||||||
|
train_x,
|
||||||
|
data_y,
|
||||||
|
groups=data_groups,
|
||||||
|
)
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
imputer = SimpleImputer(missing_values=np.nan, strategy='median')
|
||||||
|
|
||||||
|
# %% [markdown]
|
||||||
|
# ### Baseline: Dummy Classifier (most frequent)
|
||||||
|
dummy_class = DummyClassifier(strategy="most_frequent")
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
dummy_classifier = cross_validate(
|
||||||
|
dummy_class,
|
||||||
|
X=imputer.fit_transform(train_x),
|
||||||
|
y=data_y,
|
||||||
|
groups=data_groups,
|
||||||
|
cv=cv_method,
|
||||||
|
n_jobs=-1,
|
||||||
|
error_score='raise',
|
||||||
|
scoring=('accuracy', 'average_precision', 'recall', 'f1')
|
||||||
|
)
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
print("Acc", np.mean(dummy_classifier['test_accuracy']))
|
||||||
|
print("Precision", np.mean(dummy_classifier['test_average_precision']))
|
||||||
|
print("Recall", np.mean(dummy_classifier['test_recall']))
|
||||||
|
print("F1", np.mean(dummy_classifier['test_f1']))
|
||||||
|
print(f"Largest {n_sl} ACC:", np.sort(-np.partition(-dummy_classifier['test_accuracy'], n_sl)[:n_sl])[::-1])
|
||||||
|
print(f"Smallest {n_sl} ACC:", np.sort(np.partition(dummy_classifier['test_accuracy'], n_sl)[:n_sl]))
|
||||||
|
|
||||||
|
# %% [markdown]
|
||||||
|
# ### Logistic Regression
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
logistic_regression = linear_model.LogisticRegression()
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
log_reg_scores = cross_validate(
|
||||||
|
logistic_regression,
|
||||||
|
X=imputer.fit_transform(train_x),
|
||||||
|
y=data_y,
|
||||||
|
groups=data_groups,
|
||||||
|
cv=cv_method,
|
||||||
|
n_jobs=-1,
|
||||||
|
scoring=('accuracy', 'precision', 'recall', 'f1')
|
||||||
|
)
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
print("Acc", np.mean(log_reg_scores['test_accuracy']))
|
||||||
|
print("Precision", np.mean(log_reg_scores['test_precision']))
|
||||||
|
print("Recall", np.mean(log_reg_scores['test_recall']))
|
||||||
|
print("F1", np.mean(log_reg_scores['test_f1']))
|
||||||
|
print(f"Largest {n_sl} ACC:", np.sort(-np.partition(-log_reg_scores['test_accuracy'], n_sl)[:n_sl])[::-1])
|
||||||
|
print(f"Smallest {n_sl} ACC:", np.sort(np.partition(log_reg_scores['test_accuracy'], n_sl)[:n_sl]))
|
||||||
|
|
||||||
|
# %% [markdown]
|
||||||
|
# ### Support Vector Machine
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
svc = svm.SVC()
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
svc_scores = cross_validate(
|
||||||
|
svc,
|
||||||
|
X=imputer.fit_transform(train_x),
|
||||||
|
y=data_y,
|
||||||
|
groups=data_groups,
|
||||||
|
cv=cv_method,
|
||||||
|
n_jobs=-1,
|
||||||
|
scoring=('accuracy', 'precision', 'recall', 'f1')
|
||||||
|
)
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
print("Acc", np.mean(svc_scores['test_accuracy']))
|
||||||
|
print("Precision", np.mean(svc_scores['test_precision']))
|
||||||
|
print("Recall", np.mean(svc_scores['test_recall']))
|
||||||
|
print("F1", np.mean(svc_scores['test_f1']))
|
||||||
|
print(f"Largest {n_sl} ACC:", np.sort(-np.partition(-svc_scores['test_accuracy'], n_sl)[:n_sl])[::-1])
|
||||||
|
print(f"Smallest {n_sl} ACC:", np.sort(np.partition(svc_scores['test_accuracy'], n_sl)[:n_sl]))
|
||||||
|
|
||||||
|
# %% [markdown]
|
||||||
|
# ### Gaussian Naive Bayes
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
gaussian_nb = naive_bayes.GaussianNB()
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
gaussian_nb_scores = cross_validate(
|
||||||
|
gaussian_nb,
|
||||||
|
X=imputer.fit_transform(train_x),
|
||||||
|
y=data_y,
|
||||||
|
groups=data_groups,
|
||||||
|
cv=cv_method,
|
||||||
|
n_jobs=-1,
|
||||||
|
error_score='raise',
|
||||||
|
scoring=('accuracy', 'precision', 'recall', 'f1')
|
||||||
|
)
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
print("Acc", np.mean(gaussian_nb_scores['test_accuracy']))
|
||||||
|
print("Precision", np.mean(gaussian_nb_scores['test_precision']))
|
||||||
|
print("Recall", np.mean(gaussian_nb_scores['test_recall']))
|
||||||
|
print("F1", np.mean(gaussian_nb_scores['test_f1']))
|
||||||
|
print(f"Largest {n_sl} ACC:", np.sort(-np.partition(-gaussian_nb_scores['test_accuracy'], n_sl)[:n_sl])[::-1])
|
||||||
|
print(f"Smallest {n_sl} ACC:", np.sort(np.partition(gaussian_nb_scores['test_accuracy'], n_sl)[:n_sl]))
|
||||||
|
|
||||||
|
# %% [markdown]
|
||||||
|
# ### Stochastic Gradient Descent Classifier
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
sgdc = linear_model.SGDClassifier()
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
sgdc_scores = cross_validate(
|
||||||
|
sgdc,
|
||||||
|
X=imputer.fit_transform(train_x),
|
||||||
|
y=data_y,
|
||||||
|
groups=data_groups,
|
||||||
|
cv=cv_method,
|
||||||
|
n_jobs=-1,
|
||||||
|
error_score='raise',
|
||||||
|
scoring=('accuracy', 'precision', 'recall', 'f1')
|
||||||
|
)
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
print("Acc", np.mean(sgdc_scores['test_accuracy']))
|
||||||
|
print("Precision", np.mean(sgdc_scores['test_precision']))
|
||||||
|
print("Recall", np.mean(sgdc_scores['test_recall']))
|
||||||
|
print("F1", np.mean(sgdc_scores['test_f1']))
|
||||||
|
print(f"Largest {n_sl} ACC:", np.sort(-np.partition(-sgdc_scores['test_accuracy'], n_sl)[:n_sl])[::-1])
|
||||||
|
print(f"Smallest {n_sl} ACC:", np.sort(np.partition(sgdc_scores['test_accuracy'], n_sl)[:n_sl]))
|
||||||
|
|
||||||
|
# %% [markdown]
|
||||||
|
# ### K-nearest neighbors
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
knn = neighbors.KNeighborsClassifier()
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
knn_scores = cross_validate(
|
||||||
|
knn,
|
||||||
|
X=imputer.fit_transform(train_x),
|
||||||
|
y=data_y,
|
||||||
|
groups=data_groups,
|
||||||
|
cv=cv_method,
|
||||||
|
n_jobs=-1,
|
||||||
|
error_score='raise',
|
||||||
|
scoring=('accuracy', 'precision', 'recall', 'f1')
|
||||||
|
)
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
print("Acc", np.mean(knn_scores['test_accuracy']))
|
||||||
|
print("Precision", np.mean(knn_scores['test_precision']))
|
||||||
|
print("Recall", np.mean(knn_scores['test_recall']))
|
||||||
|
print("F1", np.mean(knn_scores['test_f1']))
|
||||||
|
print(f"Largest {n_sl} ACC:", np.sort(-np.partition(-knn_scores['test_accuracy'], n_sl)[:n_sl])[::-1])
|
||||||
|
print(f"Smallest {n_sl} ACC:", np.sort(np.partition(knn_scores['test_accuracy'], n_sl)[:n_sl]))
|
||||||
|
|
||||||
|
# %% [markdown]
|
||||||
|
# ### Decision Tree
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
dtree = tree.DecisionTreeClassifier()
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
dtree_scores = cross_validate(
|
||||||
|
dtree,
|
||||||
|
X=imputer.fit_transform(train_x),
|
||||||
|
y=data_y,
|
||||||
|
groups=data_groups,
|
||||||
|
cv=cv_method,
|
||||||
|
n_jobs=-1,
|
||||||
|
error_score='raise',
|
||||||
|
scoring=('accuracy', 'precision', 'recall', 'f1')
|
||||||
|
)
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
print("Acc", np.mean(dtree_scores['test_accuracy']))
|
||||||
|
print("Precision", np.mean(dtree_scores['test_precision']))
|
||||||
|
print("Recall", np.mean(dtree_scores['test_recall']))
|
||||||
|
print("F1", np.mean(dtree_scores['test_f1']))
|
||||||
|
print(f"Largest {n_sl} ACC:", np.sort(-np.partition(-dtree_scores['test_accuracy'], n_sl)[:n_sl])[::-1])
|
||||||
|
print(f"Smallest {n_sl} ACC:", np.sort(np.partition(dtree_scores['test_accuracy'], n_sl)[:n_sl]))
|
||||||
|
|
||||||
|
# %% [markdown]
|
||||||
|
# ### Random Forest Classifier
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
rfc = ensemble.RandomForestClassifier()
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
rfc_scores = cross_validate(
|
||||||
|
rfc,
|
||||||
|
X=imputer.fit_transform(train_x),
|
||||||
|
y=data_y,
|
||||||
|
groups=data_groups,
|
||||||
|
cv=cv_method,
|
||||||
|
n_jobs=-1,
|
||||||
|
error_score='raise',
|
||||||
|
scoring=('accuracy', 'precision', 'recall', 'f1')
|
||||||
|
)
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
print("Acc", np.mean(rfc_scores['test_accuracy']))
|
||||||
|
print("Precision", np.mean(rfc_scores['test_precision']))
|
||||||
|
print("Recall", np.mean(rfc_scores['test_recall']))
|
||||||
|
print("F1", np.mean(rfc_scores['test_f1']))
|
||||||
|
print(f"Largest {n_sl} ACC:", np.sort(-np.partition(-rfc_scores['test_accuracy'], n_sl)[:n_sl])[::-1])
|
||||||
|
print(f"Smallest {n_sl} ACC:", np.sort(np.partition(rfc_scores['test_accuracy'], n_sl)[:n_sl]))
|
||||||
|
|
||||||
|
# %% [markdown]
|
||||||
|
# ### Gradient Boosting Classifier
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
gbc = ensemble.GradientBoostingClassifier()
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
gbc_scores = cross_validate(
|
||||||
|
gbc,
|
||||||
|
X=imputer.fit_transform(train_x),
|
||||||
|
y=data_y,
|
||||||
|
groups=data_groups,
|
||||||
|
cv=cv_method,
|
||||||
|
n_jobs=-1,
|
||||||
|
error_score='raise',
|
||||||
|
scoring=('accuracy', 'precision', 'recall', 'f1')
|
||||||
|
)
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
print("Acc", np.mean(gbc_scores['test_accuracy']))
|
||||||
|
print("Precision", np.mean(gbc_scores['test_precision']))
|
||||||
|
print("Recall", np.mean(gbc_scores['test_recall']))
|
||||||
|
print("F1", np.mean(gbc_scores['test_f1']))
|
||||||
|
print(f"Largest {n_sl} ACC:", np.sort(-np.partition(-gbc_scores['test_accuracy'], n_sl)[:n_sl])[::-1])
|
||||||
|
print(f"Smallest {n_sl} ACC:", np.sort(np.partition(gbc_scores['test_accuracy'], n_sl)[:n_sl]))
|
||||||
|
|
||||||
|
# %% [markdown]
|
||||||
|
# ### LGBM Classifier
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
lgbm = LGBMClassifier()
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
lgbm_scores = cross_validate(
|
||||||
|
lgbm,
|
||||||
|
X=imputer.fit_transform(train_x),
|
||||||
|
y=data_y,
|
||||||
|
groups=data_groups,
|
||||||
|
cv=cv_method,
|
||||||
|
n_jobs=-1,
|
||||||
|
error_score='raise',
|
||||||
|
scoring=('accuracy', 'precision', 'recall', 'f1')
|
||||||
|
)
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
print("Acc", np.mean(lgbm_scores['test_accuracy']))
|
||||||
|
print("Precision", np.mean(lgbm_scores['test_precision']))
|
||||||
|
print("Recall", np.mean(lgbm_scores['test_recall']))
|
||||||
|
print("F1", np.mean(lgbm_scores['test_f1']))
|
||||||
|
print(f"Largest {n_sl} ACC:", np.sort(-np.partition(-lgbm_scores['test_accuracy'], n_sl)[:n_sl])[::-1])
|
||||||
|
print(f"Smallest {n_sl} ACC:", np.sort(np.partition(lgbm_scores['test_accuracy'], n_sl)[:n_sl]))
|
||||||
|
|
||||||
|
# %% [markdown]
|
||||||
|
# ### XGBoost Classifier
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
xgb_classifier = xg.sklearn.XGBClassifier()
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
xgb_classifier_scores = cross_validate(
|
||||||
|
xgb_classifier,
|
||||||
|
X=imputer.fit_transform(train_x),
|
||||||
|
y=data_y,
|
||||||
|
groups=data_groups,
|
||||||
|
cv=cv_method,
|
||||||
|
n_jobs=-1,
|
||||||
|
error_score='raise',
|
||||||
|
scoring=('accuracy', 'precision', 'recall', 'f1')
|
||||||
|
)
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
print("Acc", np.mean(xgb_classifier_scores['test_accuracy']))
|
||||||
|
print("Precision", np.mean(xgb_classifier_scores['test_precision']))
|
||||||
|
print("Recall", np.mean(xgb_classifier_scores['test_recall']))
|
||||||
|
print("F1", np.mean(xgb_classifier_scores['test_f1']))
|
||||||
|
print(f"Largest {n_sl} ACC:", np.sort(-np.partition(-xgb_classifier_scores['test_accuracy'], n_sl)[:n_sl])[::-1])
|
||||||
|
print(f"Smallest {n_sl} ACC:", np.sort(np.partition(xgb_classifier_scores['test_accuracy'], n_sl)[:n_sl]))
|
|
@ -0,0 +1,184 @@
|
||||||
|
# ---
|
||||||
|
# jupyter:
|
||||||
|
# jupytext:
|
||||||
|
# formats: ipynb,py:percent
|
||||||
|
# text_representation:
|
||||||
|
# extension: .py
|
||||||
|
# format_name: percent
|
||||||
|
# format_version: '1.3'
|
||||||
|
# jupytext_version: 1.13.0
|
||||||
|
# kernelspec:
|
||||||
|
# display_name: straw2analysis
|
||||||
|
# language: python
|
||||||
|
# name: straw2analysis
|
||||||
|
# ---
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
# %matplotlib inline
|
||||||
|
import datetime
|
||||||
|
import importlib
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import pandas as pd
|
||||||
|
import seaborn as sns
|
||||||
|
from scipy import stats
|
||||||
|
|
||||||
|
from sklearn.model_selection import LeaveOneGroupOut, cross_validate
|
||||||
|
from sklearn.impute import SimpleImputer
|
||||||
|
|
||||||
|
from sklearn.dummy import DummyClassifier
|
||||||
|
from sklearn import linear_model, svm, naive_bayes, neighbors, tree, ensemble
|
||||||
|
from lightgbm import LGBMClassifier
|
||||||
|
import xgboost as xg
|
||||||
|
|
||||||
|
from sklearn.cluster import KMeans
|
||||||
|
|
||||||
|
from IPython.core.interactiveshell import InteractiveShell
|
||||||
|
InteractiveShell.ast_node_interactivity = "all"
|
||||||
|
|
||||||
|
nb_dir = os.path.split(os.getcwd())[0]
|
||||||
|
if nb_dir not in sys.path:
|
||||||
|
sys.path.append(nb_dir)
|
||||||
|
|
||||||
|
import machine_learning.labels
|
||||||
|
import machine_learning.model
|
||||||
|
from machine_learning.classification_models import ClassificationModels
|
||||||
|
|
||||||
|
# %% [markdown]
|
||||||
|
# # RAPIDS models
|
||||||
|
|
||||||
|
# %% [markdown]
|
||||||
|
# ## Set script's parameters
|
||||||
|
n_clusters = 5 # Number of clusters (could be regarded as a hyperparameter)
|
||||||
|
cv_method_str = 'logo' # logo, halflogo, 5kfold # Cross-validation method (could be regarded as a hyperparameter)
|
||||||
|
n_sl = 1 # Number of largest/smallest accuracies (of particular CV) outputs
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
model_input = pd.read_csv("../data/intradaily_30_min_all_targets/input_JCQ_job_demand_mean.csv")
|
||||||
|
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
|
||||||
|
|
||||||
|
clust_col = model_input.set_index(index_columns).var().idxmax() # age is a col with the highest variance
|
||||||
|
|
||||||
|
model_input.columns[list(model_input.columns).index('age'):-1]
|
||||||
|
|
||||||
|
lime_cols = [col for col in model_input if col.startswith('limesurvey')]
|
||||||
|
lime_cols
|
||||||
|
lime_col = 'limesurvey_demand_control_ratio'
|
||||||
|
clust_col = lime_col
|
||||||
|
|
||||||
|
model_input[clust_col].describe()
|
||||||
|
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
|
||||||
|
# Filter-out outlier rows by clust_col
|
||||||
|
model_input = model_input[(np.abs(stats.zscore(model_input[clust_col])) < 3)]
|
||||||
|
|
||||||
|
uniq = model_input[[clust_col, 'pid']].drop_duplicates().reset_index(drop=True)
|
||||||
|
plt.bar(uniq['pid'], uniq[clust_col])
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
# Get clusters by cluster col & and merge the clusters to main df
|
||||||
|
km = KMeans(n_clusters=n_clusters).fit_predict(uniq.set_index('pid'))
|
||||||
|
np.unique(km, return_counts=True)
|
||||||
|
uniq['cluster'] = km
|
||||||
|
uniq
|
||||||
|
|
||||||
|
model_input = model_input.merge(uniq[['pid', 'cluster']])
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
model_input.set_index(index_columns, inplace=True)
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
# Create dict with classification ml models
|
||||||
|
cm = ClassificationModels()
|
||||||
|
cmodels = cm.get_cmodels()
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
for k in range(n_clusters):
|
||||||
|
model_input_subset = model_input[model_input["cluster"] == k].copy()
|
||||||
|
bins = [-10, -1, 1, 10] # bins for z-scored targets
|
||||||
|
model_input_subset.loc[:, 'target'] = \
|
||||||
|
pd.cut(model_input_subset.loc[:, 'target'], bins=bins, labels=['low', 'medium', 'high'], right=False) #['low', 'medium', 'high']
|
||||||
|
model_input_subset['target'].value_counts()
|
||||||
|
model_input_subset = model_input_subset[model_input_subset['target'] != "medium"]
|
||||||
|
model_input_subset['target'] = model_input_subset['target'].astype(str).apply(lambda x: 0 if x == "low" else 1)
|
||||||
|
|
||||||
|
model_input_subset['target'].value_counts()
|
||||||
|
|
||||||
|
if cv_method_str == 'halflogo':
|
||||||
|
model_input_subset['pid_index'] = model_input_subset.groupby('pid').cumcount()
|
||||||
|
model_input_subset['pid_count'] = model_input_subset.groupby('pid')['pid'].transform('count')
|
||||||
|
|
||||||
|
model_input_subset["pid_index"] = (model_input_subset['pid_index'] / model_input_subset['pid_count'] + 1).round()
|
||||||
|
model_input_subset["pid_half"] = model_input_subset["pid"] + "_" + model_input_subset["pid_index"].astype(int).astype(str)
|
||||||
|
|
||||||
|
data_x, data_y, data_groups = model_input_subset.drop(["target", "pid", "pid_index", "pid_half"], axis=1), model_input_subset["target"], model_input_subset["pid_half"]
|
||||||
|
else:
|
||||||
|
data_x, data_y, data_groups = model_input_subset.drop(["target", "pid"], axis=1), model_input_subset["target"], model_input_subset["pid"]
|
||||||
|
|
||||||
|
# Treat categorical features
|
||||||
|
categorical_feature_colnames = ["gender", "startlanguage"]
|
||||||
|
additional_categorical_features = [col for col in data_x.columns if "mostcommonactivity" in col or "homelabel" in col]
|
||||||
|
categorical_feature_colnames += additional_categorical_features
|
||||||
|
|
||||||
|
categorical_features = data_x[categorical_feature_colnames].copy()
|
||||||
|
mode_categorical_features = categorical_features.mode().iloc[0]
|
||||||
|
|
||||||
|
# fillna with mode
|
||||||
|
categorical_features = categorical_features.fillna(mode_categorical_features)
|
||||||
|
|
||||||
|
# one-hot encoding
|
||||||
|
categorical_features = categorical_features.apply(lambda col: col.astype("category"))
|
||||||
|
if not categorical_features.empty:
|
||||||
|
categorical_features = pd.get_dummies(categorical_features)
|
||||||
|
|
||||||
|
numerical_features = data_x.drop(categorical_feature_colnames, axis=1)
|
||||||
|
train_x = pd.concat([numerical_features, categorical_features], axis=1)
|
||||||
|
|
||||||
|
# Establish cv method
|
||||||
|
cv_method = None # Defaults to 5 k-folds in cross_validate method
|
||||||
|
if cv_method_str == 'logo' or cv_method_str == 'half_logo':
|
||||||
|
cv_method = LeaveOneGroupOut()
|
||||||
|
cv_method.get_n_splits(
|
||||||
|
train_x,
|
||||||
|
data_y,
|
||||||
|
groups=data_groups,
|
||||||
|
)
|
||||||
|
|
||||||
|
imputer = SimpleImputer(missing_values=np.nan, strategy='median')
|
||||||
|
|
||||||
|
for model_title, model in cmodels.items():
|
||||||
|
|
||||||
|
classifier = cross_validate(
|
||||||
|
model['model'],
|
||||||
|
X=imputer.fit_transform(train_x),
|
||||||
|
y=data_y,
|
||||||
|
groups=data_groups,
|
||||||
|
cv=cv_method,
|
||||||
|
n_jobs=-1,
|
||||||
|
error_score='raise',
|
||||||
|
scoring=('accuracy', 'precision', 'recall', 'f1')
|
||||||
|
)
|
||||||
|
|
||||||
|
print("\n-------------------------------------\n")
|
||||||
|
print("Current cluster:", k, end="\n")
|
||||||
|
print("Current model:", model_title, end="\n")
|
||||||
|
print("Acc", np.mean(classifier['test_accuracy']))
|
||||||
|
print("Precision", np.mean(classifier['test_precision']))
|
||||||
|
print("Recall", np.mean(classifier['test_recall']))
|
||||||
|
print("F1", np.mean(classifier['test_f1']))
|
||||||
|
print(f"Largest {n_sl} ACC:", np.sort(-np.partition(-classifier['test_accuracy'], n_sl)[:n_sl])[::-1])
|
||||||
|
print(f"Smallest {n_sl} ACC:", np.sort(np.partition(classifier['test_accuracy'], n_sl)[:n_sl]))
|
||||||
|
|
||||||
|
cmodels[model_title]['metrics'][0] += np.mean(classifier['test_accuracy'])
|
||||||
|
cmodels[model_title]['metrics'][1] += np.mean(classifier['test_precision'])
|
||||||
|
cmodels[model_title]['metrics'][2] += np.mean(classifier['test_recall'])
|
||||||
|
cmodels[model_title]['metrics'][3] += np.mean(classifier['test_f1'])
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
# Get overall results
|
||||||
|
cm.get_total_models_scores(n_clusters=n_clusters)
|
|
@ -0,0 +1,181 @@
|
||||||
|
# ---
|
||||||
|
# jupyter:
|
||||||
|
# jupytext:
|
||||||
|
# formats: ipynb,py:percent
|
||||||
|
# text_representation:
|
||||||
|
# extension: .py
|
||||||
|
# format_name: percent
|
||||||
|
# format_version: '1.3'
|
||||||
|
# jupytext_version: 1.13.0
|
||||||
|
# kernelspec:
|
||||||
|
# display_name: straw2analysis
|
||||||
|
# language: python
|
||||||
|
# name: straw2analysis
|
||||||
|
# ---
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
# %matplotlib inline
|
||||||
|
import datetime
|
||||||
|
import importlib
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import pandas as pd
|
||||||
|
import seaborn as sns
|
||||||
|
from scipy import stats
|
||||||
|
|
||||||
|
from sklearn.model_selection import LeaveOneGroupOut, cross_validate, train_test_split
|
||||||
|
from sklearn.impute import SimpleImputer
|
||||||
|
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
|
||||||
|
|
||||||
|
from sklearn.dummy import DummyClassifier
|
||||||
|
from sklearn import linear_model, svm, naive_bayes, neighbors, tree, ensemble
|
||||||
|
from lightgbm import LGBMClassifier
|
||||||
|
import xgboost as xg
|
||||||
|
|
||||||
|
from sklearn.cluster import KMeans
|
||||||
|
|
||||||
|
from IPython.core.interactiveshell import InteractiveShell
|
||||||
|
InteractiveShell.ast_node_interactivity = "all"
|
||||||
|
|
||||||
|
nb_dir = os.path.split(os.getcwd())[0]
|
||||||
|
if nb_dir not in sys.path:
|
||||||
|
sys.path.append(nb_dir)
|
||||||
|
|
||||||
|
import machine_learning.labels
|
||||||
|
import machine_learning.model
|
||||||
|
from machine_learning.classification_models import ClassificationModels
|
||||||
|
|
||||||
|
# %% [markdown]
|
||||||
|
# # RAPIDS models
|
||||||
|
|
||||||
|
# %% [markdown]
|
||||||
|
# # Useful method
|
||||||
|
def treat_categorical_features(input_set):
|
||||||
|
categorical_feature_colnames = ["gender", "startlanguage"]
|
||||||
|
additional_categorical_features = [col for col in input_set.columns if "mostcommonactivity" in col or "homelabel" in col]
|
||||||
|
categorical_feature_colnames += additional_categorical_features
|
||||||
|
|
||||||
|
categorical_features = input_set[categorical_feature_colnames].copy()
|
||||||
|
mode_categorical_features = categorical_features.mode().iloc[0]
|
||||||
|
|
||||||
|
# fillna with mode
|
||||||
|
categorical_features = categorical_features.fillna(mode_categorical_features)
|
||||||
|
|
||||||
|
# one-hot encoding
|
||||||
|
categorical_features = categorical_features.apply(lambda col: col.astype("category"))
|
||||||
|
if not categorical_features.empty:
|
||||||
|
categorical_features = pd.get_dummies(categorical_features)
|
||||||
|
|
||||||
|
numerical_features = input_set.drop(categorical_feature_colnames, axis=1)
|
||||||
|
|
||||||
|
return pd.concat([numerical_features, categorical_features], axis=1)
|
||||||
|
|
||||||
|
# %% [markdown]
|
||||||
|
# ## Set script's parameters
|
||||||
|
n_clusters = 3 # Number of clusters (could be regarded as a hyperparameter)
|
||||||
|
n_sl = 3 # Number of largest/smallest accuracies (of particular CV) outputs
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
model_input = pd.read_csv("../data/intradaily_30_min_all_targets/input_JCQ_job_demand_mean.csv")
|
||||||
|
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
|
||||||
|
|
||||||
|
clust_col = model_input.set_index(index_columns).var().idxmax() # age is a col with the highest variance
|
||||||
|
|
||||||
|
model_input.columns[list(model_input.columns).index('age'):-1]
|
||||||
|
|
||||||
|
lime_cols = [col for col in model_input if col.startswith('limesurvey')]
|
||||||
|
lime_cols
|
||||||
|
lime_col = 'limesurvey_demand_control_ratio'
|
||||||
|
clust_col = lime_col
|
||||||
|
|
||||||
|
model_input[clust_col].describe()
|
||||||
|
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
|
||||||
|
# Filter-out outlier rows by clust_col
|
||||||
|
model_input = model_input[(np.abs(stats.zscore(model_input[clust_col])) < 3)]
|
||||||
|
|
||||||
|
uniq = model_input[[clust_col, 'pid']].drop_duplicates().reset_index(drop=True)
|
||||||
|
plt.bar(uniq['pid'], uniq[clust_col])
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
# Get clusters by cluster col & and merge the clusters to main df
|
||||||
|
km = KMeans(n_clusters=n_clusters).fit_predict(uniq.set_index('pid'))
|
||||||
|
np.unique(km, return_counts=True)
|
||||||
|
uniq['cluster'] = km
|
||||||
|
uniq
|
||||||
|
|
||||||
|
model_input = model_input.merge(uniq[['pid', 'cluster']])
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
model_input.set_index(index_columns, inplace=True)
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
# Create dict with classification ml models
|
||||||
|
cm = ClassificationModels()
|
||||||
|
cmodels = cm.get_cmodels()
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
for k in range(n_clusters):
|
||||||
|
model_input_subset = model_input[model_input["cluster"] == k].copy()
|
||||||
|
|
||||||
|
# Takes 10th percentile and above 90th percentile as the test set -> the rest for the training set. Only two classes, seperated by z-score of 0.
|
||||||
|
model_input_subset['numerical_target'] = model_input_subset['target']
|
||||||
|
bins = [-10, 0, 10] # bins for z-scored targets
|
||||||
|
model_input_subset.loc[:, 'target'] = \
|
||||||
|
pd.cut(model_input_subset.loc[:, 'target'], bins=bins, labels=[0, 1], right=True)
|
||||||
|
|
||||||
|
p15 = np.percentile(model_input_subset['numerical_target'], 15)
|
||||||
|
p85 = np.percentile(model_input_subset['numerical_target'], 85)
|
||||||
|
|
||||||
|
# Treat categorical features
|
||||||
|
model_input_subset = treat_categorical_features(model_input_subset)
|
||||||
|
|
||||||
|
# Split to train, validate, and test subsets
|
||||||
|
train_set = model_input_subset[(model_input_subset['numerical_target'] > p15) & (model_input_subset['numerical_target'] < p85)].drop(['numerical_target'], axis=1)
|
||||||
|
test_set = model_input_subset[(model_input_subset['numerical_target'] <= p15) | (model_input_subset['numerical_target'] >= p85)].drop(['numerical_target'], axis=1)
|
||||||
|
|
||||||
|
train_set['target'].value_counts()
|
||||||
|
test_set['target'].value_counts()
|
||||||
|
|
||||||
|
train_x, train_y = train_set.drop(["target", "pid"], axis=1), train_set["target"]
|
||||||
|
|
||||||
|
validate_x, test_x, validate_y, test_y = \
|
||||||
|
train_test_split(test_set.drop(["target", "pid"], axis=1), test_set["target"], test_size=0.50, random_state=42)
|
||||||
|
|
||||||
|
# Impute missing values
|
||||||
|
imputer = SimpleImputer(missing_values=np.nan, strategy='median')
|
||||||
|
|
||||||
|
train_x = imputer.fit_transform(train_x)
|
||||||
|
validate_x = imputer.fit_transform(validate_x)
|
||||||
|
test_x = imputer.fit_transform(test_x)
|
||||||
|
|
||||||
|
for model_title, model in cmodels.items():
|
||||||
|
model['model'].fit(train_x, train_y)
|
||||||
|
y_pred = model['model'].predict(validate_x)
|
||||||
|
|
||||||
|
acc = accuracy_score(validate_y, y_pred)
|
||||||
|
prec = precision_score(validate_y, y_pred)
|
||||||
|
rec = recall_score(validate_y, y_pred)
|
||||||
|
f1 = f1_score(validate_y, y_pred)
|
||||||
|
|
||||||
|
print("\n-------------------------------------\n")
|
||||||
|
print("Current cluster:", k, end="\n")
|
||||||
|
print("Current model:", model_title, end="\n")
|
||||||
|
print("Acc", acc)
|
||||||
|
print("Precision", prec)
|
||||||
|
print("Recall", rec)
|
||||||
|
print("F1", f1)
|
||||||
|
|
||||||
|
cmodels[model_title]['metrics'][0] += acc
|
||||||
|
cmodels[model_title]['metrics'][1] += prec
|
||||||
|
cmodels[model_title]['metrics'][2] += rec
|
||||||
|
cmodels[model_title]['metrics'][3] += f1
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
# Get overall results
|
||||||
|
cm.get_total_models_scores(n_clusters=n_clusters)
|
|
@ -1,472 +0,0 @@
|
||||||
# ---
|
|
||||||
# jupyter:
|
|
||||||
# jupytext:
|
|
||||||
# formats: ipynb,py:percent
|
|
||||||
# text_representation:
|
|
||||||
# extension: .py
|
|
||||||
# format_name: percent
|
|
||||||
# format_version: '1.3'
|
|
||||||
# jupytext_version: 1.13.0
|
|
||||||
# kernelspec:
|
|
||||||
# display_name: straw2analysis
|
|
||||||
# language: python
|
|
||||||
# name: straw2analysis
|
|
||||||
# ---
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
# %matplotlib inline
|
|
||||||
import datetime
|
|
||||||
import importlib
|
|
||||||
import os
|
|
||||||
import sys
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
import pandas as pd
|
|
||||||
import seaborn as sns
|
|
||||||
import yaml
|
|
||||||
from pyprojroot import here
|
|
||||||
from sklearn import linear_model, svm, kernel_ridge, gaussian_process, ensemble
|
|
||||||
from sklearn.model_selection import LeaveOneGroupOut, cross_val_score
|
|
||||||
from sklearn.metrics import mean_squared_error, r2_score
|
|
||||||
from sklearn.impute import SimpleImputer
|
|
||||||
from xgboost import XGBRegressor
|
|
||||||
|
|
||||||
nb_dir = os.path.split(os.getcwd())[0]
|
|
||||||
if nb_dir not in sys.path:
|
|
||||||
sys.path.append(nb_dir)
|
|
||||||
|
|
||||||
import machine_learning.features_sensor
|
|
||||||
import machine_learning.labels
|
|
||||||
import machine_learning.model
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# # RAPIDS models
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ## PANAS negative affect
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
# model_input = pd.read_csv("../data/input_PANAS_NA.csv") # Nestandardizirani podatki - pred temeljitim čiščenjem
|
|
||||||
model_input = pd.read_csv("../data/z_input_PANAS_NA.csv") # Standardizirani podatki - pred temeljitim čiščenjem
|
|
||||||
# %% [markdown]
|
|
||||||
# ### NaNs before dropping cols and rows
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
sns.set(rc={"figure.figsize":(16, 8)})
|
|
||||||
sns.heatmap(model_input.sort_values('pid').set_index('pid').isna(), cbar=False)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
nan_cols = list(model_input.loc[:, model_input.isna().all()].columns)
|
|
||||||
nan_cols
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
model_input.dropna(axis=1, how="all", inplace=True)
|
|
||||||
model_input.dropna(axis=0, how="any", subset=["target"], inplace=True)
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### NaNs after dropping NaN cols and rows where target is NaN
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
sns.set(rc={"figure.figsize":(16, 8)})
|
|
||||||
sns.heatmap(model_input.sort_values('pid').set_index('pid').isna(), cbar=False)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
|
|
||||||
#if "pid" in model_input.columns:
|
|
||||||
# index_columns.append("pid")
|
|
||||||
model_input.set_index(index_columns, inplace=True)
|
|
||||||
|
|
||||||
data_x, data_y, data_groups = model_input.drop(["target", "pid"], axis=1), model_input["target"], model_input["pid"]
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
categorical_feature_colnames = ["gender", "startlanguage"]
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
categorical_features = data_x[categorical_feature_colnames].copy()
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
mode_categorical_features = categorical_features.mode().iloc[0]
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
# fillna with mode
|
|
||||||
categorical_features = categorical_features.fillna(mode_categorical_features)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
# one-hot encoding
|
|
||||||
categorical_features = categorical_features.apply(lambda col: col.astype("category"))
|
|
||||||
if not categorical_features.empty:
|
|
||||||
categorical_features = pd.get_dummies(categorical_features)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
numerical_features = data_x.drop(categorical_feature_colnames, axis=1)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
train_x = pd.concat([numerical_features, categorical_features], axis=1)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
train_x.dtypes
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
logo = LeaveOneGroupOut()
|
|
||||||
logo.get_n_splits(
|
|
||||||
train_x,
|
|
||||||
data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
sum(data_y.isna())
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### Linear Regression
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
lin_reg_rapids = linear_model.LinearRegression()
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
lin_reg_scores = cross_val_score(
|
|
||||||
lin_reg_rapids,
|
|
||||||
X=imputer.fit_transform(train_x),
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring='r2'
|
|
||||||
)
|
|
||||||
lin_reg_scores
|
|
||||||
np.median(lin_reg_scores)
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### Ridge regression
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
ridge_reg = linear_model.Ridge(alpha=.5)
|
|
||||||
|
|
||||||
# %% tags=[] jupyter={"source_hidden": true}
|
|
||||||
ridge_reg_scores = cross_val_score(
|
|
||||||
ridge_reg,
|
|
||||||
X=imputer.fit_transform(train_x),
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring="r2"
|
|
||||||
)
|
|
||||||
np.median(ridge_reg_scores)
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### Lasso
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
lasso_reg = linear_model.Lasso(alpha=0.1)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
lasso_reg_score = cross_val_score(
|
|
||||||
lasso_reg,
|
|
||||||
X=imputer.fit_transform(train_x),
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring="r2"
|
|
||||||
)
|
|
||||||
np.median(lasso_reg_score)
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### Bayesian Ridge
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
bayesian_ridge_reg = linear_model.BayesianRidge()
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
bayesian_ridge_reg_score = cross_val_score(
|
|
||||||
bayesian_ridge_reg,
|
|
||||||
X=imputer.fit_transform(train_x),
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring="r2"
|
|
||||||
)
|
|
||||||
np.median(bayesian_ridge_reg_score)
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### RANSAC (outlier robust regression)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
ransac_reg = linear_model.RANSACRegressor()
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
np.median(
|
|
||||||
cross_val_score(
|
|
||||||
ransac_reg,
|
|
||||||
X=imputer.fit_transform(train_x),
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring="r2"
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### Support vector regression
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
svr = svm.SVR()
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
np.median(
|
|
||||||
cross_val_score(
|
|
||||||
svr,
|
|
||||||
X=imputer.fit_transform(train_x),
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring="r2"
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### Kernel Ridge regression
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
kridge = kernel_ridge.KernelRidge()
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
np.median(
|
|
||||||
cross_val_score(
|
|
||||||
kridge,
|
|
||||||
X=imputer.fit_transform(train_x),
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring="r2"
|
|
||||||
)
|
|
||||||
)
|
|
||||||
# %% [markdown]
|
|
||||||
# ### Gaussian Process Regression
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
gpr = gaussian_process.GaussianProcessRegressor()
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
|
|
||||||
np.median(
|
|
||||||
cross_val_score(
|
|
||||||
gpr,
|
|
||||||
X=imputer.fit_transform(train_x),
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring="r2"
|
|
||||||
)
|
|
||||||
)
|
|
||||||
# %%
|
|
||||||
def insert_row(df, row):
|
|
||||||
return pd.concat([df, pd.DataFrame([row], columns=df.columns)], ignore_index=True)
|
|
||||||
|
|
||||||
# %%
|
|
||||||
def run_all_models(input_csv):
|
|
||||||
# Prepare data
|
|
||||||
model_input = pd.read_csv(input_csv)
|
|
||||||
model_input.dropna(axis=1, how="all", inplace=True)
|
|
||||||
model_input.dropna(axis=0, how="any", subset=["target"], inplace=True)
|
|
||||||
|
|
||||||
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
|
|
||||||
model_input.set_index(index_columns, inplace=True)
|
|
||||||
|
|
||||||
data_x, data_y, data_groups = model_input.drop(["target", "pid"], axis=1), model_input["target"], model_input["pid"]
|
|
||||||
|
|
||||||
categorical_feature_colnames = ["gender", "startlanguage"]
|
|
||||||
categorical_features = data_x[categorical_feature_colnames].copy()
|
|
||||||
mode_categorical_features = categorical_features.mode().iloc[0]
|
|
||||||
# fillna with mode
|
|
||||||
categorical_features = categorical_features.fillna(mode_categorical_features)
|
|
||||||
# one-hot encoding
|
|
||||||
categorical_features = categorical_features.apply(lambda col: col.astype("category"))
|
|
||||||
if not categorical_features.empty:
|
|
||||||
categorical_features = pd.get_dummies(categorical_features)
|
|
||||||
|
|
||||||
numerical_features = data_x.drop(categorical_feature_colnames, axis=1)
|
|
||||||
|
|
||||||
train_x = pd.concat([numerical_features, categorical_features], axis=1)
|
|
||||||
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
|
|
||||||
train_x_imputed = imputer.fit_transform(train_x)
|
|
||||||
|
|
||||||
# Prepare cross validation
|
|
||||||
logo = LeaveOneGroupOut()
|
|
||||||
logo.get_n_splits(
|
|
||||||
train_x,
|
|
||||||
data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
)
|
|
||||||
scores = pd.DataFrame(columns=["method", "median", "max"])
|
|
||||||
|
|
||||||
# Validate models
|
|
||||||
lin_reg_rapids = linear_model.LinearRegression()
|
|
||||||
lin_reg_scores = cross_val_score(
|
|
||||||
lin_reg_rapids,
|
|
||||||
X=train_x_imputed,
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring='r2'
|
|
||||||
)
|
|
||||||
print("Linear regression:")
|
|
||||||
print(np.median(lin_reg_scores))
|
|
||||||
scores = insert_row(scores, ["Linear regression",np.median(lin_reg_scores),np.max(lin_reg_scores)])
|
|
||||||
|
|
||||||
ridge_reg = linear_model.Ridge(alpha=.5)
|
|
||||||
ridge_reg_scores = cross_val_score(
|
|
||||||
ridge_reg,
|
|
||||||
X=train_x_imputed,
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring="r2"
|
|
||||||
)
|
|
||||||
print("Ridge regression")
|
|
||||||
print(np.median(ridge_reg_scores))
|
|
||||||
scores = insert_row(scores, ["Ridge regression",np.median(ridge_reg_scores),np.max(ridge_reg_scores)])
|
|
||||||
|
|
||||||
lasso_reg = linear_model.Lasso(alpha=0.1)
|
|
||||||
lasso_reg_score = cross_val_score(
|
|
||||||
lasso_reg,
|
|
||||||
X=train_x_imputed,
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring="r2"
|
|
||||||
)
|
|
||||||
print("Lasso regression")
|
|
||||||
print(np.median(lasso_reg_score))
|
|
||||||
scores = insert_row(scores, ["Lasso regression",np.median(lasso_reg_score),np.max(lasso_reg_score)])
|
|
||||||
|
|
||||||
bayesian_ridge_reg = linear_model.BayesianRidge()
|
|
||||||
bayesian_ridge_reg_score = cross_val_score(
|
|
||||||
bayesian_ridge_reg,
|
|
||||||
X=train_x_imputed,
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring="r2"
|
|
||||||
)
|
|
||||||
print("Bayesian Ridge")
|
|
||||||
print(np.median(bayesian_ridge_reg_score))
|
|
||||||
scores = insert_row(scores, ["Bayesian Ridge",np.median(bayesian_ridge_reg_score),np.max(bayesian_ridge_reg_score)])
|
|
||||||
|
|
||||||
ransac_reg = linear_model.RANSACRegressor()
|
|
||||||
ransac_reg_score = cross_val_score(
|
|
||||||
ransac_reg,
|
|
||||||
X=train_x_imputed,
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring="r2"
|
|
||||||
)
|
|
||||||
print("RANSAC (outlier robust regression)")
|
|
||||||
print(np.median(ransac_reg_score))
|
|
||||||
scores = insert_row(scores, ["RANSAC",np.median(ransac_reg_score),np.max(ransac_reg_score)])
|
|
||||||
|
|
||||||
svr = svm.SVR()
|
|
||||||
svr_score = cross_val_score(
|
|
||||||
svr,
|
|
||||||
X=train_x_imputed,
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring="r2"
|
|
||||||
)
|
|
||||||
print("Support vector regression")
|
|
||||||
print(np.median(svr_score))
|
|
||||||
scores = insert_row(scores, ["Support vector regression",np.median(svr_score),np.max(svr_score)])
|
|
||||||
|
|
||||||
kridge = kernel_ridge.KernelRidge()
|
|
||||||
kridge_score = cross_val_score(
|
|
||||||
kridge,
|
|
||||||
X=train_x_imputed,
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring="r2"
|
|
||||||
)
|
|
||||||
print("Kernel Ridge regression")
|
|
||||||
print(np.median(kridge_score))
|
|
||||||
scores = insert_row(scores, ["Kernel Ridge regression",np.median(kridge_score),np.max(kridge_score)])
|
|
||||||
|
|
||||||
gpr = gaussian_process.GaussianProcessRegressor()
|
|
||||||
gpr_score = cross_val_score(
|
|
||||||
gpr,
|
|
||||||
X=train_x_imputed,
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring="r2"
|
|
||||||
)
|
|
||||||
print("Gaussian Process Regression")
|
|
||||||
print(np.median(gpr_score))
|
|
||||||
scores = insert_row(scores, ["Gaussian Process Regression",np.median(gpr_score),np.max(gpr_score)])
|
|
||||||
|
|
||||||
rfr = ensemble.RandomForestRegressor(max_features=0.3, n_jobs=-1)
|
|
||||||
rfr_score = cross_val_score(
|
|
||||||
rfr,
|
|
||||||
X=train_x_imputed,
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring="r2"
|
|
||||||
)
|
|
||||||
print("Random Forest Regression")
|
|
||||||
print(np.median(rfr_score))
|
|
||||||
scores = insert_row(scores, ["Random Forest Regression",np.median(rfr_score),np.max(rfr_score)])
|
|
||||||
|
|
||||||
xgb = XGBRegressor()
|
|
||||||
xgb_score = cross_val_score(
|
|
||||||
xgb,
|
|
||||||
X=train_x_imputed,
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring="r2"
|
|
||||||
)
|
|
||||||
print("XGBoost Regressor")
|
|
||||||
print(np.median(xgb_score))
|
|
||||||
scores = insert_row(scores, ["XGBoost Regressor",np.median(xgb_score),np.max(xgb_score)])
|
|
||||||
|
|
||||||
ada = ensemble.AdaBoostRegressor()
|
|
||||||
ada_score = cross_val_score(
|
|
||||||
ada,
|
|
||||||
X=train_x_imputed,
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring="r2"
|
|
||||||
)
|
|
||||||
print("ADA Boost Regressor")
|
|
||||||
print(np.median(ada_score))
|
|
||||||
scores = insert_row(scores, ["ADA Boost Regressor",np.median(ada_score),np.max(ada_score)])
|
|
||||||
|
|
||||||
return scores
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1,332 +0,0 @@
|
||||||
# ---
|
|
||||||
# jupyter:
|
|
||||||
# jupytext:
|
|
||||||
# formats: ipynb,py:percent
|
|
||||||
# text_representation:
|
|
||||||
# extension: .py
|
|
||||||
# format_name: percent
|
|
||||||
# format_version: '1.3'
|
|
||||||
# jupytext_version: 1.13.0
|
|
||||||
# kernelspec:
|
|
||||||
# display_name: straw2analysis
|
|
||||||
# language: python
|
|
||||||
# name: straw2analysis
|
|
||||||
# ---
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
# %matplotlib inline
|
|
||||||
import datetime
|
|
||||||
import importlib
|
|
||||||
import os
|
|
||||||
import sys
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
import pandas as pd
|
|
||||||
import seaborn as sns
|
|
||||||
import yaml
|
|
||||||
from pyprojroot import here
|
|
||||||
from sklearn import linear_model, svm, kernel_ridge, gaussian_process
|
|
||||||
from sklearn.model_selection import LeaveOneGroupOut, cross_val_score, cross_validate
|
|
||||||
from sklearn.metrics import mean_squared_error, r2_score
|
|
||||||
from sklearn.impute import SimpleImputer
|
|
||||||
from sklearn.dummy import DummyRegressor
|
|
||||||
import xgboost as xg
|
|
||||||
from IPython.core.interactiveshell import InteractiveShell
|
|
||||||
InteractiveShell.ast_node_interactivity = "all"
|
|
||||||
|
|
||||||
nb_dir = os.path.split(os.getcwd())[0]
|
|
||||||
if nb_dir not in sys.path:
|
|
||||||
sys.path.append(nb_dir)
|
|
||||||
|
|
||||||
import machine_learning.features_sensor
|
|
||||||
import machine_learning.labels
|
|
||||||
import machine_learning.model
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# # RAPIDS models
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ## PANAS negative affect
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
model_input = pd.read_csv("../data/daily_18_hours_all_targets/input_PANAS_negative_affect_mean.csv")
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
|
|
||||||
#if "pid" in model_input.columns:
|
|
||||||
# index_columns.append("pid")
|
|
||||||
model_input.set_index(index_columns, inplace=True)
|
|
||||||
|
|
||||||
data_x, data_y, data_groups = model_input.drop(["target", "pid"], axis=1), model_input["target"], model_input["pid"]
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
categorical_feature_colnames = ["gender", "startlanguage"]
|
|
||||||
additional_categorical_features = [col for col in data_x.columns if "mostcommonactivity" in col or "homelabel" in col]
|
|
||||||
categorical_feature_colnames += additional_categorical_features
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
categorical_features = data_x[categorical_feature_colnames].copy()
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
mode_categorical_features = categorical_features.mode().iloc[0]
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
# fillna with mode
|
|
||||||
categorical_features = categorical_features.fillna(mode_categorical_features)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
# one-hot encoding
|
|
||||||
categorical_features = categorical_features.apply(lambda col: col.astype("category"))
|
|
||||||
if not categorical_features.empty:
|
|
||||||
categorical_features = pd.get_dummies(categorical_features)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
numerical_features = data_x.drop(categorical_feature_colnames, axis=1)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
train_x = pd.concat([numerical_features, categorical_features], axis=1)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
train_x.dtypes
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
logo = LeaveOneGroupOut()
|
|
||||||
logo.get_n_splits(
|
|
||||||
train_x,
|
|
||||||
data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
sum(data_y.isna())
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### Baseline: Dummy Regression (mean)
|
|
||||||
dummy_regr = DummyRegressor(strategy="mean")
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
lin_reg_scores = cross_validate(
|
|
||||||
dummy_regr,
|
|
||||||
X=train_x,
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
|
||||||
)
|
|
||||||
print("Negative Mean Squared Error", np.median(lin_reg_scores['test_neg_mean_squared_error']))
|
|
||||||
print("Negative Mean Absolute Error", np.median(lin_reg_scores['test_neg_mean_absolute_error']))
|
|
||||||
print("Negative Root Mean Squared Error", np.median(lin_reg_scores['test_neg_root_mean_squared_error']))
|
|
||||||
print("R2", np.median(lin_reg_scores['test_r2']))
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### Linear Regression
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
lin_reg_rapids = linear_model.LinearRegression()
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
lin_reg_scores = cross_validate(
|
|
||||||
lin_reg_rapids,
|
|
||||||
X=train_x,
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
|
||||||
)
|
|
||||||
print("Negative Mean Squared Error", np.median(lin_reg_scores['test_neg_mean_squared_error']))
|
|
||||||
print("Negative Mean Absolute Error", np.median(lin_reg_scores['test_neg_mean_absolute_error']))
|
|
||||||
print("Negative Root Mean Squared Error", np.median(lin_reg_scores['test_neg_root_mean_squared_error']))
|
|
||||||
print("R2", np.median(lin_reg_scores['test_r2']))
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### XGBRegressor Linear Regression
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
xgb_r = xg.XGBRegressor(objective ='reg:squarederror', n_estimators = 10)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
xgb_reg_scores = cross_validate(
|
|
||||||
xgb_r,
|
|
||||||
X=train_x,
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
|
||||||
)
|
|
||||||
print("Negative Mean Squared Error", np.median(xgb_reg_scores['test_neg_mean_squared_error']))
|
|
||||||
print("Negative Mean Absolute Error", np.median(xgb_reg_scores['test_neg_mean_absolute_error']))
|
|
||||||
print("Negative Root Mean Squared Error", np.median(xgb_reg_scores['test_neg_root_mean_squared_error']))
|
|
||||||
print("R2", np.median(xgb_reg_scores['test_r2']))
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### XGBRegressor Pseudo Huber Error Regression
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
xgb_psuedo_huber_r = xg.XGBRegressor(objective ='reg:pseudohubererror', n_estimators = 10)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
xgb_psuedo_huber_reg_scores = cross_validate(
|
|
||||||
xgb_psuedo_huber_r,
|
|
||||||
X=train_x,
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
|
||||||
)
|
|
||||||
print("Negative Mean Squared Error", np.median(xgb_psuedo_huber_reg_scores['test_neg_mean_squared_error']))
|
|
||||||
print("Negative Mean Absolute Error", np.median(xgb_psuedo_huber_reg_scores['test_neg_mean_absolute_error']))
|
|
||||||
print("Negative Root Mean Squared Error", np.median(xgb_psuedo_huber_reg_scores['test_neg_root_mean_squared_error']))
|
|
||||||
print("R2", np.median(xgb_psuedo_huber_reg_scores['test_r2']))
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### Ridge regression
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
ridge_reg = linear_model.Ridge(alpha=.5)
|
|
||||||
|
|
||||||
# %% tags=[] jupyter={"source_hidden": true}
|
|
||||||
ridge_reg_scores = cross_validate(
|
|
||||||
ridge_reg,
|
|
||||||
X=train_x,
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
|
||||||
)
|
|
||||||
print("Negative Mean Squared Error", np.median(ridge_reg_scores['test_neg_mean_squared_error']))
|
|
||||||
print("Negative Mean Absolute Error", np.median(ridge_reg_scores['test_neg_mean_absolute_error']))
|
|
||||||
print("Negative Root Mean Squared Error", np.median(ridge_reg_scores['test_neg_root_mean_squared_error']))
|
|
||||||
print("R2", np.median(ridge_reg_scores['test_r2']))
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### Lasso
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
lasso_reg = linear_model.Lasso(alpha=0.1)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
lasso_reg_score = cross_validate(
|
|
||||||
lasso_reg,
|
|
||||||
X=train_x,
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
|
||||||
)
|
|
||||||
print("Negative Mean Squared Error", np.median(lasso_reg_score['test_neg_mean_squared_error']))
|
|
||||||
print("Negative Mean Absolute Error", np.median(lasso_reg_score['test_neg_mean_absolute_error']))
|
|
||||||
print("Negative Root Mean Squared Error", np.median(lasso_reg_score['test_neg_root_mean_squared_error']))
|
|
||||||
print("R2", np.median(lasso_reg_score['test_r2']))
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### Bayesian Ridge
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
bayesian_ridge_reg = linear_model.BayesianRidge()
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
bayesian_ridge_reg_score = cross_validate(
|
|
||||||
bayesian_ridge_reg,
|
|
||||||
X=train_x,
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
|
||||||
)
|
|
||||||
print("Negative Mean Squared Error", np.median(bayesian_ridge_reg_score['test_neg_mean_squared_error']))
|
|
||||||
print("Negative Mean Absolute Error", np.median(bayesian_ridge_reg_score['test_neg_mean_absolute_error']))
|
|
||||||
print("Negative Root Mean Squared Error", np.median(bayesian_ridge_reg_score['test_neg_root_mean_squared_error']))
|
|
||||||
print("R2", np.median(bayesian_ridge_reg_score['test_r2']))
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### RANSAC (outlier robust regression)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
ransac_reg = linear_model.RANSACRegressor()
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
ransac_reg_scores = cross_validate(
|
|
||||||
ransac_reg,
|
|
||||||
X=train_x,
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
|
||||||
)
|
|
||||||
print("Negative Mean Squared Error", np.median(ransac_reg_scores['test_neg_mean_squared_error']))
|
|
||||||
print("Negative Mean Absolute Error", np.median(ransac_reg_scores['test_neg_mean_absolute_error']))
|
|
||||||
print("Negative Root Mean Squared Error", np.median(ransac_reg_scores['test_neg_root_mean_squared_error']))
|
|
||||||
print("R2", np.median(ransac_reg_scores['test_r2']))
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### Support vector regression
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
svr = svm.SVR()
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
svr_scores = cross_validate(
|
|
||||||
svr,
|
|
||||||
X=train_x,
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
|
||||||
)
|
|
||||||
print("Negative Mean Squared Error", np.median(svr_scores['test_neg_mean_squared_error']))
|
|
||||||
print("Negative Mean Absolute Error", np.median(svr_scores['test_neg_mean_absolute_error']))
|
|
||||||
print("Negative Root Mean Squared Error", np.median(svr_scores['test_neg_root_mean_squared_error']))
|
|
||||||
print("R2", np.median(svr_scores['test_r2']))
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### Kernel Ridge regression
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
kridge = kernel_ridge.KernelRidge()
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
kridge_scores = cross_validate(
|
|
||||||
kridge,
|
|
||||||
X=train_x,
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
|
||||||
)
|
|
||||||
print("Negative Mean Squared Error", np.median(kridge_scores['test_neg_mean_squared_error']))
|
|
||||||
print("Negative Mean Absolute Error", np.median(kridge_scores['test_neg_mean_absolute_error']))
|
|
||||||
print("Negative Root Mean Squared Error", np.median(kridge_scores['test_neg_root_mean_squared_error']))
|
|
||||||
print("R2", np.median(kridge_scores['test_r2']))
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### Gaussian Process Regression
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
gpr = gaussian_process.GaussianProcessRegressor()
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
|
|
||||||
gpr_scores = cross_validate(
|
|
||||||
gpr,
|
|
||||||
X=train_x,
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
|
||||||
)
|
|
||||||
print("Negative Mean Squared Error", np.median(gpr_scores['test_neg_mean_squared_error']))
|
|
||||||
print("Negative Mean Absolute Error", np.median(gpr_scores['test_neg_mean_absolute_error']))
|
|
||||||
print("Negative Root Mean Squared Error", np.median(gpr_scores['test_neg_root_mean_squared_error']))
|
|
||||||
print("R2", np.median(gpr_scores['test_r2']))
|
|
||||||
|
|
||||||
# %%
|
|
|
@ -50,7 +50,7 @@ import machine_learning.model
|
||||||
# ## PANAS negative affect
|
# ## PANAS negative affect
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
model_input = pd.read_csv("../data/intradaily_30_min_all_targets/input_PANAS_negative_affect_mean.csv")
|
model_input = pd.read_csv("../data/intradaily_30_min_all_targets/input_JCQ_job_demand_mean.csv")
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
|
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
|
||||||
|
@ -58,7 +58,17 @@ index_columns = ["local_segment", "local_segment_label", "local_segment_start_da
|
||||||
# index_columns.append("pid")
|
# index_columns.append("pid")
|
||||||
model_input.set_index(index_columns, inplace=True)
|
model_input.set_index(index_columns, inplace=True)
|
||||||
|
|
||||||
data_x, data_y, data_groups = model_input.drop(["target", "pid"], axis=1), model_input["target"], model_input["pid"]
|
cv_method = 'half_logo' # logo, half_logo, 5kfold
|
||||||
|
if cv_method == 'logo':
|
||||||
|
data_x, data_y, data_groups = model_input.drop(["target", "pid"], axis=1), model_input["target"], model_input["pid"]
|
||||||
|
else:
|
||||||
|
model_input['pid_index'] = model_input.groupby('pid').cumcount()
|
||||||
|
model_input['pid_count'] = model_input.groupby('pid')['pid'].transform('count')
|
||||||
|
|
||||||
|
model_input["pid_index"] = (model_input['pid_index'] / model_input['pid_count'] + 1).round()
|
||||||
|
model_input["pid_half"] = model_input["pid"] + "_" + model_input["pid_index"].astype(int).astype(str)
|
||||||
|
|
||||||
|
data_x, data_y, data_groups = model_input.drop(["target", "pid", "pid_index", "pid_half"], axis=1), model_input["target"], model_input["pid_half"]
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
categorical_feature_colnames = ["gender", "startlanguage"]
|
categorical_feature_colnames = ["gender", "startlanguage"]
|
||||||
|
@ -98,6 +108,10 @@ logo.get_n_splits(
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# Defaults to 5 k folds in cross_validate method
|
||||||
|
if cv_method != 'logo' and cv_method != 'half_logo':
|
||||||
|
logo = None
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
sum(data_y.isna())
|
sum(data_y.isna())
|
||||||
|
|
||||||
|
@ -109,7 +123,7 @@ dummy_regr = DummyRegressor(strategy="mean")
|
||||||
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
|
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
lin_reg_scores = cross_validate(
|
dummy_regressor = cross_validate(
|
||||||
dummy_regr,
|
dummy_regr,
|
||||||
X=imputer.fit_transform(train_x),
|
X=imputer.fit_transform(train_x),
|
||||||
y=data_y,
|
y=data_y,
|
||||||
|
@ -118,10 +132,10 @@ lin_reg_scores = cross_validate(
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
||||||
)
|
)
|
||||||
print("Negative Mean Squared Error", np.median(lin_reg_scores['test_neg_mean_squared_error']))
|
print("Negative Mean Squared Error", np.median(dummy_regressor['test_neg_mean_squared_error']))
|
||||||
print("Negative Mean Absolute Error", np.median(lin_reg_scores['test_neg_mean_absolute_error']))
|
print("Negative Mean Absolute Error", np.median(dummy_regressor['test_neg_mean_absolute_error']))
|
||||||
print("Negative Root Mean Squared Error", np.median(lin_reg_scores['test_neg_root_mean_squared_error']))
|
print("Negative Root Mean Squared Error", np.median(dummy_regressor['test_neg_root_mean_squared_error']))
|
||||||
print("R2", np.median(lin_reg_scores['test_r2']))
|
print("R2", np.median(dummy_regressor['test_r2']))
|
||||||
|
|
||||||
# %% [markdown]
|
# %% [markdown]
|
||||||
# ### Linear Regression
|
# ### Linear Regression
|
|
@ -53,12 +53,25 @@ import machine_learning.model
|
||||||
model_input = pd.read_csv("../data/stressfulness_event/input_appraisal_stressfulness_event_mean.csv")
|
model_input = pd.read_csv("../data/stressfulness_event/input_appraisal_stressfulness_event_mean.csv")
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
|
|
||||||
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
|
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
|
||||||
#if "pid" in model_input.columns:
|
|
||||||
# index_columns.append("pid")
|
|
||||||
model_input.set_index(index_columns, inplace=True)
|
model_input.set_index(index_columns, inplace=True)
|
||||||
|
|
||||||
data_x, data_y, data_groups = model_input.drop(["target", "pid"], axis=1), model_input["target"], model_input["pid"]
|
cv_method = 'half_logo'
|
||||||
|
if cv_method == 'logo':
|
||||||
|
data_x, data_y, data_groups = model_input.drop(["target", "pid"], axis=1), model_input["target"], model_input["pid"]
|
||||||
|
else:
|
||||||
|
|
||||||
|
model_input[(model_input['pid'] == "p037") | (model_input['pid'] == "p064") | (model_input['pid'] == "p092")]
|
||||||
|
|
||||||
|
model_input['pid_index'] = model_input.groupby('pid').cumcount()
|
||||||
|
model_input['pid_count'] = model_input.groupby('pid')['pid'].transform('count')
|
||||||
|
|
||||||
|
model_input["pid_index"] = (model_input['pid_index'] / model_input['pid_count'] + 1).round()
|
||||||
|
model_input["pid_half"] = model_input["pid"] + "_" + model_input["pid_index"].astype(int).astype(str)
|
||||||
|
|
||||||
|
data_x, data_y, data_groups = model_input.drop(["target", "pid", "pid_index", "pid_half"], axis=1), model_input["target"], model_input["pid_half"]
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
categorical_feature_colnames = ["gender", "startlanguage"]
|
categorical_feature_colnames = ["gender", "startlanguage"]
|
||||||
|
@ -97,12 +110,10 @@ logo.get_n_splits(
|
||||||
data_y,
|
data_y,
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
)
|
)
|
||||||
logo.split(
|
|
||||||
train_x,
|
|
||||||
data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
# Defaults to 5 k folds in cross_validate method
|
||||||
|
if cv_method != 'logo' and cv_method != 'half_logo':
|
||||||
|
logo = None
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
sum(data_y.isna())
|
sum(data_y.isna())
|
||||||
|
|
|
@ -0,0 +1,71 @@
|
||||||
|
from sklearn.dummy import DummyClassifier
|
||||||
|
from sklearn import linear_model, svm, naive_bayes, neighbors, tree, ensemble
|
||||||
|
from lightgbm import LGBMClassifier
|
||||||
|
import xgboost as xg
|
||||||
|
|
||||||
|
class ClassificationModels():
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
self.cmodels = self.init_classification_models()
|
||||||
|
|
||||||
|
def get_cmodels(self):
|
||||||
|
return self.cmodels
|
||||||
|
|
||||||
|
def init_classification_models(self):
|
||||||
|
cmodels = {
|
||||||
|
'dummy_classifier': {
|
||||||
|
'model': DummyClassifier(strategy="most_frequent"),
|
||||||
|
'metrics': [0, 0, 0, 0]
|
||||||
|
},
|
||||||
|
'logistic_regression': {
|
||||||
|
'model': linear_model.LogisticRegression(max_iter=1000),
|
||||||
|
'metrics': [0, 0, 0, 0]
|
||||||
|
},
|
||||||
|
'support_vector_machine': {
|
||||||
|
'model': svm.SVC(),
|
||||||
|
'metrics': [0, 0, 0, 0]
|
||||||
|
},
|
||||||
|
'gaussian_naive_bayes': {
|
||||||
|
'model': naive_bayes.GaussianNB(),
|
||||||
|
'metrics': [0, 0, 0, 0]
|
||||||
|
},
|
||||||
|
'stochastic_gradient_descent_classifier': {
|
||||||
|
'model': linear_model.SGDClassifier(),
|
||||||
|
'metrics': [0, 0, 0, 0]
|
||||||
|
},
|
||||||
|
'knn': {
|
||||||
|
'model': neighbors.KNeighborsClassifier(),
|
||||||
|
'metrics': [0, 0, 0, 0]
|
||||||
|
},
|
||||||
|
'decision_tree': {
|
||||||
|
'model': tree.DecisionTreeClassifier(),
|
||||||
|
'metrics': [0, 0, 0, 0]
|
||||||
|
},
|
||||||
|
'random_forest_classifier': {
|
||||||
|
'model': ensemble.RandomForestClassifier(),
|
||||||
|
'metrics': [0, 0, 0, 0]
|
||||||
|
},
|
||||||
|
'gradient_boosting_classifier': {
|
||||||
|
'model': ensemble.GradientBoostingClassifier(),
|
||||||
|
'metrics': [0, 0, 0, 0]
|
||||||
|
},
|
||||||
|
'lgbm_classifier': {
|
||||||
|
'model': LGBMClassifier(),
|
||||||
|
'metrics': [0, 0, 0, 0]
|
||||||
|
},
|
||||||
|
'XGBoost_classifier': {
|
||||||
|
'model': xg.sklearn.XGBClassifier(),
|
||||||
|
'metrics': [0, 0, 0, 0]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return cmodels
|
||||||
|
|
||||||
|
def get_total_models_scores(self, n_clusters=1):
|
||||||
|
for model_title, model in self.cmodels.items():
|
||||||
|
print("\n************************************\n")
|
||||||
|
print("Current model:", model_title, end="\n")
|
||||||
|
print("Acc:", model['metrics'][0]/n_clusters)
|
||||||
|
print("Precision:", model['metrics'][1]/n_clusters)
|
||||||
|
print("Recall:", model['metrics'][2]/n_clusters)
|
||||||
|
print("F1:", model['metrics'][3]/n_clusters)
|
Loading…
Reference in New Issue