diff --git a/exploration/ml_pipeline_classification.py b/exploration/ml_pipeline_classification.py new file mode 100644 index 0000000..3acefcb --- /dev/null +++ b/exploration/ml_pipeline_classification.py @@ -0,0 +1,385 @@ +# --- +# jupyter: +# jupytext: +# formats: ipynb,py:percent +# text_representation: +# extension: .py +# format_name: percent +# format_version: '1.3' +# jupytext_version: 1.13.0 +# kernelspec: +# display_name: straw2analysis +# language: python +# name: straw2analysis +# --- + +# %% jupyter={"source_hidden": true} +# %matplotlib inline +import datetime +import importlib +import os +import sys + +import numpy as np +import matplotlib.pyplot as plt +import pandas as pd +import seaborn as sns + +from sklearn import linear_model, svm, naive_bayes, neighbors, tree, ensemble +from sklearn.model_selection import LeaveOneGroupOut, cross_validate +from sklearn.dummy import DummyClassifier +from sklearn.impute import SimpleImputer + +from lightgbm import LGBMClassifier +import xgboost as xg +from IPython.core.interactiveshell import InteractiveShell +InteractiveShell.ast_node_interactivity = "all" + +nb_dir = os.path.split(os.getcwd())[0] +if nb_dir not in sys.path: + sys.path.append(nb_dir) + +import machine_learning.labels +import machine_learning.model + +# %% [markdown] +# # RAPIDS models + +# %% [markdown] +# ## Set script's parameters +cv_method_str = 'logo' # logo, halflogo, 5kfold # Cross-validation method (could be regarded as a hyperparameter) +n_sl = 1 # Number of largest/smallest accuracies (of particular CV) outputs + +# %% jupyter={"source_hidden": true} +model_input = pd.read_csv("../data/stressfulness_event_nonstandardized/input_appraisal_stressfulness_event_mean.csv") + +# %% jupyter={"source_hidden": true} +index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"] +model_input.set_index(index_columns, inplace=True) +model_input['target'].value_counts() + +# %% jupyter={"source_hidden": true} +# bins = [-10, -1, 1, 10] # bins for z-scored targets +bins = [0, 1, 4] # bins for stressfulness (1-4) target +model_input['target'], edges = pd.cut(model_input.target, bins=bins, labels=['low', 'high'], retbins=True, right=True) #['low', 'medium', 'high'] +model_input['target'].value_counts(), edges +# model_input = model_input[model_input['target'] != "medium"] +model_input['target'] = model_input['target'].astype(str).apply(lambda x: 0 if x == "low" else 1) + +model_input['target'].value_counts() + +if cv_method_str == 'halflogo': + model_input['pid_index'] = model_input.groupby('pid').cumcount() + model_input['pid_count'] = model_input.groupby('pid')['pid'].transform('count') + + model_input["pid_index"] = (model_input['pid_index'] / model_input['pid_count'] + 1).round() + model_input["pid_half"] = model_input["pid"] + "_" + model_input["pid_index"].astype(int).astype(str) + + data_x, data_y, data_groups = model_input.drop(["target", "pid", "pid_index", "pid_half"], axis=1), model_input["target"], model_input["pid_half"] +else: + data_x, data_y, data_groups = model_input.drop(["target", "pid"], axis=1), model_input["target"], model_input["pid"] + + +# %% jupyter={"source_hidden": true} +categorical_feature_colnames = ["gender", "startlanguage"] +additional_categorical_features = [col for col in data_x.columns if "mostcommonactivity" in col or "homelabel" in col] +categorical_feature_colnames += additional_categorical_features + +categorical_features = data_x[categorical_feature_colnames].copy() +mode_categorical_features = categorical_features.mode().iloc[0] + +# fillna with mode +categorical_features = categorical_features.fillna(mode_categorical_features) + +# one-hot encoding +categorical_features = categorical_features.apply(lambda col: col.astype("category")) +if not categorical_features.empty: + categorical_features = pd.get_dummies(categorical_features) + +numerical_features = data_x.drop(categorical_feature_colnames, axis=1) +train_x = pd.concat([numerical_features, categorical_features], axis=1) +train_x.dtypes + +# %% jupyter={"source_hidden": true} +cv_method = None # Defaults to 5 k-folds in cross_validate method +if cv_method_str == 'logo' or cv_method_str == 'half_logo': + cv_method = LeaveOneGroupOut() + cv_method.get_n_splits( + train_x, + data_y, + groups=data_groups, + ) + +# %% jupyter={"source_hidden": true} +imputer = SimpleImputer(missing_values=np.nan, strategy='median') + +# %% [markdown] +# ### Baseline: Dummy Classifier (most frequent) +dummy_class = DummyClassifier(strategy="most_frequent") + +# %% jupyter={"source_hidden": true} +dummy_classifier = cross_validate( + dummy_class, + X=imputer.fit_transform(train_x), + y=data_y, + groups=data_groups, + cv=cv_method, + n_jobs=-1, + error_score='raise', + scoring=('accuracy', 'average_precision', 'recall', 'f1') +) +# %% jupyter={"source_hidden": true} +print("Acc", np.mean(dummy_classifier['test_accuracy'])) +print("Precision", np.mean(dummy_classifier['test_average_precision'])) +print("Recall", np.mean(dummy_classifier['test_recall'])) +print("F1", np.mean(dummy_classifier['test_f1'])) +print(f"Largest {n_sl} ACC:", np.sort(-np.partition(-dummy_classifier['test_accuracy'], n_sl)[:n_sl])[::-1]) +print(f"Smallest {n_sl} ACC:", np.sort(np.partition(dummy_classifier['test_accuracy'], n_sl)[:n_sl])) + +# %% [markdown] +# ### Logistic Regression + +# %% jupyter={"source_hidden": true} +logistic_regression = linear_model.LogisticRegression() + +# %% jupyter={"source_hidden": true} +log_reg_scores = cross_validate( + logistic_regression, + X=imputer.fit_transform(train_x), + y=data_y, + groups=data_groups, + cv=cv_method, + n_jobs=-1, + scoring=('accuracy', 'precision', 'recall', 'f1') +) +# %% jupyter={"source_hidden": true} +print("Acc", np.mean(log_reg_scores['test_accuracy'])) +print("Precision", np.mean(log_reg_scores['test_precision'])) +print("Recall", np.mean(log_reg_scores['test_recall'])) +print("F1", np.mean(log_reg_scores['test_f1'])) +print(f"Largest {n_sl} ACC:", np.sort(-np.partition(-log_reg_scores['test_accuracy'], n_sl)[:n_sl])[::-1]) +print(f"Smallest {n_sl} ACC:", np.sort(np.partition(log_reg_scores['test_accuracy'], n_sl)[:n_sl])) + +# %% [markdown] +# ### Support Vector Machine + +# %% jupyter={"source_hidden": true} +svc = svm.SVC() + +# %% jupyter={"source_hidden": true} +svc_scores = cross_validate( + svc, + X=imputer.fit_transform(train_x), + y=data_y, + groups=data_groups, + cv=cv_method, + n_jobs=-1, + scoring=('accuracy', 'precision', 'recall', 'f1') +) +# %% jupyter={"source_hidden": true} +print("Acc", np.mean(svc_scores['test_accuracy'])) +print("Precision", np.mean(svc_scores['test_precision'])) +print("Recall", np.mean(svc_scores['test_recall'])) +print("F1", np.mean(svc_scores['test_f1'])) +print(f"Largest {n_sl} ACC:", np.sort(-np.partition(-svc_scores['test_accuracy'], n_sl)[:n_sl])[::-1]) +print(f"Smallest {n_sl} ACC:", np.sort(np.partition(svc_scores['test_accuracy'], n_sl)[:n_sl])) + +# %% [markdown] +# ### Gaussian Naive Bayes + +# %% jupyter={"source_hidden": true} +gaussian_nb = naive_bayes.GaussianNB() + +# %% jupyter={"source_hidden": true} +gaussian_nb_scores = cross_validate( + gaussian_nb, + X=imputer.fit_transform(train_x), + y=data_y, + groups=data_groups, + cv=cv_method, + n_jobs=-1, + error_score='raise', + scoring=('accuracy', 'precision', 'recall', 'f1') +) +# %% jupyter={"source_hidden": true} +print("Acc", np.mean(gaussian_nb_scores['test_accuracy'])) +print("Precision", np.mean(gaussian_nb_scores['test_precision'])) +print("Recall", np.mean(gaussian_nb_scores['test_recall'])) +print("F1", np.mean(gaussian_nb_scores['test_f1'])) +print(f"Largest {n_sl} ACC:", np.sort(-np.partition(-gaussian_nb_scores['test_accuracy'], n_sl)[:n_sl])[::-1]) +print(f"Smallest {n_sl} ACC:", np.sort(np.partition(gaussian_nb_scores['test_accuracy'], n_sl)[:n_sl])) + +# %% [markdown] +# ### Stochastic Gradient Descent Classifier + +# %% jupyter={"source_hidden": true} +sgdc = linear_model.SGDClassifier() + +# %% jupyter={"source_hidden": true} +sgdc_scores = cross_validate( + sgdc, + X=imputer.fit_transform(train_x), + y=data_y, + groups=data_groups, + cv=cv_method, + n_jobs=-1, + error_score='raise', + scoring=('accuracy', 'precision', 'recall', 'f1') +) +# %% jupyter={"source_hidden": true} +print("Acc", np.mean(sgdc_scores['test_accuracy'])) +print("Precision", np.mean(sgdc_scores['test_precision'])) +print("Recall", np.mean(sgdc_scores['test_recall'])) +print("F1", np.mean(sgdc_scores['test_f1'])) +print(f"Largest {n_sl} ACC:", np.sort(-np.partition(-sgdc_scores['test_accuracy'], n_sl)[:n_sl])[::-1]) +print(f"Smallest {n_sl} ACC:", np.sort(np.partition(sgdc_scores['test_accuracy'], n_sl)[:n_sl])) + +# %% [markdown] +# ### K-nearest neighbors + +# %% jupyter={"source_hidden": true} +knn = neighbors.KNeighborsClassifier() + +# %% jupyter={"source_hidden": true} +knn_scores = cross_validate( + knn, + X=imputer.fit_transform(train_x), + y=data_y, + groups=data_groups, + cv=cv_method, + n_jobs=-1, + error_score='raise', + scoring=('accuracy', 'precision', 'recall', 'f1') +) +# %% jupyter={"source_hidden": true} +print("Acc", np.mean(knn_scores['test_accuracy'])) +print("Precision", np.mean(knn_scores['test_precision'])) +print("Recall", np.mean(knn_scores['test_recall'])) +print("F1", np.mean(knn_scores['test_f1'])) +print(f"Largest {n_sl} ACC:", np.sort(-np.partition(-knn_scores['test_accuracy'], n_sl)[:n_sl])[::-1]) +print(f"Smallest {n_sl} ACC:", np.sort(np.partition(knn_scores['test_accuracy'], n_sl)[:n_sl])) + +# %% [markdown] +# ### Decision Tree + +# %% jupyter={"source_hidden": true} +dtree = tree.DecisionTreeClassifier() + +# %% jupyter={"source_hidden": true} +dtree_scores = cross_validate( + dtree, + X=imputer.fit_transform(train_x), + y=data_y, + groups=data_groups, + cv=cv_method, + n_jobs=-1, + error_score='raise', + scoring=('accuracy', 'precision', 'recall', 'f1') +) +# %% jupyter={"source_hidden": true} +print("Acc", np.mean(dtree_scores['test_accuracy'])) +print("Precision", np.mean(dtree_scores['test_precision'])) +print("Recall", np.mean(dtree_scores['test_recall'])) +print("F1", np.mean(dtree_scores['test_f1'])) +print(f"Largest {n_sl} ACC:", np.sort(-np.partition(-dtree_scores['test_accuracy'], n_sl)[:n_sl])[::-1]) +print(f"Smallest {n_sl} ACC:", np.sort(np.partition(dtree_scores['test_accuracy'], n_sl)[:n_sl])) + +# %% [markdown] +# ### Random Forest Classifier + +# %% jupyter={"source_hidden": true} +rfc = ensemble.RandomForestClassifier() + +# %% jupyter={"source_hidden": true} +rfc_scores = cross_validate( + rfc, + X=imputer.fit_transform(train_x), + y=data_y, + groups=data_groups, + cv=cv_method, + n_jobs=-1, + error_score='raise', + scoring=('accuracy', 'precision', 'recall', 'f1') +) +# %% jupyter={"source_hidden": true} +print("Acc", np.mean(rfc_scores['test_accuracy'])) +print("Precision", np.mean(rfc_scores['test_precision'])) +print("Recall", np.mean(rfc_scores['test_recall'])) +print("F1", np.mean(rfc_scores['test_f1'])) +print(f"Largest {n_sl} ACC:", np.sort(-np.partition(-rfc_scores['test_accuracy'], n_sl)[:n_sl])[::-1]) +print(f"Smallest {n_sl} ACC:", np.sort(np.partition(rfc_scores['test_accuracy'], n_sl)[:n_sl])) + +# %% [markdown] +# ### Gradient Boosting Classifier + +# %% jupyter={"source_hidden": true} +gbc = ensemble.GradientBoostingClassifier() + +# %% jupyter={"source_hidden": true} +gbc_scores = cross_validate( + gbc, + X=imputer.fit_transform(train_x), + y=data_y, + groups=data_groups, + cv=cv_method, + n_jobs=-1, + error_score='raise', + scoring=('accuracy', 'precision', 'recall', 'f1') +) +# %% jupyter={"source_hidden": true} +print("Acc", np.mean(gbc_scores['test_accuracy'])) +print("Precision", np.mean(gbc_scores['test_precision'])) +print("Recall", np.mean(gbc_scores['test_recall'])) +print("F1", np.mean(gbc_scores['test_f1'])) +print(f"Largest {n_sl} ACC:", np.sort(-np.partition(-gbc_scores['test_accuracy'], n_sl)[:n_sl])[::-1]) +print(f"Smallest {n_sl} ACC:", np.sort(np.partition(gbc_scores['test_accuracy'], n_sl)[:n_sl])) + +# %% [markdown] +# ### LGBM Classifier + +# %% jupyter={"source_hidden": true} +lgbm = LGBMClassifier() + +# %% jupyter={"source_hidden": true} +lgbm_scores = cross_validate( + lgbm, + X=imputer.fit_transform(train_x), + y=data_y, + groups=data_groups, + cv=cv_method, + n_jobs=-1, + error_score='raise', + scoring=('accuracy', 'precision', 'recall', 'f1') +) +# %% jupyter={"source_hidden": true} +print("Acc", np.mean(lgbm_scores['test_accuracy'])) +print("Precision", np.mean(lgbm_scores['test_precision'])) +print("Recall", np.mean(lgbm_scores['test_recall'])) +print("F1", np.mean(lgbm_scores['test_f1'])) +print(f"Largest {n_sl} ACC:", np.sort(-np.partition(-lgbm_scores['test_accuracy'], n_sl)[:n_sl])[::-1]) +print(f"Smallest {n_sl} ACC:", np.sort(np.partition(lgbm_scores['test_accuracy'], n_sl)[:n_sl])) + +# %% [markdown] +# ### XGBoost Classifier + +# %% jupyter={"source_hidden": true} +xgb_classifier = xg.sklearn.XGBClassifier() + +# %% jupyter={"source_hidden": true} +xgb_classifier_scores = cross_validate( + xgb_classifier, + X=imputer.fit_transform(train_x), + y=data_y, + groups=data_groups, + cv=cv_method, + n_jobs=-1, + error_score='raise', + scoring=('accuracy', 'precision', 'recall', 'f1') +) +# %% jupyter={"source_hidden": true} +print("Acc", np.mean(xgb_classifier_scores['test_accuracy'])) +print("Precision", np.mean(xgb_classifier_scores['test_precision'])) +print("Recall", np.mean(xgb_classifier_scores['test_recall'])) +print("F1", np.mean(xgb_classifier_scores['test_f1'])) +print(f"Largest {n_sl} ACC:", np.sort(-np.partition(-xgb_classifier_scores['test_accuracy'], n_sl)[:n_sl])[::-1]) +print(f"Smallest {n_sl} ACC:", np.sort(np.partition(xgb_classifier_scores['test_accuracy'], n_sl)[:n_sl])) diff --git a/exploration/ml_pipeline_classification_with_clustering.py b/exploration/ml_pipeline_classification_with_clustering.py new file mode 100644 index 0000000..0bf4417 --- /dev/null +++ b/exploration/ml_pipeline_classification_with_clustering.py @@ -0,0 +1,184 @@ +# --- +# jupyter: +# jupytext: +# formats: ipynb,py:percent +# text_representation: +# extension: .py +# format_name: percent +# format_version: '1.3' +# jupytext_version: 1.13.0 +# kernelspec: +# display_name: straw2analysis +# language: python +# name: straw2analysis +# --- + +# %% jupyter={"source_hidden": true} +# %matplotlib inline +import datetime +import importlib +import os +import sys + +import numpy as np +import matplotlib.pyplot as plt +import pandas as pd +import seaborn as sns +from scipy import stats + +from sklearn.model_selection import LeaveOneGroupOut, cross_validate +from sklearn.impute import SimpleImputer + +from sklearn.dummy import DummyClassifier +from sklearn import linear_model, svm, naive_bayes, neighbors, tree, ensemble +from lightgbm import LGBMClassifier +import xgboost as xg + +from sklearn.cluster import KMeans + +from IPython.core.interactiveshell import InteractiveShell +InteractiveShell.ast_node_interactivity = "all" + +nb_dir = os.path.split(os.getcwd())[0] +if nb_dir not in sys.path: + sys.path.append(nb_dir) + +import machine_learning.labels +import machine_learning.model +from machine_learning.classification_models import ClassificationModels + +# %% [markdown] +# # RAPIDS models + +# %% [markdown] +# ## Set script's parameters +n_clusters = 5 # Number of clusters (could be regarded as a hyperparameter) +cv_method_str = 'logo' # logo, halflogo, 5kfold # Cross-validation method (could be regarded as a hyperparameter) +n_sl = 1 # Number of largest/smallest accuracies (of particular CV) outputs + +# %% jupyter={"source_hidden": true} +model_input = pd.read_csv("../data/intradaily_30_min_all_targets/input_JCQ_job_demand_mean.csv") +index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"] + +clust_col = model_input.set_index(index_columns).var().idxmax() # age is a col with the highest variance + +model_input.columns[list(model_input.columns).index('age'):-1] + +lime_cols = [col for col in model_input if col.startswith('limesurvey')] +lime_cols +lime_col = 'limesurvey_demand_control_ratio' +clust_col = lime_col + +model_input[clust_col].describe() + + +# %% jupyter={"source_hidden": true} + +# Filter-out outlier rows by clust_col +model_input = model_input[(np.abs(stats.zscore(model_input[clust_col])) < 3)] + +uniq = model_input[[clust_col, 'pid']].drop_duplicates().reset_index(drop=True) +plt.bar(uniq['pid'], uniq[clust_col]) + +# %% jupyter={"source_hidden": true} +# Get clusters by cluster col & and merge the clusters to main df +km = KMeans(n_clusters=n_clusters).fit_predict(uniq.set_index('pid')) +np.unique(km, return_counts=True) +uniq['cluster'] = km +uniq + +model_input = model_input.merge(uniq[['pid', 'cluster']]) + +# %% jupyter={"source_hidden": true} +model_input.set_index(index_columns, inplace=True) + +# %% jupyter={"source_hidden": true} +# Create dict with classification ml models +cm = ClassificationModels() +cmodels = cm.get_cmodels() + +# %% jupyter={"source_hidden": true} +for k in range(n_clusters): + model_input_subset = model_input[model_input["cluster"] == k].copy() + bins = [-10, -1, 1, 10] # bins for z-scored targets + model_input_subset.loc[:, 'target'] = \ + pd.cut(model_input_subset.loc[:, 'target'], bins=bins, labels=['low', 'medium', 'high'], right=False) #['low', 'medium', 'high'] + model_input_subset['target'].value_counts() + model_input_subset = model_input_subset[model_input_subset['target'] != "medium"] + model_input_subset['target'] = model_input_subset['target'].astype(str).apply(lambda x: 0 if x == "low" else 1) + + model_input_subset['target'].value_counts() + + if cv_method_str == 'halflogo': + model_input_subset['pid_index'] = model_input_subset.groupby('pid').cumcount() + model_input_subset['pid_count'] = model_input_subset.groupby('pid')['pid'].transform('count') + + model_input_subset["pid_index"] = (model_input_subset['pid_index'] / model_input_subset['pid_count'] + 1).round() + model_input_subset["pid_half"] = model_input_subset["pid"] + "_" + model_input_subset["pid_index"].astype(int).astype(str) + + data_x, data_y, data_groups = model_input_subset.drop(["target", "pid", "pid_index", "pid_half"], axis=1), model_input_subset["target"], model_input_subset["pid_half"] + else: + data_x, data_y, data_groups = model_input_subset.drop(["target", "pid"], axis=1), model_input_subset["target"], model_input_subset["pid"] + + # Treat categorical features + categorical_feature_colnames = ["gender", "startlanguage"] + additional_categorical_features = [col for col in data_x.columns if "mostcommonactivity" in col or "homelabel" in col] + categorical_feature_colnames += additional_categorical_features + + categorical_features = data_x[categorical_feature_colnames].copy() + mode_categorical_features = categorical_features.mode().iloc[0] + + # fillna with mode + categorical_features = categorical_features.fillna(mode_categorical_features) + + # one-hot encoding + categorical_features = categorical_features.apply(lambda col: col.astype("category")) + if not categorical_features.empty: + categorical_features = pd.get_dummies(categorical_features) + + numerical_features = data_x.drop(categorical_feature_colnames, axis=1) + train_x = pd.concat([numerical_features, categorical_features], axis=1) + + # Establish cv method + cv_method = None # Defaults to 5 k-folds in cross_validate method + if cv_method_str == 'logo' or cv_method_str == 'half_logo': + cv_method = LeaveOneGroupOut() + cv_method.get_n_splits( + train_x, + data_y, + groups=data_groups, + ) + + imputer = SimpleImputer(missing_values=np.nan, strategy='median') + + for model_title, model in cmodels.items(): + + classifier = cross_validate( + model['model'], + X=imputer.fit_transform(train_x), + y=data_y, + groups=data_groups, + cv=cv_method, + n_jobs=-1, + error_score='raise', + scoring=('accuracy', 'precision', 'recall', 'f1') + ) + + print("\n-------------------------------------\n") + print("Current cluster:", k, end="\n") + print("Current model:", model_title, end="\n") + print("Acc", np.mean(classifier['test_accuracy'])) + print("Precision", np.mean(classifier['test_precision'])) + print("Recall", np.mean(classifier['test_recall'])) + print("F1", np.mean(classifier['test_f1'])) + print(f"Largest {n_sl} ACC:", np.sort(-np.partition(-classifier['test_accuracy'], n_sl)[:n_sl])[::-1]) + print(f"Smallest {n_sl} ACC:", np.sort(np.partition(classifier['test_accuracy'], n_sl)[:n_sl])) + + cmodels[model_title]['metrics'][0] += np.mean(classifier['test_accuracy']) + cmodels[model_title]['metrics'][1] += np.mean(classifier['test_precision']) + cmodels[model_title]['metrics'][2] += np.mean(classifier['test_recall']) + cmodels[model_title]['metrics'][3] += np.mean(classifier['test_f1']) + +# %% jupyter={"source_hidden": true} +# Get overall results +cm.get_total_models_scores(n_clusters=n_clusters) diff --git a/exploration/ml_pipeline_classification_with_clustering_2_class.py b/exploration/ml_pipeline_classification_with_clustering_2_class.py new file mode 100644 index 0000000..36468fa --- /dev/null +++ b/exploration/ml_pipeline_classification_with_clustering_2_class.py @@ -0,0 +1,181 @@ +# --- +# jupyter: +# jupytext: +# formats: ipynb,py:percent +# text_representation: +# extension: .py +# format_name: percent +# format_version: '1.3' +# jupytext_version: 1.13.0 +# kernelspec: +# display_name: straw2analysis +# language: python +# name: straw2analysis +# --- + +# %% jupyter={"source_hidden": true} +# %matplotlib inline +import datetime +import importlib +import os +import sys + +import numpy as np +import matplotlib.pyplot as plt +import pandas as pd +import seaborn as sns +from scipy import stats + +from sklearn.model_selection import LeaveOneGroupOut, cross_validate, train_test_split +from sklearn.impute import SimpleImputer +from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score + +from sklearn.dummy import DummyClassifier +from sklearn import linear_model, svm, naive_bayes, neighbors, tree, ensemble +from lightgbm import LGBMClassifier +import xgboost as xg + +from sklearn.cluster import KMeans + +from IPython.core.interactiveshell import InteractiveShell +InteractiveShell.ast_node_interactivity = "all" + +nb_dir = os.path.split(os.getcwd())[0] +if nb_dir not in sys.path: + sys.path.append(nb_dir) + +import machine_learning.labels +import machine_learning.model +from machine_learning.classification_models import ClassificationModels + +# %% [markdown] +# # RAPIDS models + +# %% [markdown] +# # Useful method +def treat_categorical_features(input_set): + categorical_feature_colnames = ["gender", "startlanguage"] + additional_categorical_features = [col for col in input_set.columns if "mostcommonactivity" in col or "homelabel" in col] + categorical_feature_colnames += additional_categorical_features + + categorical_features = input_set[categorical_feature_colnames].copy() + mode_categorical_features = categorical_features.mode().iloc[0] + + # fillna with mode + categorical_features = categorical_features.fillna(mode_categorical_features) + + # one-hot encoding + categorical_features = categorical_features.apply(lambda col: col.astype("category")) + if not categorical_features.empty: + categorical_features = pd.get_dummies(categorical_features) + + numerical_features = input_set.drop(categorical_feature_colnames, axis=1) + + return pd.concat([numerical_features, categorical_features], axis=1) + +# %% [markdown] +# ## Set script's parameters +n_clusters = 3 # Number of clusters (could be regarded as a hyperparameter) +n_sl = 3 # Number of largest/smallest accuracies (of particular CV) outputs + +# %% jupyter={"source_hidden": true} +model_input = pd.read_csv("../data/intradaily_30_min_all_targets/input_JCQ_job_demand_mean.csv") +index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"] + +clust_col = model_input.set_index(index_columns).var().idxmax() # age is a col with the highest variance + +model_input.columns[list(model_input.columns).index('age'):-1] + +lime_cols = [col for col in model_input if col.startswith('limesurvey')] +lime_cols +lime_col = 'limesurvey_demand_control_ratio' +clust_col = lime_col + +model_input[clust_col].describe() + + +# %% jupyter={"source_hidden": true} + +# Filter-out outlier rows by clust_col +model_input = model_input[(np.abs(stats.zscore(model_input[clust_col])) < 3)] + +uniq = model_input[[clust_col, 'pid']].drop_duplicates().reset_index(drop=True) +plt.bar(uniq['pid'], uniq[clust_col]) + +# %% jupyter={"source_hidden": true} +# Get clusters by cluster col & and merge the clusters to main df +km = KMeans(n_clusters=n_clusters).fit_predict(uniq.set_index('pid')) +np.unique(km, return_counts=True) +uniq['cluster'] = km +uniq + +model_input = model_input.merge(uniq[['pid', 'cluster']]) + +# %% jupyter={"source_hidden": true} +model_input.set_index(index_columns, inplace=True) + +# %% jupyter={"source_hidden": true} +# Create dict with classification ml models +cm = ClassificationModels() +cmodels = cm.get_cmodels() + +# %% jupyter={"source_hidden": true} +for k in range(n_clusters): + model_input_subset = model_input[model_input["cluster"] == k].copy() + + # Takes 10th percentile and above 90th percentile as the test set -> the rest for the training set. Only two classes, seperated by z-score of 0. + model_input_subset['numerical_target'] = model_input_subset['target'] + bins = [-10, 0, 10] # bins for z-scored targets + model_input_subset.loc[:, 'target'] = \ + pd.cut(model_input_subset.loc[:, 'target'], bins=bins, labels=[0, 1], right=True) + + p15 = np.percentile(model_input_subset['numerical_target'], 15) + p85 = np.percentile(model_input_subset['numerical_target'], 85) + + # Treat categorical features + model_input_subset = treat_categorical_features(model_input_subset) + + # Split to train, validate, and test subsets + train_set = model_input_subset[(model_input_subset['numerical_target'] > p15) & (model_input_subset['numerical_target'] < p85)].drop(['numerical_target'], axis=1) + test_set = model_input_subset[(model_input_subset['numerical_target'] <= p15) | (model_input_subset['numerical_target'] >= p85)].drop(['numerical_target'], axis=1) + + train_set['target'].value_counts() + test_set['target'].value_counts() + + train_x, train_y = train_set.drop(["target", "pid"], axis=1), train_set["target"] + + validate_x, test_x, validate_y, test_y = \ + train_test_split(test_set.drop(["target", "pid"], axis=1), test_set["target"], test_size=0.50, random_state=42) + + # Impute missing values + imputer = SimpleImputer(missing_values=np.nan, strategy='median') + + train_x = imputer.fit_transform(train_x) + validate_x = imputer.fit_transform(validate_x) + test_x = imputer.fit_transform(test_x) + + for model_title, model in cmodels.items(): + model['model'].fit(train_x, train_y) + y_pred = model['model'].predict(validate_x) + + acc = accuracy_score(validate_y, y_pred) + prec = precision_score(validate_y, y_pred) + rec = recall_score(validate_y, y_pred) + f1 = f1_score(validate_y, y_pred) + + print("\n-------------------------------------\n") + print("Current cluster:", k, end="\n") + print("Current model:", model_title, end="\n") + print("Acc", acc) + print("Precision", prec) + print("Recall", rec) + print("F1", f1) + + cmodels[model_title]['metrics'][0] += acc + cmodels[model_title]['metrics'][1] += prec + cmodels[model_title]['metrics'][2] += rec + cmodels[model_title]['metrics'][3] += f1 + +# %% jupyter={"source_hidden": true} +# Get overall results +cm.get_total_models_scores(n_clusters=n_clusters) diff --git a/exploration/ml_pipeline_daily.py b/exploration/ml_pipeline_daily.py deleted file mode 100644 index 3099aa3..0000000 --- a/exploration/ml_pipeline_daily.py +++ /dev/null @@ -1,472 +0,0 @@ -# --- -# jupyter: -# jupytext: -# formats: ipynb,py:percent -# text_representation: -# extension: .py -# format_name: percent -# format_version: '1.3' -# jupytext_version: 1.13.0 -# kernelspec: -# display_name: straw2analysis -# language: python -# name: straw2analysis -# --- - -# %% jupyter={"source_hidden": true} -# %matplotlib inline -import datetime -import importlib -import os -import sys - -import numpy as np -import matplotlib.pyplot as plt -import pandas as pd -import seaborn as sns -import yaml -from pyprojroot import here -from sklearn import linear_model, svm, kernel_ridge, gaussian_process, ensemble -from sklearn.model_selection import LeaveOneGroupOut, cross_val_score -from sklearn.metrics import mean_squared_error, r2_score -from sklearn.impute import SimpleImputer -from xgboost import XGBRegressor - -nb_dir = os.path.split(os.getcwd())[0] -if nb_dir not in sys.path: - sys.path.append(nb_dir) - -import machine_learning.features_sensor -import machine_learning.labels -import machine_learning.model - -# %% [markdown] -# # RAPIDS models - -# %% [markdown] -# ## PANAS negative affect - -# %% jupyter={"source_hidden": true} -# model_input = pd.read_csv("../data/input_PANAS_NA.csv") # Nestandardizirani podatki - pred temeljitim čiščenjem -model_input = pd.read_csv("../data/z_input_PANAS_NA.csv") # Standardizirani podatki - pred temeljitim čiščenjem -# %% [markdown] -# ### NaNs before dropping cols and rows - -# %% jupyter={"source_hidden": true} -sns.set(rc={"figure.figsize":(16, 8)}) -sns.heatmap(model_input.sort_values('pid').set_index('pid').isna(), cbar=False) - -# %% jupyter={"source_hidden": true} -nan_cols = list(model_input.loc[:, model_input.isna().all()].columns) -nan_cols - -# %% jupyter={"source_hidden": true} -model_input.dropna(axis=1, how="all", inplace=True) -model_input.dropna(axis=0, how="any", subset=["target"], inplace=True) - -# %% [markdown] -# ### NaNs after dropping NaN cols and rows where target is NaN - -# %% jupyter={"source_hidden": true} -sns.set(rc={"figure.figsize":(16, 8)}) -sns.heatmap(model_input.sort_values('pid').set_index('pid').isna(), cbar=False) - -# %% jupyter={"source_hidden": true} -index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"] -#if "pid" in model_input.columns: -# index_columns.append("pid") -model_input.set_index(index_columns, inplace=True) - -data_x, data_y, data_groups = model_input.drop(["target", "pid"], axis=1), model_input["target"], model_input["pid"] - -# %% jupyter={"source_hidden": true} -categorical_feature_colnames = ["gender", "startlanguage"] - -# %% jupyter={"source_hidden": true} -categorical_features = data_x[categorical_feature_colnames].copy() - -# %% jupyter={"source_hidden": true} -mode_categorical_features = categorical_features.mode().iloc[0] - -# %% jupyter={"source_hidden": true} -# fillna with mode -categorical_features = categorical_features.fillna(mode_categorical_features) - -# %% jupyter={"source_hidden": true} -# one-hot encoding -categorical_features = categorical_features.apply(lambda col: col.astype("category")) -if not categorical_features.empty: - categorical_features = pd.get_dummies(categorical_features) - -# %% jupyter={"source_hidden": true} -numerical_features = data_x.drop(categorical_feature_colnames, axis=1) - -# %% jupyter={"source_hidden": true} -train_x = pd.concat([numerical_features, categorical_features], axis=1) - -# %% jupyter={"source_hidden": true} -train_x.dtypes - -# %% jupyter={"source_hidden": true} -logo = LeaveOneGroupOut() -logo.get_n_splits( - train_x, - data_y, - groups=data_groups, -) - -# %% jupyter={"source_hidden": true} -sum(data_y.isna()) - -# %% [markdown] -# ### Linear Regression - -# %% jupyter={"source_hidden": true} -lin_reg_rapids = linear_model.LinearRegression() - -# %% jupyter={"source_hidden": true} -imputer = SimpleImputer(missing_values=np.nan, strategy='mean') - -# %% jupyter={"source_hidden": true} -lin_reg_scores = cross_val_score( - lin_reg_rapids, - X=imputer.fit_transform(train_x), - y=data_y, - groups=data_groups, - cv=logo, - n_jobs=-1, - scoring='r2' -) -lin_reg_scores -np.median(lin_reg_scores) - -# %% [markdown] -# ### Ridge regression - -# %% jupyter={"source_hidden": true} -ridge_reg = linear_model.Ridge(alpha=.5) - -# %% tags=[] jupyter={"source_hidden": true} -ridge_reg_scores = cross_val_score( - ridge_reg, - X=imputer.fit_transform(train_x), - y=data_y, - groups=data_groups, - cv=logo, - n_jobs=-1, - scoring="r2" -) -np.median(ridge_reg_scores) - -# %% [markdown] -# ### Lasso - -# %% jupyter={"source_hidden": true} -lasso_reg = linear_model.Lasso(alpha=0.1) - -# %% jupyter={"source_hidden": true} -lasso_reg_score = cross_val_score( - lasso_reg, - X=imputer.fit_transform(train_x), - y=data_y, - groups=data_groups, - cv=logo, - n_jobs=-1, - scoring="r2" -) -np.median(lasso_reg_score) - -# %% [markdown] -# ### Bayesian Ridge - -# %% jupyter={"source_hidden": true} -bayesian_ridge_reg = linear_model.BayesianRidge() - -# %% jupyter={"source_hidden": true} -bayesian_ridge_reg_score = cross_val_score( - bayesian_ridge_reg, - X=imputer.fit_transform(train_x), - y=data_y, - groups=data_groups, - cv=logo, - n_jobs=-1, - scoring="r2" -) -np.median(bayesian_ridge_reg_score) - -# %% [markdown] -# ### RANSAC (outlier robust regression) - -# %% jupyter={"source_hidden": true} -ransac_reg = linear_model.RANSACRegressor() - -# %% jupyter={"source_hidden": true} -np.median( - cross_val_score( - ransac_reg, - X=imputer.fit_transform(train_x), - y=data_y, - groups=data_groups, - cv=logo, - n_jobs=-1, - scoring="r2" - ) -) - -# %% [markdown] -# ### Support vector regression - -# %% jupyter={"source_hidden": true} -svr = svm.SVR() - -# %% jupyter={"source_hidden": true} -np.median( - cross_val_score( - svr, - X=imputer.fit_transform(train_x), - y=data_y, - groups=data_groups, - cv=logo, - n_jobs=-1, - scoring="r2" - ) -) - -# %% [markdown] -# ### Kernel Ridge regression - -# %% jupyter={"source_hidden": true} -kridge = kernel_ridge.KernelRidge() - -# %% jupyter={"source_hidden": true} -np.median( - cross_val_score( - kridge, - X=imputer.fit_transform(train_x), - y=data_y, - groups=data_groups, - cv=logo, - n_jobs=-1, - scoring="r2" - ) -) -# %% [markdown] -# ### Gaussian Process Regression - -# %% jupyter={"source_hidden": true} -gpr = gaussian_process.GaussianProcessRegressor() - -# %% jupyter={"source_hidden": true} - -np.median( - cross_val_score( - gpr, - X=imputer.fit_transform(train_x), - y=data_y, - groups=data_groups, - cv=logo, - n_jobs=-1, - scoring="r2" - ) -) -# %% -def insert_row(df, row): - return pd.concat([df, pd.DataFrame([row], columns=df.columns)], ignore_index=True) - -# %% -def run_all_models(input_csv): - # Prepare data - model_input = pd.read_csv(input_csv) - model_input.dropna(axis=1, how="all", inplace=True) - model_input.dropna(axis=0, how="any", subset=["target"], inplace=True) - - index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"] - model_input.set_index(index_columns, inplace=True) - - data_x, data_y, data_groups = model_input.drop(["target", "pid"], axis=1), model_input["target"], model_input["pid"] - - categorical_feature_colnames = ["gender", "startlanguage"] - categorical_features = data_x[categorical_feature_colnames].copy() - mode_categorical_features = categorical_features.mode().iloc[0] - # fillna with mode - categorical_features = categorical_features.fillna(mode_categorical_features) - # one-hot encoding - categorical_features = categorical_features.apply(lambda col: col.astype("category")) - if not categorical_features.empty: - categorical_features = pd.get_dummies(categorical_features) - - numerical_features = data_x.drop(categorical_feature_colnames, axis=1) - - train_x = pd.concat([numerical_features, categorical_features], axis=1) - imputer = SimpleImputer(missing_values=np.nan, strategy='mean') - train_x_imputed = imputer.fit_transform(train_x) - - # Prepare cross validation - logo = LeaveOneGroupOut() - logo.get_n_splits( - train_x, - data_y, - groups=data_groups, - ) - scores = pd.DataFrame(columns=["method", "median", "max"]) - - # Validate models - lin_reg_rapids = linear_model.LinearRegression() - lin_reg_scores = cross_val_score( - lin_reg_rapids, - X=train_x_imputed, - y=data_y, - groups=data_groups, - cv=logo, - n_jobs=-1, - scoring='r2' - ) - print("Linear regression:") - print(np.median(lin_reg_scores)) - scores = insert_row(scores, ["Linear regression",np.median(lin_reg_scores),np.max(lin_reg_scores)]) - - ridge_reg = linear_model.Ridge(alpha=.5) - ridge_reg_scores = cross_val_score( - ridge_reg, - X=train_x_imputed, - y=data_y, - groups=data_groups, - cv=logo, - n_jobs=-1, - scoring="r2" - ) - print("Ridge regression") - print(np.median(ridge_reg_scores)) - scores = insert_row(scores, ["Ridge regression",np.median(ridge_reg_scores),np.max(ridge_reg_scores)]) - - lasso_reg = linear_model.Lasso(alpha=0.1) - lasso_reg_score = cross_val_score( - lasso_reg, - X=train_x_imputed, - y=data_y, - groups=data_groups, - cv=logo, - n_jobs=-1, - scoring="r2" - ) - print("Lasso regression") - print(np.median(lasso_reg_score)) - scores = insert_row(scores, ["Lasso regression",np.median(lasso_reg_score),np.max(lasso_reg_score)]) - - bayesian_ridge_reg = linear_model.BayesianRidge() - bayesian_ridge_reg_score = cross_val_score( - bayesian_ridge_reg, - X=train_x_imputed, - y=data_y, - groups=data_groups, - cv=logo, - n_jobs=-1, - scoring="r2" - ) - print("Bayesian Ridge") - print(np.median(bayesian_ridge_reg_score)) - scores = insert_row(scores, ["Bayesian Ridge",np.median(bayesian_ridge_reg_score),np.max(bayesian_ridge_reg_score)]) - - ransac_reg = linear_model.RANSACRegressor() - ransac_reg_score = cross_val_score( - ransac_reg, - X=train_x_imputed, - y=data_y, - groups=data_groups, - cv=logo, - n_jobs=-1, - scoring="r2" - ) - print("RANSAC (outlier robust regression)") - print(np.median(ransac_reg_score)) - scores = insert_row(scores, ["RANSAC",np.median(ransac_reg_score),np.max(ransac_reg_score)]) - - svr = svm.SVR() - svr_score = cross_val_score( - svr, - X=train_x_imputed, - y=data_y, - groups=data_groups, - cv=logo, - n_jobs=-1, - scoring="r2" - ) - print("Support vector regression") - print(np.median(svr_score)) - scores = insert_row(scores, ["Support vector regression",np.median(svr_score),np.max(svr_score)]) - - kridge = kernel_ridge.KernelRidge() - kridge_score = cross_val_score( - kridge, - X=train_x_imputed, - y=data_y, - groups=data_groups, - cv=logo, - n_jobs=-1, - scoring="r2" - ) - print("Kernel Ridge regression") - print(np.median(kridge_score)) - scores = insert_row(scores, ["Kernel Ridge regression",np.median(kridge_score),np.max(kridge_score)]) - - gpr = gaussian_process.GaussianProcessRegressor() - gpr_score = cross_val_score( - gpr, - X=train_x_imputed, - y=data_y, - groups=data_groups, - cv=logo, - n_jobs=-1, - scoring="r2" - ) - print("Gaussian Process Regression") - print(np.median(gpr_score)) - scores = insert_row(scores, ["Gaussian Process Regression",np.median(gpr_score),np.max(gpr_score)]) - - rfr = ensemble.RandomForestRegressor(max_features=0.3, n_jobs=-1) - rfr_score = cross_val_score( - rfr, - X=train_x_imputed, - y=data_y, - groups=data_groups, - cv=logo, - n_jobs=-1, - scoring="r2" - ) - print("Random Forest Regression") - print(np.median(rfr_score)) - scores = insert_row(scores, ["Random Forest Regression",np.median(rfr_score),np.max(rfr_score)]) - - xgb = XGBRegressor() - xgb_score = cross_val_score( - xgb, - X=train_x_imputed, - y=data_y, - groups=data_groups, - cv=logo, - n_jobs=-1, - scoring="r2" - ) - print("XGBoost Regressor") - print(np.median(xgb_score)) - scores = insert_row(scores, ["XGBoost Regressor",np.median(xgb_score),np.max(xgb_score)]) - - ada = ensemble.AdaBoostRegressor() - ada_score = cross_val_score( - ada, - X=train_x_imputed, - y=data_y, - groups=data_groups, - cv=logo, - n_jobs=-1, - scoring="r2" - ) - print("ADA Boost Regressor") - print(np.median(ada_score)) - scores = insert_row(scores, ["ADA Boost Regressor",np.median(ada_score),np.max(ada_score)]) - - return scores - - - - diff --git a/exploration/ml_pipeline_daily_cleaned_daily.py b/exploration/ml_pipeline_daily_cleaned_daily.py deleted file mode 100644 index 37b973a..0000000 --- a/exploration/ml_pipeline_daily_cleaned_daily.py +++ /dev/null @@ -1,332 +0,0 @@ -# --- -# jupyter: -# jupytext: -# formats: ipynb,py:percent -# text_representation: -# extension: .py -# format_name: percent -# format_version: '1.3' -# jupytext_version: 1.13.0 -# kernelspec: -# display_name: straw2analysis -# language: python -# name: straw2analysis -# --- - -# %% jupyter={"source_hidden": true} -# %matplotlib inline -import datetime -import importlib -import os -import sys - -import numpy as np -import matplotlib.pyplot as plt -import pandas as pd -import seaborn as sns -import yaml -from pyprojroot import here -from sklearn import linear_model, svm, kernel_ridge, gaussian_process -from sklearn.model_selection import LeaveOneGroupOut, cross_val_score, cross_validate -from sklearn.metrics import mean_squared_error, r2_score -from sklearn.impute import SimpleImputer -from sklearn.dummy import DummyRegressor -import xgboost as xg -from IPython.core.interactiveshell import InteractiveShell -InteractiveShell.ast_node_interactivity = "all" - -nb_dir = os.path.split(os.getcwd())[0] -if nb_dir not in sys.path: - sys.path.append(nb_dir) - -import machine_learning.features_sensor -import machine_learning.labels -import machine_learning.model - -# %% [markdown] -# # RAPIDS models - -# %% [markdown] -# ## PANAS negative affect - -# %% jupyter={"source_hidden": true} -model_input = pd.read_csv("../data/daily_18_hours_all_targets/input_PANAS_negative_affect_mean.csv") - -# %% jupyter={"source_hidden": true} -index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"] -#if "pid" in model_input.columns: -# index_columns.append("pid") -model_input.set_index(index_columns, inplace=True) - -data_x, data_y, data_groups = model_input.drop(["target", "pid"], axis=1), model_input["target"], model_input["pid"] - -# %% jupyter={"source_hidden": true} -categorical_feature_colnames = ["gender", "startlanguage"] -additional_categorical_features = [col for col in data_x.columns if "mostcommonactivity" in col or "homelabel" in col] -categorical_feature_colnames += additional_categorical_features - -# %% jupyter={"source_hidden": true} -categorical_features = data_x[categorical_feature_colnames].copy() - -# %% jupyter={"source_hidden": true} -mode_categorical_features = categorical_features.mode().iloc[0] - -# %% jupyter={"source_hidden": true} -# fillna with mode -categorical_features = categorical_features.fillna(mode_categorical_features) - -# %% jupyter={"source_hidden": true} -# one-hot encoding -categorical_features = categorical_features.apply(lambda col: col.astype("category")) -if not categorical_features.empty: - categorical_features = pd.get_dummies(categorical_features) - -# %% jupyter={"source_hidden": true} -numerical_features = data_x.drop(categorical_feature_colnames, axis=1) - -# %% jupyter={"source_hidden": true} -train_x = pd.concat([numerical_features, categorical_features], axis=1) - -# %% jupyter={"source_hidden": true} -train_x.dtypes - -# %% jupyter={"source_hidden": true} -logo = LeaveOneGroupOut() -logo.get_n_splits( - train_x, - data_y, - groups=data_groups, -) - -# %% jupyter={"source_hidden": true} -sum(data_y.isna()) - -# %% [markdown] -# ### Baseline: Dummy Regression (mean) -dummy_regr = DummyRegressor(strategy="mean") - -# %% jupyter={"source_hidden": true} -lin_reg_scores = cross_validate( - dummy_regr, - X=train_x, - y=data_y, - groups=data_groups, - cv=logo, - n_jobs=-1, - scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error') -) -print("Negative Mean Squared Error", np.median(lin_reg_scores['test_neg_mean_squared_error'])) -print("Negative Mean Absolute Error", np.median(lin_reg_scores['test_neg_mean_absolute_error'])) -print("Negative Root Mean Squared Error", np.median(lin_reg_scores['test_neg_root_mean_squared_error'])) -print("R2", np.median(lin_reg_scores['test_r2'])) - -# %% [markdown] -# ### Linear Regression - -# %% jupyter={"source_hidden": true} -lin_reg_rapids = linear_model.LinearRegression() - -# %% jupyter={"source_hidden": true} -lin_reg_scores = cross_validate( - lin_reg_rapids, - X=train_x, - y=data_y, - groups=data_groups, - cv=logo, - n_jobs=-1, - scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error') -) -print("Negative Mean Squared Error", np.median(lin_reg_scores['test_neg_mean_squared_error'])) -print("Negative Mean Absolute Error", np.median(lin_reg_scores['test_neg_mean_absolute_error'])) -print("Negative Root Mean Squared Error", np.median(lin_reg_scores['test_neg_root_mean_squared_error'])) -print("R2", np.median(lin_reg_scores['test_r2'])) - -# %% [markdown] -# ### XGBRegressor Linear Regression -# %% jupyter={"source_hidden": true} -xgb_r = xg.XGBRegressor(objective ='reg:squarederror', n_estimators = 10) - -# %% jupyter={"source_hidden": true} -xgb_reg_scores = cross_validate( - xgb_r, - X=train_x, - y=data_y, - groups=data_groups, - cv=logo, - n_jobs=-1, - scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error') -) -print("Negative Mean Squared Error", np.median(xgb_reg_scores['test_neg_mean_squared_error'])) -print("Negative Mean Absolute Error", np.median(xgb_reg_scores['test_neg_mean_absolute_error'])) -print("Negative Root Mean Squared Error", np.median(xgb_reg_scores['test_neg_root_mean_squared_error'])) -print("R2", np.median(xgb_reg_scores['test_r2'])) - -# %% [markdown] -# ### XGBRegressor Pseudo Huber Error Regression -# %% jupyter={"source_hidden": true} -xgb_psuedo_huber_r = xg.XGBRegressor(objective ='reg:pseudohubererror', n_estimators = 10) - -# %% jupyter={"source_hidden": true} -xgb_psuedo_huber_reg_scores = cross_validate( - xgb_psuedo_huber_r, - X=train_x, - y=data_y, - groups=data_groups, - cv=logo, - n_jobs=-1, - scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error') -) -print("Negative Mean Squared Error", np.median(xgb_psuedo_huber_reg_scores['test_neg_mean_squared_error'])) -print("Negative Mean Absolute Error", np.median(xgb_psuedo_huber_reg_scores['test_neg_mean_absolute_error'])) -print("Negative Root Mean Squared Error", np.median(xgb_psuedo_huber_reg_scores['test_neg_root_mean_squared_error'])) -print("R2", np.median(xgb_psuedo_huber_reg_scores['test_r2'])) - -# %% [markdown] -# ### Ridge regression - -# %% jupyter={"source_hidden": true} -ridge_reg = linear_model.Ridge(alpha=.5) - -# %% tags=[] jupyter={"source_hidden": true} -ridge_reg_scores = cross_validate( - ridge_reg, - X=train_x, - y=data_y, - groups=data_groups, - cv=logo, - n_jobs=-1, - scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error') -) -print("Negative Mean Squared Error", np.median(ridge_reg_scores['test_neg_mean_squared_error'])) -print("Negative Mean Absolute Error", np.median(ridge_reg_scores['test_neg_mean_absolute_error'])) -print("Negative Root Mean Squared Error", np.median(ridge_reg_scores['test_neg_root_mean_squared_error'])) -print("R2", np.median(ridge_reg_scores['test_r2'])) - -# %% [markdown] -# ### Lasso - -# %% jupyter={"source_hidden": true} -lasso_reg = linear_model.Lasso(alpha=0.1) - -# %% jupyter={"source_hidden": true} -lasso_reg_score = cross_validate( - lasso_reg, - X=train_x, - y=data_y, - groups=data_groups, - cv=logo, - n_jobs=-1, - scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error') -) -print("Negative Mean Squared Error", np.median(lasso_reg_score['test_neg_mean_squared_error'])) -print("Negative Mean Absolute Error", np.median(lasso_reg_score['test_neg_mean_absolute_error'])) -print("Negative Root Mean Squared Error", np.median(lasso_reg_score['test_neg_root_mean_squared_error'])) -print("R2", np.median(lasso_reg_score['test_r2'])) - -# %% [markdown] -# ### Bayesian Ridge - -# %% jupyter={"source_hidden": true} -bayesian_ridge_reg = linear_model.BayesianRidge() - -# %% jupyter={"source_hidden": true} -bayesian_ridge_reg_score = cross_validate( - bayesian_ridge_reg, - X=train_x, - y=data_y, - groups=data_groups, - cv=logo, - n_jobs=-1, - scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error') -) -print("Negative Mean Squared Error", np.median(bayesian_ridge_reg_score['test_neg_mean_squared_error'])) -print("Negative Mean Absolute Error", np.median(bayesian_ridge_reg_score['test_neg_mean_absolute_error'])) -print("Negative Root Mean Squared Error", np.median(bayesian_ridge_reg_score['test_neg_root_mean_squared_error'])) -print("R2", np.median(bayesian_ridge_reg_score['test_r2'])) - -# %% [markdown] -# ### RANSAC (outlier robust regression) - -# %% jupyter={"source_hidden": true} -ransac_reg = linear_model.RANSACRegressor() - -# %% jupyter={"source_hidden": true} -ransac_reg_scores = cross_validate( - ransac_reg, - X=train_x, - y=data_y, - groups=data_groups, - cv=logo, - n_jobs=-1, - scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error') -) -print("Negative Mean Squared Error", np.median(ransac_reg_scores['test_neg_mean_squared_error'])) -print("Negative Mean Absolute Error", np.median(ransac_reg_scores['test_neg_mean_absolute_error'])) -print("Negative Root Mean Squared Error", np.median(ransac_reg_scores['test_neg_root_mean_squared_error'])) -print("R2", np.median(ransac_reg_scores['test_r2'])) - -# %% [markdown] -# ### Support vector regression - -# %% jupyter={"source_hidden": true} -svr = svm.SVR() - -# %% jupyter={"source_hidden": true} -svr_scores = cross_validate( - svr, - X=train_x, - y=data_y, - groups=data_groups, - cv=logo, - n_jobs=-1, - scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error') -) -print("Negative Mean Squared Error", np.median(svr_scores['test_neg_mean_squared_error'])) -print("Negative Mean Absolute Error", np.median(svr_scores['test_neg_mean_absolute_error'])) -print("Negative Root Mean Squared Error", np.median(svr_scores['test_neg_root_mean_squared_error'])) -print("R2", np.median(svr_scores['test_r2'])) - -# %% [markdown] -# ### Kernel Ridge regression - -# %% jupyter={"source_hidden": true} -kridge = kernel_ridge.KernelRidge() - -# %% jupyter={"source_hidden": true} -kridge_scores = cross_validate( - kridge, - X=train_x, - y=data_y, - groups=data_groups, - cv=logo, - n_jobs=-1, - scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error') -) -print("Negative Mean Squared Error", np.median(kridge_scores['test_neg_mean_squared_error'])) -print("Negative Mean Absolute Error", np.median(kridge_scores['test_neg_mean_absolute_error'])) -print("Negative Root Mean Squared Error", np.median(kridge_scores['test_neg_root_mean_squared_error'])) -print("R2", np.median(kridge_scores['test_r2'])) - -# %% [markdown] -# ### Gaussian Process Regression - -# %% jupyter={"source_hidden": true} -gpr = gaussian_process.GaussianProcessRegressor() - -# %% jupyter={"source_hidden": true} - -gpr_scores = cross_validate( - gpr, - X=train_x, - y=data_y, - groups=data_groups, - cv=logo, - n_jobs=-1, - scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error') -) -print("Negative Mean Squared Error", np.median(gpr_scores['test_neg_mean_squared_error'])) -print("Negative Mean Absolute Error", np.median(gpr_scores['test_neg_mean_absolute_error'])) -print("Negative Root Mean Squared Error", np.median(gpr_scores['test_neg_root_mean_squared_error'])) -print("R2", np.median(gpr_scores['test_r2'])) - -# %% diff --git a/exploration/ml_pipeline_daily_cleaned_intradaily.py b/exploration/ml_pipeline_regression.py similarity index 90% rename from exploration/ml_pipeline_daily_cleaned_intradaily.py rename to exploration/ml_pipeline_regression.py index 3e27620..98b2e3f 100644 --- a/exploration/ml_pipeline_daily_cleaned_intradaily.py +++ b/exploration/ml_pipeline_regression.py @@ -50,7 +50,7 @@ import machine_learning.model # ## PANAS negative affect # %% jupyter={"source_hidden": true} -model_input = pd.read_csv("../data/intradaily_30_min_all_targets/input_PANAS_negative_affect_mean.csv") +model_input = pd.read_csv("../data/intradaily_30_min_all_targets/input_JCQ_job_demand_mean.csv") # %% jupyter={"source_hidden": true} index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"] @@ -58,7 +58,17 @@ index_columns = ["local_segment", "local_segment_label", "local_segment_start_da # index_columns.append("pid") model_input.set_index(index_columns, inplace=True) -data_x, data_y, data_groups = model_input.drop(["target", "pid"], axis=1), model_input["target"], model_input["pid"] +cv_method = 'half_logo' # logo, half_logo, 5kfold +if cv_method == 'logo': + data_x, data_y, data_groups = model_input.drop(["target", "pid"], axis=1), model_input["target"], model_input["pid"] +else: + model_input['pid_index'] = model_input.groupby('pid').cumcount() + model_input['pid_count'] = model_input.groupby('pid')['pid'].transform('count') + + model_input["pid_index"] = (model_input['pid_index'] / model_input['pid_count'] + 1).round() + model_input["pid_half"] = model_input["pid"] + "_" + model_input["pid_index"].astype(int).astype(str) + + data_x, data_y, data_groups = model_input.drop(["target", "pid", "pid_index", "pid_half"], axis=1), model_input["target"], model_input["pid_half"] # %% jupyter={"source_hidden": true} categorical_feature_colnames = ["gender", "startlanguage"] @@ -98,6 +108,10 @@ logo.get_n_splits( groups=data_groups, ) +# Defaults to 5 k folds in cross_validate method +if cv_method != 'logo' and cv_method != 'half_logo': + logo = None + # %% jupyter={"source_hidden": true} sum(data_y.isna()) @@ -109,7 +123,7 @@ dummy_regr = DummyRegressor(strategy="mean") imputer = SimpleImputer(missing_values=np.nan, strategy='mean') # %% jupyter={"source_hidden": true} -lin_reg_scores = cross_validate( +dummy_regressor = cross_validate( dummy_regr, X=imputer.fit_transform(train_x), y=data_y, @@ -118,10 +132,10 @@ lin_reg_scores = cross_validate( n_jobs=-1, scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error') ) -print("Negative Mean Squared Error", np.median(lin_reg_scores['test_neg_mean_squared_error'])) -print("Negative Mean Absolute Error", np.median(lin_reg_scores['test_neg_mean_absolute_error'])) -print("Negative Root Mean Squared Error", np.median(lin_reg_scores['test_neg_root_mean_squared_error'])) -print("R2", np.median(lin_reg_scores['test_r2'])) +print("Negative Mean Squared Error", np.median(dummy_regressor['test_neg_mean_squared_error'])) +print("Negative Mean Absolute Error", np.median(dummy_regressor['test_neg_mean_absolute_error'])) +print("Negative Root Mean Squared Error", np.median(dummy_regressor['test_neg_root_mean_squared_error'])) +print("R2", np.median(dummy_regressor['test_r2'])) # %% [markdown] # ### Linear Regression diff --git a/exploration/ml_pipeline_stress_event_cleaned.py b/exploration/ml_pipeline_stress_event_cleaned.py index 3b6cd6d..9bef7f9 100644 --- a/exploration/ml_pipeline_stress_event_cleaned.py +++ b/exploration/ml_pipeline_stress_event_cleaned.py @@ -53,12 +53,25 @@ import machine_learning.model model_input = pd.read_csv("../data/stressfulness_event/input_appraisal_stressfulness_event_mean.csv") # %% jupyter={"source_hidden": true} + index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"] -#if "pid" in model_input.columns: -# index_columns.append("pid") + model_input.set_index(index_columns, inplace=True) -data_x, data_y, data_groups = model_input.drop(["target", "pid"], axis=1), model_input["target"], model_input["pid"] +cv_method = 'half_logo' +if cv_method == 'logo': + data_x, data_y, data_groups = model_input.drop(["target", "pid"], axis=1), model_input["target"], model_input["pid"] +else: + + model_input[(model_input['pid'] == "p037") | (model_input['pid'] == "p064") | (model_input['pid'] == "p092")] + + model_input['pid_index'] = model_input.groupby('pid').cumcount() + model_input['pid_count'] = model_input.groupby('pid')['pid'].transform('count') + + model_input["pid_index"] = (model_input['pid_index'] / model_input['pid_count'] + 1).round() + model_input["pid_half"] = model_input["pid"] + "_" + model_input["pid_index"].astype(int).astype(str) + + data_x, data_y, data_groups = model_input.drop(["target", "pid", "pid_index", "pid_half"], axis=1), model_input["target"], model_input["pid_half"] # %% jupyter={"source_hidden": true} categorical_feature_colnames = ["gender", "startlanguage"] @@ -97,12 +110,10 @@ logo.get_n_splits( data_y, groups=data_groups, ) -logo.split( - train_x, - data_y, - groups=data_groups, -) +# Defaults to 5 k folds in cross_validate method +if cv_method != 'logo' and cv_method != 'half_logo': + logo = None # %% jupyter={"source_hidden": true} sum(data_y.isna()) diff --git a/machine_learning/classification_models.py b/machine_learning/classification_models.py new file mode 100644 index 0000000..82c26b8 --- /dev/null +++ b/machine_learning/classification_models.py @@ -0,0 +1,71 @@ +from sklearn.dummy import DummyClassifier +from sklearn import linear_model, svm, naive_bayes, neighbors, tree, ensemble +from lightgbm import LGBMClassifier +import xgboost as xg + +class ClassificationModels(): + + def __init__(self): + self.cmodels = self.init_classification_models() + + def get_cmodels(self): + return self.cmodels + + def init_classification_models(self): + cmodels = { + 'dummy_classifier': { + 'model': DummyClassifier(strategy="most_frequent"), + 'metrics': [0, 0, 0, 0] + }, + 'logistic_regression': { + 'model': linear_model.LogisticRegression(max_iter=1000), + 'metrics': [0, 0, 0, 0] + }, + 'support_vector_machine': { + 'model': svm.SVC(), + 'metrics': [0, 0, 0, 0] + }, + 'gaussian_naive_bayes': { + 'model': naive_bayes.GaussianNB(), + 'metrics': [0, 0, 0, 0] + }, + 'stochastic_gradient_descent_classifier': { + 'model': linear_model.SGDClassifier(), + 'metrics': [0, 0, 0, 0] + }, + 'knn': { + 'model': neighbors.KNeighborsClassifier(), + 'metrics': [0, 0, 0, 0] + }, + 'decision_tree': { + 'model': tree.DecisionTreeClassifier(), + 'metrics': [0, 0, 0, 0] + }, + 'random_forest_classifier': { + 'model': ensemble.RandomForestClassifier(), + 'metrics': [0, 0, 0, 0] + }, + 'gradient_boosting_classifier': { + 'model': ensemble.GradientBoostingClassifier(), + 'metrics': [0, 0, 0, 0] + }, + 'lgbm_classifier': { + 'model': LGBMClassifier(), + 'metrics': [0, 0, 0, 0] + }, + 'XGBoost_classifier': { + 'model': xg.sklearn.XGBClassifier(), + 'metrics': [0, 0, 0, 0] + } + } + + return cmodels + + def get_total_models_scores(self, n_clusters=1): + for model_title, model in self.cmodels.items(): + print("\n************************************\n") + print("Current model:", model_title, end="\n") + print("Acc:", model['metrics'][0]/n_clusters) + print("Precision:", model['metrics'][1]/n_clusters) + print("Recall:", model['metrics'][2]/n_clusters) + print("F1:", model['metrics'][3]/n_clusters) \ No newline at end of file