Compare commits

...

74 Commits

Author SHA1 Message Date
Primoz f78aa3e7b3 Preparation for cleaning & imputation 2022-08-26 10:56:14 +00:00
Primoz a620def209 Generate standardized model input files (NOTE: commented unstandardized sections!) 2022-08-24 13:42:39 +00:00
Primoz c498ecb742 Include baseline models (+corrections), disable columns drop in cleaning function. 2022-08-23 14:12:14 +00:00
Primoz f088e9586f Handle empty ACC.csv 2022-08-22 14:20:47 +00:00
Primoz 0aa0e82673 Handle empty Empatica csv files. 2022-08-22 14:18:12 +00:00
Primoz 4cfe5a3a98 Disable discarding rows if DATA_YIELD_RATIO_THRESHOLD==0. 2022-08-19 13:10:56 +00:00
Primoz 607da820f2 Configuration and cleaning changes 2022-08-18 14:21:05 +00:00
Primoz fb577bc9ad Squashed commit of the following:
commit 43ecc243cb62bb31eed85cb477ca4131555c7fe7
Author: Primoz <sisko.primoz@gmail.com>
Date:   Fri Jul 22 15:26:09 2022 +0000

    Adding TODO comments

commit 2df1ebf90c3a93812b112b8ed0ee4e23cd74533f
Author: Primoz <sisko.primoz@gmail.com>
Date:   Thu Jul 21 13:59:23 2022 +0000

    README update

commit 5182c2b16dff3537aad42984b8ea5214743cdb32
Author: Primoz <sisko.primoz@gmail.com>
Date:   Thu Jul 21 11:03:01 2022 +0000

    Few corrections for all_cleaning

commit 3d9254c1b3bed6e95e631d4e0402548830a19534
Author: Primoz <sisko.primoz@gmail.com>
Date:   Thu Jul 21 10:28:05 2022 +0000

    Adding the min overlap for corr threshold and preservation of esm cols.

commit e27c49cc8fa4c51f9fe8e593a8d25e9a032ab393
Author: Primoz <sisko.primoz@gmail.com>
Date:   Thu Jul 21 09:02:00 2022 +0000

    Commenting and cleaning.

commit 31a47a5ee4569264e39d7c445525a6e64bb7700a
Author: Primoz <sisko.primoz@gmail.com>
Date:   Wed Jul 20 13:49:22 2022 +0000

    Environment version change.

commit 5b274ed8993f58e783bda6d82fce936764209c28
Author: Primoz <sisko.primoz@gmail.com>
Date:   Tue Jul 19 16:10:07 2022 +0000

    Enabled cleaning for all participants + standardization files.

commit 203fdb31e0f3c647ef8c8a60cb9531831b7ab924
Author: Primoz <sisko.primoz@gmail.com>
Date:   Tue Jul 19 14:14:51 2022 +0000

    Features cleaning fixes after testing. Visualization script for phone features values.

commit 176178d73b154c30b9eb9eb4a67514f00d6a924e
Author: Primoz <sisko.primoz@gmail.com>
Date:   Tue Jul 19 09:05:14 2022 +0000

    Revert "Necessary config changes."

    This reverts commit 6ec1ef50430d2e1f5ce4670d505d5e84ac47f0a0.

commit 26ea6512c9d512f95837e7b047fe510c1d196403
Author: Primoz <sisko.primoz@gmail.com>
Date:   Mon Jul 18 13:19:47 2022 +0000

    Adding cleaning function condition and cleaning functionality.

commit 575c29eef9c21e6f2d7832871e73bc0941643734
Author: Primoz <sisko.primoz@gmail.com>
Date:   Mon Jul 18 12:51:56 2022 +0000

    Translation of the cleaning individual RAPIDS function from R to py.

commit 6ec1ef50430d2e1f5ce4670d505d5e84ac47f0a0
Author: Primoz <sisko.primoz@gmail.com>
Date:   Mon Jul 18 12:02:18 2022 +0000

    Necessary config changes.

commit b5669f51612fbd8378848615d639677851ab032f
Author: Primoz <sisko.primoz@gmail.com>
Date:   Fri Jul 15 15:26:00 2022 +0000

    Modified snakemake rule to dynamically choose script extention.

commit 66636be1e8ae4828228b37c59b9df1faf3fc3d3d
Author: Primoz <sisko.primoz@gmail.com>
Date:   Fri Jul 15 14:43:08 2022 +0000

    Trying to modify the snakefile rule to execute scripts in two languages depended on the provider.

commit 574778b00f3cbb368ef4bc74de15cf5070c65ea9
Author: Primoz <sisko.primoz@gmail.com>
Date:   Fri Jul 15 09:49:41 2022 +0000

    gitignore: adding required files so that RAPIDS can be run successfully.

commit 71018ab178256970535e78961602ab8c7f0ebb14
Author: Primoz <sisko.primoz@gmail.com>
Date:   Fri Jul 15 08:34:19 2022 +0000

    Standardization bug fixes

commit 6253c470a624e6bfbb02e0c453b652452eb2dbbc
Author: Primoz <sisko.primoz@gmail.com>
Date:   Thu Jul 14 15:28:02 2022 +0000

    Seperate rules for empatica vs. nonempatica standardization.
    Parameter in config that controls the creation of standardized merged files for individual and all participants..

commit 90f902778565e0896d3bae22ae8551be8b487e67
Author: Primoz <sisko.primoz@gmail.com>
Date:   Tue Jul 12 14:23:03 2022 +0000

    Preparing for final csvs' standardization.

commit d25dde3998786a9a582f5cda544ee104386778f9
Author: Primoz <sisko.primoz@gmail.com>
Date:   Mon Jul 11 12:08:47 2022 +0000

    Revert "Changes in config to be reverted."

    This reverts commit bea7608e7095021fb7c53a9afa07074448fe4313.

commit 6b23e70857e63deda98eb98d190af9090626c84b
Author: Primoz <sisko.primoz@gmail.com>
Date:   Mon Jul 11 12:08:26 2022 +0000

    Enabled standardization for rest (previously active)  phone features.
    Testing still needed.

commit 8ec58a6f34ba3d42e5cc71d26e6d91837472ca5f
Author: Primoz <sisko.primoz@gmail.com>
Date:   Mon Jul 11 09:07:55 2022 +0000

    Enabled standardization for phone calls.
    All steps completed and tested.

commit bea7608e7095021fb7c53a9afa07074448fe4313
Author: Primoz <sisko.primoz@gmail.com>
Date:   Mon Jul 11 07:47:51 2022 +0000

    Changes in config to be reverted.

commit 4e84ca0e51bf709bff56fd09437b95310ec6bedd
Author: Primoz <sisko.primoz@gmail.com>
Date:   Fri Jul 8 14:11:24 2022 +0000

    Standardization for the rest of the features.

commit cc581aa788e3d5c17131af8f3d5dd6b0c3b5aff7
Author: Primoz <sisko.primoz@gmail.com>
Date:   Fri Jul 8 14:11:08 2022 +0000

    README update again
2022-07-22 15:31:30 +00:00
Primoz 6ba4a66deb Squashed commit of the following:
commit 31a47a5ee4569264e39d7c445525a6e64bb7700a
Author: Primoz <sisko.primoz@gmail.com>
Date:   Wed Jul 20 13:49:22 2022 +0000

    Environment version change.

commit 5b274ed8993f58e783bda6d82fce936764209c28
Author: Primoz <sisko.primoz@gmail.com>
Date:   Tue Jul 19 16:10:07 2022 +0000

    Enabled cleaning for all participants + standardization files.

commit 203fdb31e0f3c647ef8c8a60cb9531831b7ab924
Author: Primoz <sisko.primoz@gmail.com>
Date:   Tue Jul 19 14:14:51 2022 +0000

    Features cleaning fixes after testing. Visualization script for phone features values.

commit 176178d73b154c30b9eb9eb4a67514f00d6a924e
Author: Primoz <sisko.primoz@gmail.com>
Date:   Tue Jul 19 09:05:14 2022 +0000

    Revert "Necessary config changes."

    This reverts commit 6ec1ef50430d2e1f5ce4670d505d5e84ac47f0a0.

commit 26ea6512c9d512f95837e7b047fe510c1d196403
Author: Primoz <sisko.primoz@gmail.com>
Date:   Mon Jul 18 13:19:47 2022 +0000

    Adding cleaning function condition and cleaning functionality.

commit 575c29eef9c21e6f2d7832871e73bc0941643734
Author: Primoz <sisko.primoz@gmail.com>
Date:   Mon Jul 18 12:51:56 2022 +0000

    Translation of the cleaning individual RAPIDS function from R to py.

commit 6ec1ef50430d2e1f5ce4670d505d5e84ac47f0a0
Author: Primoz <sisko.primoz@gmail.com>
Date:   Mon Jul 18 12:02:18 2022 +0000

    Necessary config changes.

commit b5669f51612fbd8378848615d639677851ab032f
Author: Primoz <sisko.primoz@gmail.com>
Date:   Fri Jul 15 15:26:00 2022 +0000

    Modified snakemake rule to dynamically choose script extention.

commit 66636be1e8ae4828228b37c59b9df1faf3fc3d3d
Author: Primoz <sisko.primoz@gmail.com>
Date:   Fri Jul 15 14:43:08 2022 +0000

    Trying to modify the snakefile rule to execute scripts in two languages depended on the provider.

commit 574778b00f3cbb368ef4bc74de15cf5070c65ea9
Author: Primoz <sisko.primoz@gmail.com>
Date:   Fri Jul 15 09:49:41 2022 +0000

    gitignore: adding required files so that RAPIDS can be run successfully.

commit 71018ab178256970535e78961602ab8c7f0ebb14
Author: Primoz <sisko.primoz@gmail.com>
Date:   Fri Jul 15 08:34:19 2022 +0000

    Standardization bug fixes

commit 6253c470a624e6bfbb02e0c453b652452eb2dbbc
Author: Primoz <sisko.primoz@gmail.com>
Date:   Thu Jul 14 15:28:02 2022 +0000

    Seperate rules for empatica vs. nonempatica standardization.
    Parameter in config that controls the creation of standardized merged files for individual and all participants..

commit 90f902778565e0896d3bae22ae8551be8b487e67
Author: Primoz <sisko.primoz@gmail.com>
Date:   Tue Jul 12 14:23:03 2022 +0000

    Preparing for final csvs' standardization.

commit d25dde3998786a9a582f5cda544ee104386778f9
Author: Primoz <sisko.primoz@gmail.com>
Date:   Mon Jul 11 12:08:47 2022 +0000

    Revert "Changes in config to be reverted."

    This reverts commit bea7608e7095021fb7c53a9afa07074448fe4313.

commit 6b23e70857e63deda98eb98d190af9090626c84b
Author: Primoz <sisko.primoz@gmail.com>
Date:   Mon Jul 11 12:08:26 2022 +0000

    Enabled standardization for rest (previously active)  phone features.
    Testing still needed.

commit 8ec58a6f34ba3d42e5cc71d26e6d91837472ca5f
Author: Primoz <sisko.primoz@gmail.com>
Date:   Mon Jul 11 09:07:55 2022 +0000

    Enabled standardization for phone calls.
    All steps completed and tested.

commit bea7608e7095021fb7c53a9afa07074448fe4313
Author: Primoz <sisko.primoz@gmail.com>
Date:   Mon Jul 11 07:47:51 2022 +0000

    Changes in config to be reverted.

commit 4e84ca0e51bf709bff56fd09437b95310ec6bedd
Author: Primoz <sisko.primoz@gmail.com>
Date:   Fri Jul 8 14:11:24 2022 +0000

    Standardization for the rest of the features.

commit cc581aa788e3d5c17131af8f3d5dd6b0c3b5aff7
Author: Primoz <sisko.primoz@gmail.com>
Date:   Fri Jul 8 14:11:08 2022 +0000

    README update again
2022-07-20 13:51:22 +00:00
Primoz 788ac31190 Bug fix: if df has no rows write an empty zscore file. 2022-07-08 10:40:45 +00:00
Primoz 21eb2665d7 README: few changes. 2022-07-08 10:40:08 +00:00
Primoz a65a85cce9 Merge branch 'empatica_calculating_features' 2022-07-07 15:35:47 +00:00
Primoz fa961fe2f5 gitignore 2022-07-07 15:34:31 +00:00
Primoz 6c8014ba8e Updated R and Python package files. Updated README. 2022-07-07 15:30:07 +00:00
Primoz 5a777ac79f Working version that integrates both phone and empatica feature calculations. 2022-07-07 15:00:47 +00:00
Primoz 0425403951 Merge branch 'master' of https://repo.ijs.si/junoslukan/rapids 2022-07-06 11:53:31 +00:00
Primoz 887fd7dc72 Merge branch 'empatica_calculating_features' 2022-07-06 11:53:21 +00:00
Primoz 5a4696c548 Misc. changes 2022-07-06 11:30:18 +00:00
Primoz d2758eef46 Set not NaN sum insted of 0 sum for HRV features windows. 2022-07-06 07:36:35 +00:00
Primoz 2d5d23b615 Testing files change and remove standardization from hrv sensors main files. 2022-07-06 07:35:39 +00:00
Primoz a5480f1369 Few changes during addition to file structure. 2022-07-04 13:00:47 +00:00
Primoz 505c3a86b9 Testing different EDA findPeaks parameters. 2022-06-30 15:15:37 +00:00
Primoz c851ab0763 Fill EDA NaN values where numPeak is zero. Other small changes. 2022-06-21 14:09:49 +00:00
Primoz a8cd16f88c Debugging eda_explorer 2022-06-16 11:32:59 +00:00
Primoz dda4554d46 Various small changes. 2022-06-15 13:57:46 +00:00
Primoz 212cf300f8 Debugging EDA signal - preliminary step for imputation. 2022-06-14 15:09:14 +00:00
Primoz 9ea39dc557 Standardization as a Snakefile's rule enabled for all E4 sensors. 2022-06-13 18:17:30 +00:00
Primoz 402059871f Making standardization as a rule. WIP: done only for BVP. 2022-06-13 14:12:03 +00:00
Primoz 094743244d Added SO feature for sum all rows that are non zero for BVP and IBI sensors. 2022-06-13 10:51:22 +00:00
primoz e1d7607de4 Extraction of additional SO features. Min/max has been changed to nsmallest/nlargest means. 2022-06-10 12:34:48 +00:00
primoz f371249b99 First order features standardization WIP 2022-06-09 13:35:15 +00:00
primoz 64e41cfa35 Second order features standardization in config.yaml. 2022-06-07 10:39:48 +00:00
primoz 2c7ac21465 Added standardization on SO features. 2022-06-06 13:51:15 +00:00
primoz 2acf6ff9fb Exception handling in case of empty ibi. Changes of the method EDA uses in main.py. Other small corrections. 2022-06-03 12:34:36 +00:00
primoz d300f0f8f0 Fixed RAPIDS bug: error when IBI.csv is empty. 2022-06-02 11:43:49 +00:00
Primoz fbf6a77dfc Small misc changes 2022-06-02 06:41:53 +00:00
Primoz 5532043b1f Patching IBI with BVP - completed. 2022-05-25 19:39:47 +00:00
Primoz bb62497ba6 Patching IBI with BVP - selecting appropriate pipeline entry point. WIP 2022-05-24 11:07:18 +00:00
Primoz 2a8f58f5c8 Patching IBI with BVP. WIP 2022-05-20 13:18:45 +00:00
Primoz 1471c86c62 Cr-features version update in rapids venv. 2022-05-13 13:37:12 +00:00
Primoz 6864cfe775 Changes after thorough testing with available data. 2022-05-13 13:35:34 +00:00
Primoz c1564f0cae Changed wrapper method calculate_feature to its newest version (for TEMP and ACC). 2022-05-11 14:21:21 +00:00
Primoz 31e36e7400 Alternating Second order and full segment features corresponding to config settings. 2022-05-11 08:50:15 +00:00
Primoz 9cf9e1fe14 Testing and modifying the code with different E4 data. 2022-05-10 11:36:49 +00:00
Primoz f62a1302dd Cr-features corrections for ACC and TEMP sensors 2022-05-09 11:01:52 +00:00
Primoz 5638367999 Implementation of the second order features. 2022-04-25 13:07:03 +00:00
Primoz 66451160e9 Calculating HRV features with IBI.csv. 2022-04-20 10:44:51 +00:00
= 8c8fe1fec7 Modifications, mostly imports, after changes in cr-features module. 2022-04-19 13:24:46 +00:00
= 075c64d1e5 HRV: changed wrapper calcFeat method with specialized one. 2022-04-14 11:51:53 +00:00
= 3c058e4463 Add option to calculate features within windows and store it in CSV (all sensors). 2022-04-13 13:18:23 +00:00
= 74cf4ada1c Cr-feat window length for all empaticas sensors. 2022-04-12 14:00:44 +00:00
= 1c42347b9b Small changes. 2022-04-04 12:19:33 +00:00
Primoz c050174ca3 Various minimal changes. 2022-03-31 09:16:00 +00:00
Primoz f9e40711e7 Modified README for RAPIDS-CalculatingFeatures integration. 2022-03-30 16:17:07 +00:00
Primoz a357138f6e Added CF for HRV and shortened test data 2022-03-30 15:01:24 +00:00
Primoz 470993eeb0 Modification of getSampleRate method for all CF scripts. 2022-03-30 15:00:11 +00:00
= ab0b9227d7 Added ACC calculated features and shorter version of ACC data. 2022-03-29 09:41:51 +00:00
= a9244a60fc Corrections for TEMP cf src script. 2022-03-28 14:26:37 +00:00
= 8b76c96e47 Cleaning existing CF mains' and preparing src script for ACC. 2022-03-28 14:18:29 +00:00
= ca59a54d8f Get a sample rate from two sequential timestamps. 2022-03-28 13:50:08 +00:00
= 393dab72f5 Added components for the temperature features extraction. 2022-03-28 12:37:02 +00:00
Primoz 1902d02a86 Updating conda env. 2022-03-25 16:27:28 +00:00
Primoz f389ac9d89 Delete CF features folder 2022-03-25 16:24:52 +00:00
Primoz 191e53e543 Added cf provider for EDA feature processing. 2022-03-23 15:13:53 +00:00
Primoz d3a3f01f29 Preparation for the EDA features integration from CF. 2022-03-22 15:36:52 +00:00
Primoz 2da0911d4c Skeleton file main.py for EDA CalcFt. integration. 2022-03-22 12:48:43 +00:00
Primoz bd5a811256 Shortening input CSVs' and added test for ACC. 2022-03-21 12:00:57 +00:00
Primoz d1c59de2e9 Add folder structure for CF testing and EDA test. 2022-03-21 10:40:18 +00:00
Primoz a80f7c0cc4 Change of the relative import statements. 2022-03-21 10:38:15 +00:00
Primoz d63158c199 Build calc features lib and related packages. 2022-03-21 08:28:28 +00:00
Primoz 3f8e1cc252 Empatica features calculations with an example ZIP 2022-03-16 15:03:32 +00:00
Primoz dc2b462145 Reseting files to defaults - for Minimal Working Example 2022-03-16 13:30:19 +00:00
Primoz 50358978cc Testing Git integration on PC 2022-03-15 12:49:51 +00:00
Primoz 86c6312574 Added .devcontainer to gitignore 2022-03-14 18:36:10 +00:00
43 changed files with 5985 additions and 348 deletions

13
.gitignore vendored
View File

@ -93,10 +93,14 @@ packrat/*
# exclude data from source control by default
data/external/*
!/data/external/empatica/empatica1/E4 Data.zip
!/data/external/.gitkeep
!/data/external/stachl_application_genre_catalogue.csv
!/data/external/timesegments*.csv
!/data/external/wiki_tz.csv
!/data/external/main_study_usernames.csv
!/data/external/timezone.csv
data/raw/*
!/data/raw/.gitkeep
data/interim/*
@ -114,3 +118,12 @@ settings.dcf
tests/fakedata_generation/
site/
credentials.yaml
# Docker container and other files
.devcontainer
# Calculating features module
calculatingfeatures/
# Temp folder for rapids data/external
rapids_temp_data/

View File

@ -11,3 +11,71 @@
For more information refer to our [documentation](http://www.rapids.science)
By [MoSHI](https://www.moshi.pitt.edu/), [University of Pittsburgh](https://www.pitt.edu/)
## Installation
For RAPIDS installation refer to to the [documentation](https://www.rapids.science/1.8/setup/installation/)
## For the installation of the Docker version
1. Follow the [instructions](https://www.rapids.science/1.8/setup/installation/) to setup RAPIDS via Docker (from scratch).
2. Delete current contents in /rapids/ folder when in a container session.
```
cd ..
rm -rf rapids/{*,.*}
cd rapids
```
3. Clone RAPIDS workspace from Git and checkout a specific branch.
```
git clone "https://repo.ijs.si/junoslukan/rapids.git" .
git checkout <branch_name>
```
4. Install missing “libpq-dev” dependency with bash.
```
apt-get update -y
apt-get install -y libpq-dev
```
5. Restore R venv.
Type R to go to the interactive R session and then:
```
renv::restore()
```
6. Install cr-features module
From: https://repo.ijs.si/matjazbostic/calculatingfeatures.git -> branch modifications_for_rapids.
Then follow the "cr-features module" section below.
7. Install all required packages from environment.yml, prune also deletes conda packages not present in environment file.
```
conda env update --file environment.yml prune
```
8. If you wish to update your R or Python venvs.
```
R in interactive session:
renv::snapshot()
Python:
conda env export --no-builds | sed 's/^.*libgfortran.*$/ - libgfortran/' | sed 's/^.*mkl=.*$/ - mkl/' > environment.yml
```
## cr-features module
This RAPIDS extension uses cr-features library accessible [here](https://repo.ijs.si/matjazbostic/calculatingfeatures).
To use cr-features library:
- Follow the installation instructions in the [README.md](https://repo.ijs.si/matjazbostic/calculatingfeatures/-/blob/master/README.md).
- Copy built calculatingfeatures folder into the RAPIDS workspace.
- Install the cr-features package by:
```
pip install path/to/the/calculatingfeatures/folder
e.g. pip install ./calculatingfeatures if the folder is copied to main parent directory
cr-features package has to be built and installed everytime to get the newest version.
Or an the newest version of the docker image must be used.
```

137
Snakefile
View File

@ -33,6 +33,12 @@ for provider in config["PHONE_DATA_YIELD"]["PROVIDERS"].keys():
files_to_compute.extend(expand("data/processed/features/{pid}/phone_data_yield.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
if provider in config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["LIST"] and config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["COMPUTE"] \
and config["PHONE_DATA_YIELD"]["PROVIDERS"][provider]["STANDARDIZE_FEATURES"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_phone_data_yield.csv", pid=config["PIDS"]))
if config["STANDARDIZATION"]["MERGE_ALL"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/z_all_sensor_features.csv")
for provider in config["PHONE_MESSAGES"]["PROVIDERS"].keys():
if config["PHONE_MESSAGES"]["PROVIDERS"][provider]["COMPUTE"]:
@ -42,6 +48,12 @@ for provider in config["PHONE_MESSAGES"]["PROVIDERS"].keys():
files_to_compute.extend(expand("data/processed/features/{pid}/phone_messages.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
if provider in config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["LIST"] and config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["COMPUTE"] \
and config["PHONE_MESSAGES"]["PROVIDERS"][provider]["STANDARDIZE_FEATURES"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_phone_messages.csv", pid=config["PIDS"]))
if config["STANDARDIZATION"]["MERGE_ALL"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/z_all_sensor_features.csv")
for provider in config["PHONE_CALLS"]["PROVIDERS"].keys():
if config["PHONE_CALLS"]["PROVIDERS"][provider]["COMPUTE"]:
@ -56,6 +68,12 @@ for provider in config["PHONE_CALLS"]["PROVIDERS"].keys():
files_to_compute.extend(expand("data/processed/features/{pid}/phone_calls.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
if provider in config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["LIST"] and config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["COMPUTE"] \
and config["PHONE_CALLS"]["PROVIDERS"][provider]["STANDARDIZE_FEATURES"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_phone_calls.csv", pid=config["PIDS"]))
if config["STANDARDIZATION"]["MERGE_ALL"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/z_all_sensor_features.csv")
for provider in config["PHONE_BLUETOOTH"]["PROVIDERS"].keys():
if config["PHONE_BLUETOOTH"]["PROVIDERS"][provider]["COMPUTE"]:
@ -65,6 +83,12 @@ for provider in config["PHONE_BLUETOOTH"]["PROVIDERS"].keys():
files_to_compute.extend(expand("data/processed/features/{pid}/phone_bluetooth.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
if provider in config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["LIST"] and config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["COMPUTE"] \
and config["PHONE_BLUETOOTH"]["PROVIDERS"][provider]["STANDARDIZE_FEATURES"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_phone_bluetooth.csv", pid=config["PIDS"]))
if config["STANDARDIZATION"]["MERGE_ALL"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/z_all_sensor_features.csv")
for provider in config["PHONE_ACTIVITY_RECOGNITION"]["PROVIDERS"].keys():
if config["PHONE_ACTIVITY_RECOGNITION"]["PROVIDERS"][provider]["COMPUTE"]:
@ -77,6 +101,12 @@ for provider in config["PHONE_ACTIVITY_RECOGNITION"]["PROVIDERS"].keys():
files_to_compute.extend(expand("data/processed/features/{pid}/phone_activity_recognition.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
if provider in config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["LIST"] and config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["COMPUTE"] \
and config["PHONE_ACTIVITY_RECOGNITION"]["PROVIDERS"][provider]["STANDARDIZE_FEATURES"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_phone_activity_recognition.csv", pid=config["PIDS"]))
if config["STANDARDIZATION"]["MERGE_ALL"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/z_all_sensor_features.csv")
for provider in config["PHONE_BATTERY"]["PROVIDERS"].keys():
if config["PHONE_BATTERY"]["PROVIDERS"][provider]["COMPUTE"]:
@ -88,6 +118,12 @@ for provider in config["PHONE_BATTERY"]["PROVIDERS"].keys():
files_to_compute.extend(expand("data/processed/features/{pid}/phone_battery.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
if provider in config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["LIST"] and config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["COMPUTE"] \
and config["PHONE_BATTERY"]["PROVIDERS"][provider]["STANDARDIZE_FEATURES"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_phone_battery.csv", pid=config["PIDS"]))
if config["STANDARDIZATION"]["MERGE_ALL"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/z_all_sensor_features.csv")
for provider in config["PHONE_SCREEN"]["PROVIDERS"].keys():
if config["PHONE_SCREEN"]["PROVIDERS"][provider]["COMPUTE"]:
@ -104,6 +140,12 @@ for provider in config["PHONE_SCREEN"]["PROVIDERS"].keys():
files_to_compute.extend(expand("data/processed/features/{pid}/phone_screen.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
if provider in config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["LIST"] and config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["COMPUTE"] \
and config["PHONE_SCREEN"]["PROVIDERS"][provider]["STANDARDIZE_FEATURES"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_phone_screen.csv", pid=config["PIDS"]))
if config["STANDARDIZATION"]["MERGE_ALL"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/z_all_sensor_features.csv")
for provider in config["PHONE_LIGHT"]["PROVIDERS"].keys():
if config["PHONE_LIGHT"]["PROVIDERS"][provider]["COMPUTE"]:
@ -113,6 +155,12 @@ for provider in config["PHONE_LIGHT"]["PROVIDERS"].keys():
files_to_compute.extend(expand("data/processed/features/{pid}/phone_light.csv", pid=config["PIDS"],))
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
if provider in config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["LIST"] and config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["COMPUTE"] \
and config["PHONE_LIGHT"]["PROVIDERS"][provider]["STANDARDIZE_FEATURES"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_phone_light.csv", pid=config["PIDS"]))
if config["STANDARDIZATION"]["MERGE_ALL"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/z_all_sensor_features.csv")
for provider in config["PHONE_ACCELEROMETER"]["PROVIDERS"].keys():
if config["PHONE_ACCELEROMETER"]["PROVIDERS"][provider]["COMPUTE"]:
@ -136,6 +184,12 @@ for provider in config["PHONE_APPLICATIONS_FOREGROUND"]["PROVIDERS"].keys():
files_to_compute.extend(expand("data/processed/features/{pid}/phone_applications_foreground.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
if provider in config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["LIST"] and config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["COMPUTE"] \
and config["PHONE_APPLICATIONS_FOREGROUND"]["PROVIDERS"][provider]["STANDARDIZE_FEATURES"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_phone_applications_foreground.csv", pid=config["PIDS"]))
if config["STANDARDIZATION"]["MERGE_ALL"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/z_all_sensor_features.csv")
for provider in config["PHONE_WIFI_VISIBLE"]["PROVIDERS"].keys():
if config["PHONE_WIFI_VISIBLE"]["PROVIDERS"][provider]["COMPUTE"]:
@ -145,6 +199,12 @@ for provider in config["PHONE_WIFI_VISIBLE"]["PROVIDERS"].keys():
files_to_compute.extend(expand("data/processed/features/{pid}/phone_wifi_visible.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
if provider in config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["LIST"] and config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["COMPUTE"] \
and config["PHONE_WIFI_VISIBLE"]["PROVIDERS"][provider]["STANDARDIZE_FEATURES"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_phone_wifi_visible.csv", pid=config["PIDS"]))
if config["STANDARDIZATION"]["MERGE_ALL"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/z_all_sensor_features.csv")
for provider in config["PHONE_WIFI_CONNECTED"]["PROVIDERS"].keys():
if config["PHONE_WIFI_CONNECTED"]["PROVIDERS"][provider]["COMPUTE"]:
@ -171,8 +231,14 @@ for provider in config["PHONE_ESM"]["PROVIDERS"].keys():
files_to_compute.extend(expand("data/interim/{pid}/phone_esm_clean.csv",pid=config["PIDS"]))
files_to_compute.extend(expand("data/interim/{pid}/phone_esm_features/phone_esm_{language}_{provider_key}.csv",pid=config["PIDS"],language=get_script_language(config["PHONE_ESM"]["PROVIDERS"][provider]["SRC_SCRIPT"]),provider_key=provider.lower()))
files_to_compute.extend(expand("data/processed/features/{pid}/phone_esm.csv", pid=config["PIDS"]))
#files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv",pid=config["PIDS"]))
#files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
# files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv",pid=config["PIDS"]))
# files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
if provider in config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["LIST"] and config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["COMPUTE"] \
and config["PHONE_ESM"]["PROVIDERS"][provider]["STANDARDIZE_FEATURES"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_phone_esm.csv", pid=config["PIDS"]))
if config["STANDARDIZATION"]["MERGE_ALL"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/z_all_sensor_features.csv")
# We can delete these if's as soon as we add feature PROVIDERS to any of these sensors
if isinstance(config["PHONE_APPLICATIONS_CRASHES"]["PROVIDERS"], dict):
@ -238,6 +304,12 @@ for provider in config["PHONE_LOCATIONS"]["PROVIDERS"].keys():
files_to_compute.extend(expand("data/processed/features/{pid}/phone_locations.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
if provider in config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["LIST"] and config["STANDARDIZATION"]["PROVIDERS"]["OTHER"]["COMPUTE"] \
and config["PHONE_LOCATIONS"]["PROVIDERS"][provider]["STANDARDIZE_FEATURES"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_phone_locations.csv", pid=config["PIDS"]))
if config["STANDARDIZATION"]["MERGE_ALL"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/z_all_sensor_features.csv")
for provider in config["FITBIT_CALORIES_INTRADAY"]["PROVIDERS"].keys():
if config["FITBIT_CALORIES_INTRADAY"]["PROVIDERS"][provider]["COMPUTE"]:
@ -328,6 +400,13 @@ for provider in config["EMPATICA_ACCELEROMETER"]["PROVIDERS"].keys():
files_to_compute.extend(expand("data/processed/features/{pid}/empatica_accelerometer.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
if provider in config["STANDARDIZATION"]["PROVIDERS"] and config["STANDARDIZATION"]["PROVIDERS"][provider]["COMPUTE"] \
and config["EMPATICA_ACCELEROMETER"]["PROVIDERS"][provider]["WINDOWS"]["STANDARDIZE_FEATURES"]:
files_to_compute.extend(expand("data/interim/{pid}/empatica_accelerometer_features/z_empatica_accelerometer_{language}_{provider_key}_windows.csv", pid=config["PIDS"], language=get_script_language(config["STANDARDIZATION"]["PROVIDERS"][provider]["SRC_SCRIPT"]), provider_key=provider.lower()))
files_to_compute.extend(expand("data/processed/features/{pid}/z_empatica_accelerometer.csv", pid=config["PIDS"]))
if config["STANDARDIZATION"]["MERGE_ALL"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/z_all_sensor_features.csv")
for provider in config["EMPATICA_HEARTRATE"]["PROVIDERS"].keys():
if config["EMPATICA_HEARTRATE"]["PROVIDERS"][provider]["COMPUTE"]:
@ -347,6 +426,13 @@ for provider in config["EMPATICA_TEMPERATURE"]["PROVIDERS"].keys():
files_to_compute.extend(expand("data/processed/features/{pid}/empatica_temperature.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
if provider in config["STANDARDIZATION"]["PROVIDERS"] and config["STANDARDIZATION"]["PROVIDERS"][provider]["COMPUTE"] \
and config["EMPATICA_TEMPERATURE"]["PROVIDERS"][provider]["WINDOWS"]["STANDARDIZE_FEATURES"]:
files_to_compute.extend(expand("data/interim/{pid}/empatica_temperature_features/z_empatica_temperature_{language}_{provider_key}_windows.csv", pid=config["PIDS"], language=get_script_language(config["STANDARDIZATION"]["PROVIDERS"][provider]["SRC_SCRIPT"]), provider_key=provider.lower()))
files_to_compute.extend(expand("data/processed/features/{pid}/z_empatica_temperature.csv", pid=config["PIDS"]))
if config["STANDARDIZATION"]["MERGE_ALL"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/z_all_sensor_features.csv")
for provider in config["EMPATICA_ELECTRODERMAL_ACTIVITY"]["PROVIDERS"].keys():
if config["EMPATICA_ELECTRODERMAL_ACTIVITY"]["PROVIDERS"][provider]["COMPUTE"]:
@ -356,6 +442,13 @@ for provider in config["EMPATICA_ELECTRODERMAL_ACTIVITY"]["PROVIDERS"].keys():
files_to_compute.extend(expand("data/processed/features/{pid}/empatica_electrodermal_activity.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
if provider in config["STANDARDIZATION"]["PROVIDERS"] and config["STANDARDIZATION"]["PROVIDERS"][provider]["COMPUTE"] \
and config["EMPATICA_ELECTRODERMAL_ACTIVITY"]["PROVIDERS"][provider]["WINDOWS"]["STANDARDIZE_FEATURES"]:
files_to_compute.extend(expand("data/interim/{pid}/empatica_electrodermal_activity_features/z_empatica_electrodermal_activity_{language}_{provider_key}_windows.csv", pid=config["PIDS"], language=get_script_language(config["STANDARDIZATION"]["PROVIDERS"][provider]["SRC_SCRIPT"]), provider_key=provider.lower()))
files_to_compute.extend(expand("data/processed/features/{pid}/z_empatica_electrodermal_activity.csv", pid=config["PIDS"]))
if config["STANDARDIZATION"]["MERGE_ALL"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/z_all_sensor_features.csv")
for provider in config["EMPATICA_BLOOD_VOLUME_PULSE"]["PROVIDERS"].keys():
if config["EMPATICA_BLOOD_VOLUME_PULSE"]["PROVIDERS"][provider]["COMPUTE"]:
@ -365,6 +458,13 @@ for provider in config["EMPATICA_BLOOD_VOLUME_PULSE"]["PROVIDERS"].keys():
files_to_compute.extend(expand("data/processed/features/{pid}/empatica_blood_volume_pulse.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
if provider in config["STANDARDIZATION"]["PROVIDERS"] and config["STANDARDIZATION"]["PROVIDERS"][provider]["COMPUTE"] \
and config["EMPATICA_BLOOD_VOLUME_PULSE"]["PROVIDERS"][provider]["WINDOWS"]["STANDARDIZE_FEATURES"]:
files_to_compute.extend(expand("data/interim/{pid}/empatica_blood_volume_pulse_features/z_empatica_blood_volume_pulse_{language}_{provider_key}_windows.csv", pid=config["PIDS"], language=get_script_language(config["STANDARDIZATION"]["PROVIDERS"][provider]["SRC_SCRIPT"]), provider_key=provider.lower()))
files_to_compute.extend(expand("data/processed/features/{pid}/z_empatica_blood_volume_pulse.csv", pid=config["PIDS"]))
if config["STANDARDIZATION"]["MERGE_ALL"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/z_all_sensor_features.csv")
for provider in config["EMPATICA_INTER_BEAT_INTERVAL"]["PROVIDERS"].keys():
if config["EMPATICA_INTER_BEAT_INTERVAL"]["PROVIDERS"][provider]["COMPUTE"]:
@ -374,6 +474,13 @@ for provider in config["EMPATICA_INTER_BEAT_INTERVAL"]["PROVIDERS"].keys():
files_to_compute.extend(expand("data/processed/features/{pid}/empatica_inter_beat_interval.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
if provider in config["STANDARDIZATION"]["PROVIDERS"] and config["STANDARDIZATION"]["PROVIDERS"][provider]["COMPUTE"] \
and config["EMPATICA_INTER_BEAT_INTERVAL"]["PROVIDERS"][provider]["WINDOWS"]["STANDARDIZE_FEATURES"]:
files_to_compute.extend(expand("data/interim/{pid}/empatica_inter_beat_interval_features/z_empatica_inter_beat_interval_{language}_{provider_key}_windows.csv", pid=config["PIDS"], language=get_script_language(config["STANDARDIZATION"]["PROVIDERS"][provider]["SRC_SCRIPT"]), provider_key=provider.lower()))
files_to_compute.extend(expand("data/processed/features/{pid}/z_empatica_inter_beat_interval.csv", pid=config["PIDS"]))
if config["STANDARDIZATION"]["MERGE_ALL"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_all_sensor_features.csv", pid=config["PIDS"]))
files_to_compute.append("data/processed/features/all_participants/z_all_sensor_features.csv")
if isinstance(config["EMPATICA_TAGS"]["PROVIDERS"], dict):
for provider in config["EMPATICA_TAGS"]["PROVIDERS"].keys():
@ -408,10 +515,26 @@ if config["HEATMAP_FEATURE_CORRELATION_MATRIX"]["PLOT"]:
# Data Cleaning
for provider in config["ALL_CLEANING_INDIVIDUAL"]["PROVIDERS"].keys():
if config["ALL_CLEANING_INDIVIDUAL"]["PROVIDERS"][provider]["COMPUTE"]:
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features_cleaned_" + provider.lower() +".csv", pid=config["PIDS"]))
if provider == "STRAW":
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features_cleaned_" + provider.lower() + "_py.csv", pid=config["PIDS"]))
if config["ALL_CLEANING_INDIVIDUAL"]["CLEAN_STANDARDIZED"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_all_sensor_features_cleaned_" + provider.lower() + "_py.csv", pid=config["PIDS"]))
else:
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features_cleaned_" + provider.lower() + "_R.csv", pid=config["PIDS"]))
if config["ALL_CLEANING_INDIVIDUAL"]["CLEAN_STANDARDIZED"]:
files_to_compute.extend(expand("data/processed/features/{pid}/z_all_sensor_features_cleaned_" + provider.lower() + "_R.csv", pid=config["PIDS"]))
for provider in config["ALL_CLEANING_OVERALL"]["PROVIDERS"].keys():
if config["ALL_CLEANING_OVERALL"]["PROVIDERS"][provider]["COMPUTE"]:
files_to_compute.extend(expand("data/processed/features/all_participants/all_sensor_features_cleaned_" + provider.lower() +".csv"))
if provider == "STRAW":
files_to_compute.extend(expand("data/processed/features/all_participants/all_sensor_features_cleaned_" + provider.lower() +"_py.csv"))
if config["ALL_CLEANING_OVERALL"]["CLEAN_STANDARDIZED"]:
files_to_compute.extend(expand("data/processed/features/all_participants/z_all_sensor_features_cleaned_" + provider.lower() +"_py.csv"))
else:
files_to_compute.extend(expand("data/processed/features/all_participants/all_sensor_features_cleaned_" + provider.lower() +"_R.csv"))
if config["ALL_CLEANING_OVERALL"]["CLEAN_STANDARDIZED"]:
files_to_compute.extend(expand("data/processed/features/all_participants/z_all_sensor_features_cleaned_" + provider.lower() +"_R.csv"))
# Baseline features
if config["PARAMS_FOR_ANALYSIS"]["BASELINE"]["COMPUTE"]:
@ -422,8 +545,10 @@ if config["PARAMS_FOR_ANALYSIS"]["BASELINE"]["COMPUTE"]:
# Targets (labels)
if config["PARAMS_FOR_ANALYSIS"]["TARGET"]["COMPUTE"]:
files_to_compute.extend(expand("data/processed/models/individual_model/{pid}/input.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/processed/models/population_model/input.csv"))
# files_to_compute.extend(expand("data/processed/models/individual_model/{pid}/input.csv", pid=config["PIDS"]))
# files_to_compute.extend(expand("data/processed/models/population_model/input.csv"))
files_to_compute.extend(expand("data/processed/models/individual_model/{pid}/z_input.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/processed/models/population_model/z_input.csv"))
#files_to_compute.extend(expand("data/processed/models/individual_model/{pid}/output_{cv_method}/baselines.csv", pid=config["PIDS"], cv_method=config["PARAMS_FOR_ANALYSIS"]["CV_METHODS"]))

0
__init__.py 100644
View File

View File

@ -16,7 +16,7 @@ CREATE_PARTICIPANT_FILES:
ADD: False
IGNORED_DEVICE_IDS: []
EMPATICA_SECTION:
ADD: False
ADD: True
IGNORED_DEVICE_IDS: []
# See https://www.rapids.science/latest/setup/configuration/#time-segments
@ -93,6 +93,7 @@ PHONE_ACTIVITY_RECOGNITION:
STATIONARY: ["still", "tilting"]
MOBILE: ["on_foot", "walking", "running", "on_bicycle"]
VEHICLE: ["in_vehicle"]
STANDARDIZE_FEATURES: True
SRC_SCRIPT: src/features/phone_activity_recognition/rapids/main.py
# See https://www.rapids.science/latest/features/phone-applications-crashes/
@ -133,6 +134,7 @@ PHONE_APPLICATIONS_FOREGROUND:
APP_EPISODES: ["countepisode", "minduration", "maxduration", "meanduration", "sumduration"]
IGNORE_EPISODES_SHORTER_THAN: 0 # in minutes, set to 0 to disable
IGNORE_EPISODES_LONGER_THAN: 300 # in minutes, set to 0 to disable
STANDARDIZE_FEATURES: True
SRC_SCRIPT: src/features/phone_applications_foreground/rapids/main.py
# See https://www.rapids.science/latest/features/phone-applications-notifications/
@ -153,6 +155,7 @@ PHONE_BATTERY:
RAPIDS:
COMPUTE: True
FEATURES: ["countdischarge", "sumdurationdischarge", "countcharge", "sumdurationcharge", "avgconsumptionrate", "maxconsumptionrate"]
STANDARDIZE_FEATURES: True
SRC_SCRIPT: src/features/phone_battery/rapids/main.py
# See https://www.rapids.science/latest/features/phone-bluetooth/
@ -162,6 +165,7 @@ PHONE_BLUETOOTH:
RAPIDS:
COMPUTE: True
FEATURES: ["countscans", "uniquedevices", "countscansmostuniquedevice"]
STANDARDIZE_FEATURES: True
SRC_SCRIPT: src/features/phone_bluetooth/rapids/main.R
DORYAB:
@ -179,6 +183,7 @@ PHONE_BLUETOOTH:
DEVICES: ["countscans", "uniquedevices", "meanscans", "stdscans"]
SCANS_MOST_FREQUENT_DEVICE: ["withinsegments", "acrosssegments", "acrossdataset"]
SCANS_LEAST_FREQUENT_DEVICE: ["withinsegments", "acrosssegments", "acrossdataset"]
STANDARDIZE_FEATURES: True
SRC_SCRIPT: src/features/phone_bluetooth/doryab/main.py
# See https://www.rapids.science/latest/features/phone-calls/
@ -193,6 +198,7 @@ PHONE_CALLS:
missed: [count, distinctcontacts, timefirstcall, timelastcall, countmostfrequentcontact]
incoming: [count, distinctcontacts, meanduration, sumduration, minduration, maxduration, stdduration, modeduration, entropyduration, timefirstcall, timelastcall, countmostfrequentcontact]
outgoing: [count, distinctcontacts, meanduration, sumduration, minduration, maxduration, stdduration, modeduration, entropyduration, timefirstcall, timelastcall, countmostfrequentcontact]
STANDARDIZE_FEATURES: True
SRC_SCRIPT: src/features/phone_calls/rapids/main.R
# See https://www.rapids.science/latest/features/phone-conversation/
@ -232,6 +238,7 @@ PHONE_DATA_YIELD:
COMPUTE: True
FEATURES: [ratiovalidyieldedminutes, ratiovalidyieldedhours]
MINUTE_RATIO_THRESHOLD_FOR_VALID_YIELDED_HOURS: 0.5 # 0 to 1, minimum percentage of valid minutes in an hour to be considered valid.
STANDARDIZE_FEATURES: True
SRC_SCRIPT: src/features/phone_data_yield/rapids/main.R
PHONE_ESM:
@ -241,6 +248,7 @@ PHONE_ESM:
COMPUTE: True
SCALES: ["PANAS_positive_affect", "PANAS_negative_affect", "JCQ_job_demand", "JCQ_job_control", "JCQ_supervisor_support", "JCQ_coworker_support"]
FEATURES: [mean]
STANDARDIZE_FEATURES: True
SRC_SCRIPT: src/features/phone_esm/straw/main.py
# See https://www.rapids.science/latest/features/phone-keyboard/
@ -259,6 +267,7 @@ PHONE_LIGHT:
RAPIDS:
COMPUTE: True
FEATURES: ["count", "maxlux", "minlux", "avglux", "medianlux", "stdlux"]
STANDARDIZE_FEATURES: True
SRC_SCRIPT: src/features/phone_light/rapids/main.py
# See https://www.rapids.science/latest/features/phone-locations/
@ -283,6 +292,7 @@ PHONE_LOCATIONS:
MINIMUM_DAYS_TO_DETECT_HOME_CHANGES: 3
CLUSTERING_ALGORITHM: DBSCAN # DBSCAN, OPTICS
RADIUS_FOR_HOME: 100
STANDARDIZE_FEATURES: True
SRC_SCRIPT: src/features/phone_locations/doryab/main.py
BARNETT:
@ -290,6 +300,7 @@ PHONE_LOCATIONS:
FEATURES: ["hometime","disttravelled","rog","maxdiam","maxhomedist","siglocsvisited","avgflightlen","stdflightlen","avgflightdur","stdflightdur","probpause","siglocentropy","circdnrtn","wkenddayrtn"]
IF_MULTIPLE_TIMEZONES: USE_MOST_COMMON
MINUTES_DATA_USED: False # Use this for quality control purposes, how many minutes of data (location coordinates gruped by minute) were used to compute features
STANDARDIZE_FEATURES: True
SRC_SCRIPT: src/features/phone_locations/barnett/main.R
# See https://www.rapids.science/latest/features/phone-log/
@ -309,6 +320,7 @@ PHONE_MESSAGES:
FEATURES:
received: [count, distinctcontacts, timefirstmessage, timelastmessage, countmostfrequentcontact]
sent: [count, distinctcontacts, timefirstmessage, timelastmessage, countmostfrequentcontact]
STANDARDIZE_FEATURES: True
SRC_SCRIPT: src/features/phone_messages/rapids/main.R
# See https://www.rapids.science/latest/features/phone-screen/
@ -322,6 +334,7 @@ PHONE_SCREEN:
IGNORE_EPISODES_LONGER_THAN: 360 # in minutes, set to 0 to disable
FEATURES: ["countepisode", "sumduration", "maxduration", "minduration", "avgduration", "stdduration", "firstuseafter"] # "episodepersensedminutes" needs to be added later
EPISODE_TYPES: ["unlock"]
STANDARDIZE_FEATURES: True
SRC_SCRIPT: src/features/phone_screen/rapids/main.py
# See https://www.rapids.science/latest/features/phone-wifi-connected/
@ -340,6 +353,7 @@ PHONE_WIFI_VISIBLE:
RAPIDS:
COMPUTE: True
FEATURES: ["countscans", "uniquedevices", "countscansmostuniquedevice"]
STANDARDIZE_FEATURES: True
SRC_SCRIPT: src/features/phone_wifi_visible/rapids/main.R
@ -485,6 +499,7 @@ FITBIT_STEPS_INTRADAY:
INCLUDE_ZERO_STEP_ROWS: False
SRC_SCRIPT: src/features/fitbit_steps_intraday/rapids/main.py
########################################################################################################################
# EMPATICA #
########################################################################################################################
@ -506,6 +521,16 @@ EMPATICA_ACCELEROMETER:
COMPUTE: False
FEATURES: ["maxmagnitude", "minmagnitude", "avgmagnitude", "medianmagnitude", "stdmagnitude"]
SRC_SCRIPT: src/features/empatica_accelerometer/dbdp/main.py
CR:
COMPUTE: True
FEATURES: ["totalMagnitudeBand", "absoluteMeanBand", "varianceBand"] # Acc features
WINDOWS:
COMPUTE: True
WINDOW_LENGTH: 15 # specify window length in seconds
SECOND_ORDER_FEATURES: ['mean', 'median', 'sd', 'nlargest', 'nsmallest', 'count_windows']
STANDARDIZE_FEATURES: True
SRC_SCRIPT: src/features/empatica_accelerometer/cr/main.py
# See https://www.rapids.science/latest/features/empatica-heartrate/
EMPATICA_HEARTRATE:
@ -524,6 +549,16 @@ EMPATICA_TEMPERATURE:
COMPUTE: False
FEATURES: ["maxtemp", "mintemp", "avgtemp", "mediantemp", "modetemp", "stdtemp", "diffmaxmodetemp", "diffminmodetemp", "entropytemp"]
SRC_SCRIPT: src/features/empatica_temperature/dbdp/main.py
CR:
COMPUTE: True
FEATURES: ["maximum", "minimum", "meanAbsChange", "longestStrikeAboveMean", "longestStrikeBelowMean",
"stdDev", "median", "meanChange", "sumSquared", "squareSumOfComponent", "sumOfSquareComponents"]
WINDOWS:
COMPUTE: True
WINDOW_LENGTH: 300 # specify window length in seconds
SECOND_ORDER_FEATURES: ['mean', 'median', 'sd', 'nlargest', 'nsmallest', 'count_windows']
STANDARDIZE_FEATURES: True
SRC_SCRIPT: src/features/empatica_temperature/cr/main.py
# See https://www.rapids.science/latest/features/empatica-electrodermal-activity/
EMPATICA_ELECTRODERMAL_ACTIVITY:
@ -533,6 +568,20 @@ EMPATICA_ELECTRODERMAL_ACTIVITY:
COMPUTE: False
FEATURES: ["maxeda", "mineda", "avgeda", "medianeda", "modeeda", "stdeda", "diffmaxmodeeda", "diffminmodeeda", "entropyeda"]
SRC_SCRIPT: src/features/empatica_electrodermal_activity/dbdp/main.py
CR:
COMPUTE: True
FEATURES: ['mean', 'std', 'q25', 'q75', 'qd', 'deriv', 'power', 'numPeaks', 'ratePeaks', 'powerPeaks', 'sumPosDeriv', 'propPosDeriv', 'derivTonic',
'sigTonicDifference', 'freqFeats','maxPeakAmplitudeChangeBefore', 'maxPeakAmplitudeChangeAfter', 'avgPeakAmplitudeChangeBefore',
'avgPeakAmplitudeChangeAfter', 'avgPeakChangeRatio', 'maxPeakIncreaseTime', 'maxPeakDecreaseTime', 'maxPeakDuration', 'maxPeakChangeRatio',
'avgPeakIncreaseTime', 'avgPeakDecreaseTime', 'avgPeakDuration', 'signalOverallChange', 'changeDuration', 'changeRate', 'significantIncrease',
'significantDecrease']
WINDOWS:
COMPUTE: True
WINDOW_LENGTH: 60 # specify window length in seconds
SECOND_ORDER_FEATURES: ['mean', 'median', 'sd', 'nlargest', 'nsmallest', count_windows, eda_num_peaks_non_zero]
STANDARDIZE_FEATURES: True
IMPUTE_NANS: True
SRC_SCRIPT: src/features/empatica_electrodermal_activity/cr/main.py
# See https://www.rapids.science/latest/features/empatica-blood-volume-pulse/
EMPATICA_BLOOD_VOLUME_PULSE:
@ -542,6 +591,16 @@ EMPATICA_BLOOD_VOLUME_PULSE:
COMPUTE: False
FEATURES: ["maxbvp", "minbvp", "avgbvp", "medianbvp", "modebvp", "stdbvp", "diffmaxmodebvp", "diffminmodebvp", "entropybvp"]
SRC_SCRIPT: src/features/empatica_blood_volume_pulse/dbdp/main.py
CR:
COMPUTE: False
FEATURES: ['meanHr', 'ibi', 'sdnn', 'sdsd', 'rmssd', 'pnn20', 'pnn50', 'sd', 'sd2', 'sd1/sd2', 'numRR', # Time features
'VLF', 'LF', 'LFnorm', 'HF', 'HFnorm', 'LF/HF', 'fullIntegral'] # Freq features
WINDOWS:
COMPUTE: True
WINDOW_LENGTH: 300 # specify window length in seconds
SECOND_ORDER_FEATURES: ['mean', 'median', 'sd', 'nlargest', 'nsmallest', 'count_windows', 'hrv_num_windows_non_nan']
STANDARDIZE_FEATURES: True
SRC_SCRIPT: src/features/empatica_blood_volume_pulse/cr/main.py
# See https://www.rapids.science/latest/features/empatica-inter-beat-interval/
EMPATICA_INTER_BEAT_INTERVAL:
@ -551,6 +610,17 @@ EMPATICA_INTER_BEAT_INTERVAL:
COMPUTE: False
FEATURES: ["maxibi", "minibi", "avgibi", "medianibi", "modeibi", "stdibi", "diffmaxmodeibi", "diffminmodeibi", "entropyibi"]
SRC_SCRIPT: src/features/empatica_inter_beat_interval/dbdp/main.py
CR:
COMPUTE: True
FEATURES: ['meanHr', 'ibi', 'sdnn', 'sdsd', 'rmssd', 'pnn20', 'pnn50', 'sd', 'sd2', 'sd1/sd2', 'numRR', # Time features
'VLF', 'LF', 'LFnorm', 'HF', 'HFnorm', 'LF/HF', 'fullIntegral'] # Freq features
PATCH_WITH_BVP: True
WINDOWS:
COMPUTE: True
WINDOW_LENGTH: 300 # specify window length in seconds
SECOND_ORDER_FEATURES: ['mean', 'median', 'sd', 'nlargest', 'nsmallest', 'count_windows', 'hrv_num_windows_non_nan']
STANDARDIZE_FEATURES: True
SRC_SCRIPT: src/features/empatica_inter_beat_interval/cr/main.py
# See https://www.rapids.science/latest/features/empatica-tags/
EMPATICA_TAGS:
@ -566,7 +636,7 @@ EMPATICA_TAGS:
# See https://www.rapids.science/latest/visualizations/data-quality-visualizations/#1-histograms-of-phone-data-yield
HISTOGRAM_PHONE_DATA_YIELD:
PLOT: True
PLOT: False
# See https://www.rapids.science/latest/visualizations/data-quality-visualizations/#2-heatmaps-of-overall-data-yield
HEATMAP_PHONE_DATA_YIELD_PER_PARTICIPANT_PER_TIME_SEGMENT:
@ -575,7 +645,7 @@ HEATMAP_PHONE_DATA_YIELD_PER_PARTICIPANT_PER_TIME_SEGMENT:
# See https://www.rapids.science/latest/visualizations/data-quality-visualizations/#3-heatmap-of-recorded-phone-sensors
HEATMAP_SENSORS_PER_MINUTE_PER_TIME_SEGMENT:
PLOT: True
PLOT: False
# See https://www.rapids.science/latest/visualizations/data-quality-visualizations/#4-heatmap-of-sensor-row-count
HEATMAP_SENSOR_ROW_COUNT_PER_TIME_SEGMENT:
@ -586,7 +656,7 @@ HEATMAP_SENSOR_ROW_COUNT_PER_TIME_SEGMENT:
# See https://www.rapids.science/latest/visualizations/feature-visualizations/#1-heatmap-correlation-matrix
HEATMAP_FEATURE_CORRELATION_MATRIX:
PLOT: True
PLOT: False
MIN_ROWS_RATIO: 0.5
CORR_THRESHOLD: 0.1
CORR_METHOD: "pearson" # choose from {"pearson", "kendall", "spearman"}
@ -597,43 +667,94 @@ HEATMAP_FEATURE_CORRELATION_MATRIX:
########################################################################################################################
ALL_CLEANING_INDIVIDUAL:
CLEAN_STANDARDIZED: True
PROVIDERS:
RAPIDS:
COMPUTE: True
IMPUTE_SELECTED_EVENT_FEATURES:
COMPUTE: True
COMPUTE: False
MIN_DATA_YIELDED_MINUTES_TO_IMPUTE: 0.33
COLS_NAN_THRESHOLD: 0.3 # set to 1 to disable
COLS_NAN_THRESHOLD: 1 # set to 1 to disable
COLS_VAR_THRESHOLD: True
ROWS_NAN_THRESHOLD: 1 # set to 1 to disable
DATA_YIELD_FEATURE: RATIO_VALID_YIELDED_HOURS # RATIO_VALID_YIELDED_HOURS or RATIO_VALID_YIELDED_MINUTES
DATA_YIELD_RATIO_THRESHOLD: 0.3 # set to 0 to disable
DATA_YIELD_RATIO_THRESHOLD: 0 # set to 0 to disable
DROP_HIGHLY_CORRELATED_FEATURES:
COMPUTE: False
COMPUTE: True
MIN_OVERLAP_FOR_CORR_THRESHOLD: 0.5
CORR_THRESHOLD: 0.95
SRC_SCRIPT: src/features/all_cleaning_individual/rapids/main.R
STRAW: # currently the same as RAPIDS provider with a change in selecting the imputation type
COMPUTE: True
IMPUTE_PHONE_SELECTED_EVENT_FEATURES:
COMPUTE: False
TYPE: median # options: zero, mean, median or k-nearest
MIN_DATA_YIELDED_MINUTES_TO_IMPUTE: 0.33
COLS_NAN_THRESHOLD: 1 # set to 1 to disable
COLS_VAR_THRESHOLD: True
ROWS_NAN_THRESHOLD: 1 # set to 1 to disable
DATA_YIELD_FEATURE: RATIO_VALID_YIELDED_HOURS # RATIO_VALID_YIELDED_HOURS or RATIO_VALID_YIELDED_MINUTES
DATA_YIELD_RATIO_THRESHOLD: 0 # set to 0 to disable
DROP_HIGHLY_CORRELATED_FEATURES:
COMPUTE: True
MIN_OVERLAP_FOR_CORR_THRESHOLD: 0.5
CORR_THRESHOLD: 0.95
SRC_SCRIPT: src/features/all_cleaning_individual/straw/main.py
ALL_CLEANING_OVERALL:
CLEAN_STANDARDIZED: True
PROVIDERS:
RAPIDS:
COMPUTE: True
IMPUTE_SELECTED_EVENT_FEATURES:
COMPUTE: True
COMPUTE: False
MIN_DATA_YIELDED_MINUTES_TO_IMPUTE: 0.33
COLS_NAN_THRESHOLD: 0.3 # set to 1 to disable
COLS_NAN_THRESHOLD: 1 # set to 1 to disable
COLS_VAR_THRESHOLD: True
ROWS_NAN_THRESHOLD: 1 # set to 1 to disable
DATA_YIELD_FEATURE: RATIO_VALID_YIELDED_HOURS # RATIO_VALID_YIELDED_HOURS or RATIO_VALID_YIELDED_MINUTES
DATA_YIELD_RATIO_THRESHOLD: 0.3 # set to 0 to disable
DATA_YIELD_RATIO_THRESHOLD: 0 # set to 0 to disable
DROP_HIGHLY_CORRELATED_FEATURES:
COMPUTE: False
COMPUTE: True
MIN_OVERLAP_FOR_CORR_THRESHOLD: 0.5
CORR_THRESHOLD: 0.95
SRC_SCRIPT: src/features/all_cleaning_overall/rapids/main.R
STRAW: # currently the same as RAPIDS provider with a change in selecting the imputation type
COMPUTE: True
IMPUTE_PHONE_SELECTED_EVENT_FEATURES:
COMPUTE: False
TYPE: median # options: zero, mean, median or k-nearest
MIN_DATA_YIELDED_MINUTES_TO_IMPUTE: 0.33
COLS_NAN_THRESHOLD: 1 # set to 1 to disable
COLS_VAR_THRESHOLD: True
ROWS_NAN_THRESHOLD: 1 # set to 1 to disable
DATA_YIELD_FEATURE: RATIO_VALID_YIELDED_HOURS # RATIO_VALID_YIELDED_HOURS or RATIO_VALID_YIELDED_MINUTES
DATA_YIELD_RATIO_THRESHOLD: 0 # set to 0 to disable
DROP_HIGHLY_CORRELATED_FEATURES:
COMPUTE: True
MIN_OVERLAP_FOR_CORR_THRESHOLD: 0.5
CORR_THRESHOLD: 0.95
SRC_SCRIPT: src/features/all_cleaning_overall/straw/main.py
########################################################################################################################
# Analysis Workflow Example #
# Z-score standardization #
########################################################################################################################
STANDARDIZATION: # Standardization for both providers is executed if only one of two providers is marked COMPUTE: TRUE
MERGE_ALL: True # Creates the joint standardized file for each participant and all participants. Similar to merge_sensor_features_for_all_participants rule
PROVIDERS:
CR:
COMPUTE: True
SRC_SCRIPT: src/features/standardization/main.py
OTHER:
COMPUTE: True
LIST: [RAPIDS, DORYAB, BARNETT, STRAW]
SRC_SCRIPT: src/features/standardization/main.py
########################################################################################################################
# Baseline #
########################################################################################################################
PARAMS_FOR_ANALYSIS:

View File

@ -0,0 +1,9 @@
"_id","timestamp","device_id","call_type","call_duration","trace"
1,1587663260695,"a748ee1a-1d0b-4ae9-9074-279a2b6ba524",2,14,"d5e84f8af01b2728021d4f43f53a163c0c90000c"
2,1587739118007,"a748ee1a-1d0b-4ae9-9074-279a2b6ba524",3,0,"47c125dc7bd163b8612cdea13724a814917b6e93"
5,1587746544891,"a748ee1a-1d0b-4ae9-9074-279a2b6ba524",2,95,"9cc793ffd6e88b1d850ce540b5d7e000ef5650d4"
6,1587911379859,"a748ee1a-1d0b-4ae9-9074-279a2b6ba524",2,63,"51fb9344e988049a3fec774c7ca622358bf80264"
7,1587992647361,"a748ee1a-1d0b-4ae9-9074-279a2b6ba524",3,0,"2a862a7730cfdfaf103a9487afe3e02935fd6e02"
8,1588020039448,"a748ee1a-1d0b-4ae9-9074-279a2b6ba524",1,11,"a2c53f6a086d98622c06107780980cf1bb4e37bd"
11,1588176189024,"a748ee1a-1d0b-4ae9-9074-279a2b6ba524",2,65,"56589df8c830c70e330b644921ed38e08d8fd1f3"
12,1588197745079,"a748ee1a-1d0b-4ae9-9074-279a2b6ba524",3,0,"cab458018a8ed3b626515e794c70b6f415318adc"
1 _id timestamp device_id call_type call_duration trace
2 1 1587663260695 a748ee1a-1d0b-4ae9-9074-279a2b6ba524 2 14 d5e84f8af01b2728021d4f43f53a163c0c90000c
3 2 1587739118007 a748ee1a-1d0b-4ae9-9074-279a2b6ba524 3 0 47c125dc7bd163b8612cdea13724a814917b6e93
4 5 1587746544891 a748ee1a-1d0b-4ae9-9074-279a2b6ba524 2 95 9cc793ffd6e88b1d850ce540b5d7e000ef5650d4
5 6 1587911379859 a748ee1a-1d0b-4ae9-9074-279a2b6ba524 2 63 51fb9344e988049a3fec774c7ca622358bf80264
6 7 1587992647361 a748ee1a-1d0b-4ae9-9074-279a2b6ba524 3 0 2a862a7730cfdfaf103a9487afe3e02935fd6e02
7 8 1588020039448 a748ee1a-1d0b-4ae9-9074-279a2b6ba524 1 11 a2c53f6a086d98622c06107780980cf1bb4e37bd
8 11 1588176189024 a748ee1a-1d0b-4ae9-9074-279a2b6ba524 2 65 56589df8c830c70e330b644921ed38e08d8fd1f3
9 12 1588197745079 a748ee1a-1d0b-4ae9-9074-279a2b6ba524 3 0 cab458018a8ed3b626515e794c70b6f415318adc

Binary file not shown.

View File

@ -0,0 +1,57 @@
label,empatica_id
uploader_79170,A0245B
uploader_89788,A02731
uploader_68294,A02705
uploader_92856,A024AF
uploader_23726,A0231C
uploader_66620,A02305
uploader_58435,A026B5
uploader_87801,A022A8
uploader_96055,A027BA
uploader_69549,A0226C
uploader_26363,A0263D
uploader_72010,A023FA
uploader_13997,A024AF
uploader_31156,A02305
uploader_63187,A027BA
uploader_94821,A022A8
uploader_65413,A023F1;A023FA
uploader_36488,A02713
uploader_91087,A0231C
uploader_35174,A025D1
uploader_73880,A02705
uploader_78650,A02731
uploader_70578,A0245B
uploader_88313,A02736
uploader_58482,A0261A
uploader_80601,A027BA
uploader_93729,A0226C
uploader_61663,A0245B
uploader_80848,A025D1
uploader_57312,A023F9;A02361;A027A0
uploader_52087,A02666
uploader_98770,A02953
uploader_51327,A0245F
uploader_11737,A02732
uploader_77440,A0264E
uploader_57277,A02422
uploader_13098,A026E5
uploader_80719,A023C8
uploader_54698,A02953
uploader_95571,A02853
uploader_21880,A024DC
uploader_92905,A02920
uploader_12108,A023F4
uploader_17436,A026E5
uploader_58440,A0273F
uploader_22172,A0245F
uploader_39250,A02422
uploader_15311,A023F9
uploader_45766,A02920
uploader_23096,A02361
uploader_78243,A02422
uploader_58777,A0245F
uploader_82941,A02666
uploader_89606,A023F4
uploader_82969,A023C8
uploader_53573,A024DC;A02361
1 label empatica_id
2 uploader_79170 A0245B
3 uploader_89788 A02731
4 uploader_68294 A02705
5 uploader_92856 A024AF
6 uploader_23726 A0231C
7 uploader_66620 A02305
8 uploader_58435 A026B5
9 uploader_87801 A022A8
10 uploader_96055 A027BA
11 uploader_69549 A0226C
12 uploader_26363 A0263D
13 uploader_72010 A023FA
14 uploader_13997 A024AF
15 uploader_31156 A02305
16 uploader_63187 A027BA
17 uploader_94821 A022A8
18 uploader_65413 A023F1;A023FA
19 uploader_36488 A02713
20 uploader_91087 A0231C
21 uploader_35174 A025D1
22 uploader_73880 A02705
23 uploader_78650 A02731
24 uploader_70578 A0245B
25 uploader_88313 A02736
26 uploader_58482 A0261A
27 uploader_80601 A027BA
28 uploader_93729 A0226C
29 uploader_61663 A0245B
30 uploader_80848 A025D1
31 uploader_57312 A023F9;A02361;A027A0
32 uploader_52087 A02666
33 uploader_98770 A02953
34 uploader_51327 A0245F
35 uploader_11737 A02732
36 uploader_77440 A0264E
37 uploader_57277 A02422
38 uploader_13098 A026E5
39 uploader_80719 A023C8
40 uploader_54698 A02953
41 uploader_95571 A02853
42 uploader_21880 A024DC
43 uploader_92905 A02920
44 uploader_12108 A023F4
45 uploader_17436 A026E5
46 uploader_58440 A0273F
47 uploader_22172 A0245F
48 uploader_39250 A02422
49 uploader_15311 A023F9
50 uploader_45766 A02920
51 uploader_23096 A02361
52 uploader_78243 A02422
53 uploader_58777 A0245F
54 uploader_82941 A02666
55 uploader_89606 A023F4
56 uploader_82969 A023C8
57 uploader_53573 A024DC;A02361

View File

@ -0,0 +1,11 @@
PHONE:
DEVICE_IDS: [a748ee1a-1d0b-4ae9-9074-279a2b6ba524] # the participant's AWARE device id
PLATFORMS: [android] # or ios
LABEL: MyTestP01 # any string
START_DATE: 2020-01-01 # this can also be empty
END_DATE: 2021-01-01 # this can also be empty
EMPATICA:
DEVICE_IDS: [empatica1]
LABEL: test01
START_DATE:
END_DATE:

View File

@ -1,2 +1,2 @@
label,length
thirtyminutes,30
fiveminutes,5
1 label length
2 thirtyminutes fiveminutes 30 5

View File

@ -1,9 +1,2 @@
label,start_time,length,repeats_on,repeats_value
threeday,00:00:00,2D 23H 59M 59S,every_day,0
daily,00:00:00,23H 59M 59S,every_day,0
morning,06:00:00,5H 59M 59S,every_day,0
afternoon,12:00:00,5H 59M 59S,every_day,0
evening,18:00:00,5H 59M 59S,every_day,0
night,00:00:00,5H 59M 59S,every_day,0
two_weeks_overlapping,00:00:00,13D 23H 59M 59S,every_day,0
weekends,00:00:00,2D 23H 59M 59S,wday,5

1 label start_time length repeats_on repeats_value
threeday 00:00:00 2D 23H 59M 59S every_day 0
2 daily 00:00:00 23H 59M 59S every_day 0
morning 06:00:00 5H 59M 59S every_day 0
afternoon 12:00:00 5H 59M 59S every_day 0
evening 18:00:00 5H 59M 59S every_day 0
night 00:00:00 5H 59M 59S every_day 0
two_weeks_overlapping 00:00:00 13D 23H 59M 59S every_day 0
weekends 00:00:00 2D 23H 59M 59S wday 5

4109
data/external/timezone.csv vendored 100644

File diff suppressed because it is too large Load Diff

View File

@ -3,114 +3,138 @@ channels:
- conda-forge
- defaults
dependencies:
- _libgcc_mutex=0.1
- _openmp_mutex=4.5
- _py-xgboost-mutex=2.0
- appdirs=1.4.*
- appdirs=1.4.4
- arrow=0.16.0
- asn1crypto=1.4.*
- astropy=4.2.*
- attrs=20.3.*
- binaryornot=0.4.*
- asn1crypto=1.4.0
- astropy=4.2.1
- attrs=20.3.0
- binaryornot=0.4.4
- blas=1.0
- brotlipy=0.7.*
- bzip2=1.0.*
- ca-certificates
- certifi
- brotlipy=0.7.0
- bzip2=1.0.8
- ca-certificates=2021.7.5
- certifi=2021.5.30
- cffi=1.14.4
- chardet=3.0.*
- click=7.1.*
- cookiecutter=1.6.*
- cryptography=3.3.*
- datrie=0.8.*
- chardet=3.0.4
- click=7.1.2
- colorama=0.4.4
- cookiecutter=1.6.0
- cryptography=3.3.1
- datrie=0.8.2
- docutils=0.16
- future=0.18.2
- gitdb=4.0.*
- gitdb2=4.0.*
- gitpython=3.1.*
- gitdb=4.0.5
- gitdb2=4.0.2
- gitpython=3.1.11
- idna=2.10
- imbalanced-learn=0.6.*
- importlib-metadata=2.0.*
- importlib_metadata=2.0.*
- imbalanced-learn=0.6.2
- importlib-metadata=2.0.0
- importlib_metadata=2.0.0
- intel-openmp=2019.4
- jinja2=2.11.2
- jinja2-time=0.2.*
- joblib=1.0.*
- jsonschema=3.2.*
- libblas=3.8.*
- libcblas=3.8.*
- libcxx=10.0.*
- libedit=3.1.*
- jinja2-time=0.2.0
- joblib=1.0.0
- jsonschema=3.2.0
- ld_impl_linux-64=2.36.1
- libblas=3.8.0
- libcblas=3.8.0
- libcxx=10.0.0
- libcxxabi=10.0.0
- libedit=3.1.20191231
- libffi=3.3
- libgcc-ng=11.2.0
- libgfortran
- liblapack=3.8.*
- libopenblas=0.3.*
- libgfortran
- libgfortran
- liblapack=3.8.0
- libopenblas=0.3.10
- libstdcxx-ng=11.2.0
- libxgboost=0.90
- lightgbm=3.1.*
- llvm-openmp=10.0.*
- markupsafe=1.1.*
- libzlib=1.2.11
- lightgbm=3.1.1
- llvm-openmp=10.0.0
- markupsafe=1.1.1
- mkl
- mkl-service=2.3.*
- mkl_fft=1.2.*
- mkl_random=1.1.*
- more-itertools=8.6.*
- mkl-service=2.3.0
- mkl_fft=1.2.0
- mkl_random=1.1.1
- more-itertools=8.6.0
- ncurses=6.2
- numpy=1.19.2
- numpy-base=1.19.2
- openblas=0.3.*
- openssl
- pandas=1.1.*
- pbr=5.5.*
- pip=20.3.*
- openblas=0.3.4
- openssl=1.1.1k
- pandas=1.1.5
- pbr=5.5.1
- pip=20.3.3
- plotly=4.14.1
- poyo=0.5.*
- psutil=5.7.*
- psycopg2
- poyo=0.5.0
- psutil=5.7.2
- py-xgboost=0.90
- pycparser=2.20
- pyerfa=1.7.*
- pyopenssl=20.0.*
- pyprojroot
- pysocks=1.7.*
- python=3.7.*
- python-dateutil=2.8.*
- python-dotenv
- pyerfa=1.7.1.1
- pyopenssl=20.0.1
- pysocks=1.7.1
- python=3.7.9
- python-dateutil=2.8.1
- python_abi=3.7
- pytz=2020.4
- pyyaml=5.3.*
- pyyaml=5.3.1
- readline=8.0
- requests=2.25.0
- retrying=1.3.*
- retrying=1.3.3
- scikit-learn=0.23.2
- scipy=1.5.*
- setuptools=51.0.*
- scipy=1.5.2
- setuptools=51.0.0
- six=1.15.0
- smmap=3.0.*
- smmap2=3.0.*
- sqlalchemy
- smmap=3.0.4
- smmap2=3.0.1
- sqlite=3.33.0
- threadpoolctl=2.1.*
- tk=8.6.*
- threadpoolctl=2.1.0
- tk=8.6.10
- tqdm=4.62.0
- urllib3=1.25.11
- wheel=0.36.2
- whichcraft=0.6.*
- whichcraft=0.6.1
- wrapt=1.12.1
- xgboost=0.90
- xz=5.2.*
- yaml=0.2.*
- zipp=3.4.*
- zlib=1.2.*
- xz=5.2.5
- yaml=0.2.5
- zipp=3.4.0
- zlib=1.2.11
- pip:
- amply==0.1.*
- amply==0.1.4
- bidict==0.22.0
- biosppy==0.8.0
- cached-property==1.5.2
- configargparse==0.15.1
- decorator==4.4.*
- ipython-genutils==0.2.*
- jupyter-core==4.6.*
- nbformat==5.0.*
- cr-features==0.2.1
- cycler==0.11.0
- decorator==4.4.2
- fonttools==4.33.2
- h5py==3.6.0
- hmmlearn==0.2.7
- ipython-genutils==0.2.0
- jupyter-core==4.6.3
- kiwisolver==1.4.2
- matplotlib==3.5.1
- nbformat==5.0.7
- opencv-python==4.5.5.64
- packaging==21.3
- peakutils==1.3.3
- pillow==9.1.0
- pulp==2.4
- pyparsing==2.4.*
- pyparsing==2.4.7
- pyrsistent==0.15.5
- ratelimiter==1.2.*
- pywavelets==1.3.0
- ratelimiter==1.2.0.post0
- seaborn==0.11.2
- shortuuid==1.0.8
- snakemake==5.30.2
- toposort==1.5
- traitlets==4.3.*
prefix: /usr/local/Caskroom/miniconda/base/envs/rapids202108
- traitlets==4.3.3
- typing-extensions==4.2.0
prefix: /opt/conda/envs/rapids

380
renv.lock

File diff suppressed because it is too large Load Diff

View File

@ -15,9 +15,6 @@ local({
Sys.setenv("RENV_R_INITIALIZING" = "true")
on.exit(Sys.unsetenv("RENV_R_INITIALIZING"), add = TRUE)
if(grepl("Darwin", Sys.info()["sysname"], fixed = TRUE) & grepl("ARM64", Sys.info()["version"], fixed = TRUE)) # M1 Macs
Sys.setenv("TZDIR" = file.path(R.home(), "share", "zoneinfo"))
# signal that we've consented to use renv
options(renv.consent = TRUE)

View File

@ -40,6 +40,26 @@ def find_features_files(wildcards):
feature_files.extend(expand("data/interim/{{pid}}/{sensor_key}_features/{sensor_key}_{language}_{provider_key}.csv", sensor_key=wildcards.sensor_key.lower(), language=get_script_language(provider["SRC_SCRIPT"]), provider_key=provider_key.lower()))
return(feature_files)
def find_empaticas_standardized_features_files(wildcards):
feature_files = []
if "empatica" in wildcards.sensor_key:
for provider_key, provider in config[(wildcards.sensor_key).upper()]["PROVIDERS"].items():
if provider["COMPUTE"] and provider.get("WINDOWS", False) and provider["WINDOWS"]["COMPUTE"]:
if "empatica" in wildcards.sensor_key:
feature_files.extend(expand("data/interim/{{pid}}/{sensor_key}_features/z_{sensor_key}_{language}_{provider_key}.csv", sensor_key=wildcards.sensor_key.lower(), language=get_script_language(provider["SRC_SCRIPT"]), provider_key=provider_key.lower()))
return(feature_files)
def find_joint_non_empatica_sensor_files(wildcards):
joined_files = []
for config_key in config.keys():
if config_key.startswith(("PHONE", "FITBIT")) and "PROVIDERS" in config[config_key] and isinstance(config[config_key]["PROVIDERS"], dict):
for provider_key, provider in config[config_key]["PROVIDERS"].items():
if "COMPUTE" in provider.keys() and provider["COMPUTE"]:
joined_files.append("data/processed/features/{pid}/" + config_key.lower() + ".csv")
break
return joined_files
def optional_steps_sleep_input(wildcards):
if config["FITBIT_STEPS_INTRADAY"]["EXCLUDE_SLEEP"]["FITBIT_BASED"]["EXCLUDE"]:
return "data/raw/{pid}/fitbit_sleep_summary_raw.csv"
@ -62,6 +82,18 @@ def input_merge_sensor_features_for_individual_participants(wildcards):
break
return feature_files
def input_merge_standardized_sensor_features_for_individual_participants(wildcards):
feature_files = []
for config_key in config.keys():
if config_key.startswith(("PHONE", "FITBIT", "EMPATICA")) and "PROVIDERS" in config[config_key] and isinstance(config[config_key]["PROVIDERS"], dict):
for provider_key, provider in config[config_key]["PROVIDERS"].items():
if "COMPUTE" in provider.keys() and provider["COMPUTE"] and ("STANDARDIZE_FEATURES" in provider.keys() and provider["STANDARDIZE_FEATURES"] or
"WINDOWS" in provider.keys() and "STANDARDIZE_FEATURES" in provider["WINDOWS"].keys() and provider["WINDOWS"]["STANDARDIZE_FEATURES"]):
feature_files.append("data/processed/features/{pid}/z_" + config_key.lower() + ".csv")
break
return feature_files
def get_phone_sensor_names():
phone_sensor_names = []
for config_key in config.keys():

View File

@ -791,10 +791,25 @@ rule empatica_accelerometer_python_features:
provider_key = "{provider_key}",
sensor_key = "empatica_accelerometer"
output:
"data/interim/{pid}/empatica_accelerometer_features/empatica_accelerometer_python_{provider_key}.csv"
"data/interim/{pid}/empatica_accelerometer_features/empatica_accelerometer_python_{provider_key}.csv",
"data/interim/{pid}/empatica_accelerometer_features/empatica_accelerometer_python_{provider_key}_windows.csv"
script:
"../src/features/entry.py"
rule empatica_accelerometer_python_features_standardization:
input:
windows_features_data = "data/interim/{pid}/empatica_accelerometer_features/empatica_accelerometer_python_{provider_key}_windows.csv"
params:
provider = config["STANDARDIZATION"]["PROVIDERS"]["CR"],
provider_key = "{provider_key}",
sensor_key = "empatica_accelerometer",
provider_main = config["EMPATICA_ACCELEROMETER"]["PROVIDERS"]["CR"]
output:
"data/interim/{pid}/empatica_accelerometer_features/z_empatica_accelerometer_python_{provider_key}.csv",
"data/interim/{pid}/empatica_accelerometer_features/z_empatica_accelerometer_python_{provider_key}_windows.csv"
script:
"../src/features/standardization/main.py"
rule empatica_accelerometer_r_features:
input:
sensor_data = "data/raw/{pid}/empatica_accelerometer_with_datetime.csv",
@ -817,7 +832,8 @@ rule empatica_heartrate_python_features:
provider_key = "{provider_key}",
sensor_key = "empatica_heartrate"
output:
"data/interim/{pid}/empatica_heartrate_features/empatica_heartrate_python_{provider_key}.csv"
"data/interim/{pid}/empatica_heartrate_features/empatica_heartrate_python_{provider_key}.csv",
"data/interim/{pid}/empatica_heartrate_features/empatica_heartrate_python_{provider_key}_windows.csv"
script:
"../src/features/entry.py"
@ -843,10 +859,25 @@ rule empatica_temperature_python_features:
provider_key = "{provider_key}",
sensor_key = "empatica_temperature"
output:
"data/interim/{pid}/empatica_temperature_features/empatica_temperature_python_{provider_key}.csv"
"data/interim/{pid}/empatica_temperature_features/empatica_temperature_python_{provider_key}.csv",
"data/interim/{pid}/empatica_temperature_features/empatica_temperature_python_{provider_key}_windows.csv"
script:
"../src/features/entry.py"
rule empatica_temperature_python_features_standardization:
input:
windows_features_data = "data/interim/{pid}/empatica_temperature_features/empatica_temperature_python_{provider_key}_windows.csv"
params:
provider = config["STANDARDIZATION"]["PROVIDERS"]["CR"],
provider_key = "{provider_key}",
sensor_key = "empatica_temperature",
provider_main = config["EMPATICA_TEMPERATURE"]["PROVIDERS"]["CR"]
output:
"data/interim/{pid}/empatica_temperature_features/z_empatica_temperature_python_{provider_key}.csv",
"data/interim/{pid}/empatica_temperature_features/z_empatica_temperature_python_{provider_key}_windows.csv"
script:
"../src/features/standardization/main.py"
rule empatica_temperature_r_features:
input:
sensor_data = "data/raw/{pid}/empatica_temperature_with_datetime.csv",
@ -869,10 +900,25 @@ rule empatica_electrodermal_activity_python_features:
provider_key = "{provider_key}",
sensor_key = "empatica_electrodermal_activity"
output:
"data/interim/{pid}/empatica_electrodermal_activity_features/empatica_electrodermal_activity_python_{provider_key}.csv"
"data/interim/{pid}/empatica_electrodermal_activity_features/empatica_electrodermal_activity_python_{provider_key}.csv",
"data/interim/{pid}/empatica_electrodermal_activity_features/empatica_electrodermal_activity_python_{provider_key}_windows.csv"
script:
"../src/features/entry.py"
rule empatica_electrodermal_activity_python_features_standardization:
input:
windows_features_data = "data/interim/{pid}/empatica_electrodermal_activity_features/empatica_electrodermal_activity_python_{provider_key}_windows.csv"
params:
provider = config["STANDARDIZATION"]["PROVIDERS"]["CR"],
provider_key = "{provider_key}",
sensor_key = "empatica_electrodermal_activity",
provider_main = config["EMPATICA_ELECTRODERMAL_ACTIVITY"]["PROVIDERS"]["CR"]
output:
"data/interim/{pid}/empatica_electrodermal_activity_features/z_empatica_electrodermal_activity_python_{provider_key}.csv",
"data/interim/{pid}/empatica_electrodermal_activity_features/z_empatica_electrodermal_activity_python_{provider_key}_windows.csv"
script:
"../src/features/standardization/main.py"
rule empatica_electrodermal_activity_r_features:
input:
sensor_data = "data/raw/{pid}/empatica_electrodermal_activity_with_datetime.csv",
@ -895,10 +941,25 @@ rule empatica_blood_volume_pulse_python_features:
provider_key = "{provider_key}",
sensor_key = "empatica_blood_volume_pulse"
output:
"data/interim/{pid}/empatica_blood_volume_pulse_features/empatica_blood_volume_pulse_python_{provider_key}.csv"
"data/interim/{pid}/empatica_blood_volume_pulse_features/empatica_blood_volume_pulse_python_{provider_key}.csv",
"data/interim/{pid}/empatica_blood_volume_pulse_features/empatica_blood_volume_pulse_python_{provider_key}_windows.csv"
script:
"../src/features/entry.py"
rule empatica_blood_volume_pulse_python_cr_features_standardization:
input:
windows_features_data = "data/interim/{pid}/empatica_blood_volume_pulse_features/empatica_blood_volume_pulse_python_{provider_key}_windows.csv"
params:
provider = config["STANDARDIZATION"]["PROVIDERS"]["CR"],
provider_key = "{provider_key}",
sensor_key = "empatica_blood_volume_pulse",
provider_main = config["EMPATICA_BLOOD_VOLUME_PULSE"]["PROVIDERS"]["CR"]
output:
"data/interim/{pid}/empatica_blood_volume_pulse_features/z_empatica_blood_volume_pulse_python_{provider_key}.csv",
"data/interim/{pid}/empatica_blood_volume_pulse_features/z_empatica_blood_volume_pulse_python_{provider_key}_windows.csv"
script:
"../src/features/standardization/main.py"
rule empatica_blood_volume_pulse_r_features:
input:
sensor_data = "data/raw/{pid}/empatica_blood_volume_pulse_with_datetime.csv",
@ -921,10 +982,25 @@ rule empatica_inter_beat_interval_python_features:
provider_key = "{provider_key}",
sensor_key = "empatica_inter_beat_interval"
output:
"data/interim/{pid}/empatica_inter_beat_interval_features/empatica_inter_beat_interval_python_{provider_key}.csv"
"data/interim/{pid}/empatica_inter_beat_interval_features/empatica_inter_beat_interval_python_{provider_key}.csv",
"data/interim/{pid}/empatica_inter_beat_interval_features/empatica_inter_beat_interval_python_{provider_key}_windows.csv"
script:
"../src/features/entry.py"
rule empatica_inter_beat_interval_python_features_standardization:
input:
windows_features_data = "data/interim/{pid}/empatica_inter_beat_interval_features/empatica_inter_beat_interval_python_{provider_key}_windows.csv"
params:
provider = config["STANDARDIZATION"]["PROVIDERS"]["CR"],
provider_key = "{provider_key}",
sensor_key = "empatica_inter_beat_interval",
provider_main = config["EMPATICA_INTER_BEAT_INTERVAL"]["PROVIDERS"]["CR"]
output:
"data/interim/{pid}/empatica_inter_beat_interval_features/z_empatica_inter_beat_interval_python_{provider_key}.csv",
"data/interim/{pid}/empatica_inter_beat_interval_features/z_empatica_inter_beat_interval_python_{provider_key}_windows.csv"
script:
"../src/features/standardization/main.py"
rule empatica_inter_beat_interval_r_features:
input:
sensor_data = "data/raw/{pid}/empatica_inter_beat_interval_with_datetime.csv",
@ -972,6 +1048,38 @@ rule merge_sensor_features_for_individual_participants:
script:
"../src/features/utils/merge_sensor_features_for_individual_participants.R"
rule join_standardized_features_from_empatica:
input:
sensor_features = find_empaticas_standardized_features_files
wildcard_constraints:
sensor_key = '(empatica).*'
output:
"data/processed/features/{pid}/z_{sensor_key}.csv"
script:
"../src/features/utils/join_features_from_providers.R"
rule standardize_features_from_providers_no_empatica:
input:
sensor_features = find_joint_non_empatica_sensor_files
wildcard_constraints:
sensor_key = '(phone|fitbit).*'
params:
provider = config["STANDARDIZATION"]["PROVIDERS"]["OTHER"],
provider_key = "OTHER",
sensor_key = "{sensor_key}"
output:
"data/processed/features/{pid}/z_{sensor_key}.csv"
script:
"../src/features/standardization/main.py"
rule merge_standardized_sensor_features_for_individual_participants:
input:
feature_files = input_merge_standardized_sensor_features_for_individual_participants
output:
"data/processed/features/{pid}/z_all_sensor_features.csv"
script:
"../src/features/utils/merge_sensor_features_for_individual_participants.R"
rule merge_sensor_features_for_all_participants:
input:
feature_files = expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"])
@ -980,6 +1088,14 @@ rule merge_sensor_features_for_all_participants:
script:
"../src/features/utils/merge_sensor_features_for_all_participants.R"
rule merge_standardized_sensor_features_for_all_participants:
input:
feature_files = expand("data/processed/features/{pid}/z_all_sensor_features.csv", pid=config["PIDS"])
output:
"data/processed/features/all_participants/z_all_sensor_features.csv"
script:
"../src/features/utils/merge_standardized_sensor_features_for_all_participants.R"
rule clean_sensor_features_for_individual_participants:
input:
sensor_data = rules.merge_sensor_features_for_individual_participants.output
@ -988,11 +1104,12 @@ rule clean_sensor_features_for_individual_participants:
params:
provider = lambda wildcards: config["ALL_CLEANING_INDIVIDUAL"]["PROVIDERS"][wildcards.provider_key.upper()],
provider_key = "{provider_key}",
script_extension = "{script_extension}",
sensor_key = "all_cleaning_individual"
output:
"data/processed/features/{pid}/all_sensor_features_cleaned_{provider_key}.csv"
"data/processed/features/{pid}/all_sensor_features_cleaned_{provider_key}_{script_extension}.csv" # bo predstavljalo probleme za naprej (kako iskati datoteke + standardizacija itd.)
script:
"../src/features/entry.R"
"../src/features/entry.{params.script_extension}"
rule clean_sensor_features_for_all_participants:
input:
@ -1000,9 +1117,38 @@ rule clean_sensor_features_for_all_participants:
params:
provider = lambda wildcards: config["ALL_CLEANING_OVERALL"]["PROVIDERS"][wildcards.provider_key.upper()],
provider_key = "{provider_key}",
script_extension = "{script_extension}",
sensor_key = "all_cleaning_overall"
output:
"data/processed/features/all_participants/all_sensor_features_cleaned_{provider_key}.csv"
"data/processed/features/all_participants/all_sensor_features_cleaned_{provider_key}_{script_extension}.csv"
script:
"../src/features/entry.R"
"../src/features/entry.{params.script_extension}"
rule clean_standardized_sensor_features_for_individual_participants:
input:
sensor_data = rules.merge_standardized_sensor_features_for_individual_participants.output
wildcard_constraints:
pid = "("+"|".join(config["PIDS"])+")"
params:
provider = lambda wildcards: config["ALL_CLEANING_INDIVIDUAL"]["PROVIDERS"][wildcards.provider_key.upper()],
provider_key = "{provider_key}",
script_extension = "{script_extension}",
sensor_key = "all_cleaning_individual"
output:
"data/processed/features/{pid}/z_all_sensor_features_cleaned_{provider_key}_{script_extension}.csv"
script:
"../src/features/entry.{params.script_extension}"
rule clean_standardized_sensor_features_for_all_participants:
input:
sensor_data = rules.merge_standardized_sensor_features_for_all_participants.output
params:
provider = lambda wildcards: config["ALL_CLEANING_OVERALL"]["PROVIDERS"][wildcards.provider_key.upper()],
provider_key = "{provider_key}",
script_extension = "{script_extension}",
sensor_key = "all_cleaning_overall"
output:
"data/processed/features/all_participants/z_all_sensor_features_cleaned_{provider_key}_{script_extension}.csv"
script:
"../src/features/entry.{params.script_extension}"

View File

@ -30,22 +30,43 @@ rule baseline_features:
rule select_target:
input:
cleaned_sensor_features = "data/processed/features/{pid}/all_sensor_features_cleaned_rapids.csv"
cleaned_sensor_features = "data/processed/features/{pid}/z_all_sensor_features_cleaned_straw_py.csv"
params:
target_variable = config["PARAMS_FOR_ANALYSIS"]["TARGET"]["LABEL"]
output:
"data/processed/models/individual_model/{pid}/input.csv"
"data/processed/models/individual_model/{pid}/z_input.csv"
script:
"../src/models/select_targets.py"
rule merge_features_and_targets_for_population_model:
input:
cleaned_sensor_features = "data/processed/features/all_participants/all_sensor_features_cleaned_rapids.csv",
cleaned_sensor_features = "data/processed/features/all_participants/z_all_sensor_features_cleaned_straw_py.csv",
demographic_features = expand("data/processed/features/{pid}/baseline_features.csv", pid=config["PIDS"]),
params:
target_variable=config["PARAMS_FOR_ANALYSIS"]["TARGET"]["LABEL"]
output:
"data/processed/models/population_model/input.csv"
"data/processed/models/population_model/z_input.csv"
script:
"../src/models/merge_features_and_targets_for_population_model.py"
# rule select_target:
# input:
# cleaned_sensor_features = "data/processed/features/{pid}/all_sensor_features_cleaned_straw_py.csv"
# params:
# target_variable = config["PARAMS_FOR_ANALYSIS"]["TARGET"]["LABEL"]
# output:
# "data/processed/models/individual_model/{pid}/input.csv"
# script:
# "../src/models/select_targets.py"
# rule merge_features_and_targets_for_population_model:
# input:
# cleaned_sensor_features = "data/processed/features/all_participants/all_sensor_features_cleaned_straw_py.csv",
# demographic_features = expand("data/processed/features/{pid}/baseline_features.csv", pid=config["PIDS"]),
# params:
# target_variable=config["PARAMS_FOR_ANALYSIS"]["TARGET"]["LABEL"]
# output:
# "data/processed/models/population_model/input.csv"
# script:
# "../src/models/merge_features_and_targets_for_population_model.py"

View File

@ -4,14 +4,14 @@ rule create_example_participant_files:
shell:
"echo 'PHONE:\n DEVICE_IDS: [a748ee1a-1d0b-4ae9-9074-279a2b6ba524]\n PLATFORMS: [android]\n LABEL: test-01\n START_DATE: 2020-04-23 00:00:00\n END_DATE: 2020-05-04 23:59:59\nFITBIT:\n DEVICE_IDS: [a748ee1a-1d0b-4ae9-9074-279a2b6ba524]\n LABEL: test-01\n START_DATE: 2020-04-23 00:00:00\n END_DATE: 2020-05-04 23:59:59\n' >> ./data/external/participant_files/example01.yaml && echo 'PHONE:\n DEVICE_IDS: [13dbc8a3-dae3-4834-823a-4bc96a7d459d]\n PLATFORMS: [ios]\n LABEL: test-02\n START_DATE: 2020-04-23 00:00:00\n END_DATE: 2020-05-04 23:59:59\nFITBIT:\n DEVICE_IDS: [13dbc8a3-dae3-4834-823a-4bc96a7d459d]\n LABEL: test-02\n START_DATE: 2020-04-23 00:00:00\n END_DATE: 2020-05-04 23:59:59\n' >> ./data/external/participant_files/example02.yaml"
rule query_usernames_device_empatica_ids:
params:
baseline_folder = "/mnt/e/STRAWbaseline/"
output:
usernames_file = config["CREATE_PARTICIPANT_FILES"]["USERNAMES_CSV"],
timezone_file = config["TIMEZONE"]["MULTIPLE"]["TZ_FILE"]
script:
"../../participants/prepare_usernames_file.py"
# rule query_usernames_device_empatica_ids:
# params:
# baseline_folder = "/mnt/e/STRAWbaseline/"
# output:
# usernames_file = config["CREATE_PARTICIPANT_FILES"]["USERNAMES_CSV"],
# timezone_file = config["TIMEZONE"]["MULTIPLE"]["TZ_FILE"]
# script:
# "../../participants/prepare_usernames_file.py"
rule prepare_tzcodes_file:
input:

View File

@ -58,7 +58,7 @@ participants %>%
lines <- append(lines, empty_fitbit)
if(add_empatica_section == TRUE && !is.na(row[empatica_device_id_column])){
lines <- append(lines, c("EMPATICA:", paste0(" DEVICE_IDS: [",row[empatica_device_id_column],"]"),
lines <- append(lines, c("EMPATICA:", paste0(" DEVICE_IDS: [",row$label,"]"),
paste(" LABEL:",row$label), paste(" START_DATE:", start_date), paste(" END_DATE:", end_date)))
} else
lines <- append(lines, empty_empatica)

View File

@ -2,11 +2,16 @@ from zipfile import ZipFile
import warnings
from pathlib import Path
import pandas as pd
import numpy as np
from pandas.core import indexing
import yaml
import csv
from collections import OrderedDict
from io import BytesIO, StringIO
import sys, os
from cr_features.hrv import get_HRV_features, get_patched_ibi_with_bvp
from cr_features.helper_functions import empatica1d_to_array, empatica2d_to_array
def processAcceleration(x, y, z):
x = float(x)
@ -52,6 +57,8 @@ def extract_empatica_data(data, sensor):
df = pd.DataFrame.from_dict(ddict, orient='index', columns=[column])
df[column] = df[column].astype(float)
df.index.name = 'timestamp'
if df.empty:
return df
elif sensor == 'EMPATICA_ACCELEROMETER':
ddict = readFile(sensor_data_file, sensor)
@ -60,9 +67,16 @@ def extract_empatica_data(data, sensor):
df['y'] = df['y'].astype(float)
df['z'] = df['z'].astype(float)
df.index.name = 'timestamp'
if df.empty:
return df
elif sensor == 'EMPATICA_INTER_BEAT_INTERVAL':
df = pd.read_csv(sensor_data_file, names=['timestamp', column], header=None)
df = pd.read_csv(sensor_data_file, names=['timings', column], header=None)
df['timestamp'] = df['timings']
if df.empty:
df = df.set_index('timestamp')
return df
timestampstart = float(df['timestamp'][0])
df['timestamp'] = (df['timestamp'][1:len(df)]).astype(float) + timestampstart
df = df.drop([0])
@ -84,6 +98,10 @@ def pull_data(data_configuration, device, sensor, container, columns_to_download
participant_data = pd.DataFrame(columns=columns_to_download.values())
participant_data.set_index('timestamp', inplace=True)
with open('config.yaml', 'r') as stream:
config = yaml.load(stream, Loader=yaml.FullLoader)
cr_ibi_provider = config['EMPATICA_INTER_BEAT_INTERVAL']['PROVIDERS']['CR']
available_zipfiles = list((Path(data_configuration["FOLDER"]) / Path(device)).rglob("*.zip"))
if len(available_zipfiles) == 0:
warnings.warn("There were no zip files in: {}. If you were expecting data for this participant the [EMPATICA][DEVICE_IDS] key in their participant file is missing the pid".format((Path(data_configuration["FOLDER"]) / Path(device))))
@ -94,7 +112,13 @@ def pull_data(data_configuration, device, sensor, container, columns_to_download
listOfFileNames = zipFile.namelist()
for fileName in listOfFileNames:
if fileName == sensor_csv:
if sensor == "EMPATICA_INTER_BEAT_INTERVAL" and cr_ibi_provider.get('PATCH_WITH_BVP', False):
participant_data = \
pd.concat([participant_data, patch_ibi_with_bvp(zipFile.read('IBI.csv'), zipFile.read('BVP.csv'))], axis=0)
#print("patch with ibi")
else:
participant_data = pd.concat([participant_data, extract_empatica_data(zipFile.read(fileName), sensor)], axis=0)
#print("no patching")
warning = False
if warning:
warnings.warn("We could not find a zipped file for {} in {} (we tried to find {})".format(sensor, zipFile, sensor_csv))
@ -105,4 +129,53 @@ def pull_data(data_configuration, device, sensor, container, columns_to_download
participant_data["device_id"] = device
return(participant_data)
def patch_ibi_with_bvp(ibi_data, bvp_data):
ibi_data_file = BytesIO(ibi_data).getvalue().decode('utf-8')
ibi_data_file = StringIO(ibi_data_file)
# Begin with the cr-features part
try:
ibi_data, ibi_start_timestamp = empatica2d_to_array(ibi_data_file)
except IndexError as e:
# Checks whether IBI.csv is empty
df_test = pd.read_csv(ibi_data_file, names=['timings', 'inter_beat_interval'], header=None)
if df_test.empty:
df_test['timestamp'] = df_test['timings']
df_test = df_test.set_index('timestamp')
return df_test
else:
raise IndexError("Something went wrong with indices. Error that was previously caught:\n", repr(e))
bvp_data_file = BytesIO(bvp_data).getvalue().decode('utf-8')
bvp_data_file = StringIO(bvp_data_file)
bvp_data, bvp_start_timestamp, sample_rate = empatica1d_to_array(bvp_data_file)
hrv_time_and_freq_features, sample, bvp_rr, bvp_timings, peak_indx = \
get_HRV_features(bvp_data, ma=False,
detrend=False, m_deternd=False, low_pass=False, winsorize=True,
winsorize_value=25, hampel_fiter=False, median_filter=False,
mod_z_score_filter=True, sampling=64, feature_names=['meanHr'])
ibi_timings, ibi_rr = get_patched_ibi_with_bvp(ibi_data[0], ibi_data[1], bvp_timings, bvp_rr)
df = \
pd.DataFrame(np.array([ibi_timings, ibi_rr]).transpose(), columns=['timestamp', 'inter_beat_interval'])
df.loc[-1] = [ibi_start_timestamp, 'IBI'] # adding a row
df.index = df.index + 1 # shifting index
df = df.sort_index() # sorting by index
# Repeated as in extract_empatica_data for IBI
df['timings'] = df['timestamp']
timestampstart = float(df['timestamp'][0])
df['timestamp'] = (df['timestamp'][1:len(df)]).astype(float) + timestampstart
df = df.drop([0])
df['inter_beat_interval'] = df['inter_beat_interval'].astype(float)
df = df.set_index('timestamp')
# format timestamps
df.index *= 1000
df.index = df.index.astype(int)
return(df)
# print(pull_data({'FOLDER': 'data/external/empatica'}, "e01", "EMPATICA_accelerometer", {'TIMESTAMP': 'timestamp', 'DEVICE_ID': 'device_id', 'DOUBLE_VALUES_0': 'x', 'DOUBLE_VALUES_1': 'y', 'DOUBLE_VALUES_2': 'z'}))

View File

@ -50,6 +50,7 @@ EMPATICA_INTER_BEAT_INTERVAL:
TIMESTAMP: timestamp
DEVICE_ID: device_id
INTER_BEAT_INTERVAL: inter_beat_interval
TIMINGS: timings
MUTATION:
COLUMN_MAPPINGS:
SCRIPTS: # List any python or r scripts that mutate your raw data

View File

@ -227,6 +227,7 @@ EMPATICA_INTER_BEAT_INTERVAL:
- TIMESTAMP
- DEVICE_ID
- INTER_BEAT_INTERVAL
- TIMINGS
EMPATICA_TAGS:
- TIMESTAMP

View File

View File

@ -39,8 +39,10 @@ rapids_cleaning <- function(sensor_data_files, provider){
if(!data_yield_column %in% colnames(clean_features)){
stop(paste0("Error: RAPIDS provider needs to clean data based on ", data_yield_column, " column, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyielded", data_yield_unit, "' in [FEATURES]."))
}
if (data_yield_ratio_threshold > 0) {
clean_features <- clean_features %>%
filter(.[[data_yield_column]] >= data_yield_ratio_threshold)
}
# Drop columns with a percentage of NA values above cols_nan_threshold
if(nrow(clean_features))

View File

@ -0,0 +1,88 @@
import pandas as pd
import numpy as np
import math, sys
def straw_cleaning(sensor_data_files, provider):
features = pd.read_csv(sensor_data_files["sensor_data"][0])
# TODO: reorder the cleaning steps so it makes sense for the analysis
# TODO: add conditions that differentiates cleaning steps for standardized and nonstandardized features, for this
# the snakemake rules will also have to come with additional parameter (in rules/features.smk)
# Impute selected features event
impute_phone_features = provider["IMPUTE_PHONE_SELECTED_EVENT_FEATURES"]
if impute_phone_features["COMPUTE"]:
if not 'phone_data_yield_rapids_ratiovalidyieldedminutes' in features.columns:
raise KeyError("RAPIDS provider needs to impute the selected event features based on phone_data_yield_rapids_ratiovalidyieldedminutes column, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyieldedminutes' in [FEATURES].")
# TODO: if the type of the imputation will vary for different groups of features make conditional imputations here
phone_cols = [col for col in features if \
col.startswith('phone_applications_foreground_rapids_') or
col.startswith('phone_battery_rapids_') or
col.startswith('phone_calls_rapids_') or
col.startswith('phone_keyboard_rapids_') or
col.startswith('phone_messages_rapids_') or
col.startswith('phone_screen_rapids_') or
col.startswith('phone_wifi_')]
mask = features['phone_data_yield_rapids_ratiovalidyieldedminutes'] > impute_phone_features['MIN_DATA_YIELDED_MINUTES_TO_IMPUTE']
features.loc[mask, phone_cols] = impute(features[mask][phone_cols], method=impute_phone_features["TYPE"].lower())
# Drop rows with the value of data_yield_column less than data_yield_ratio_threshold
data_yield_unit = provider["DATA_YIELD_FEATURE"].split("_")[3].lower()
data_yield_column = "phone_data_yield_rapids_ratiovalidyielded" + data_yield_unit
if not data_yield_column in features.columns:
raise KeyError(f"RAPIDS provider needs to impute the selected event features based on {data_yield_column} column, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyielded{data_yield_unit}' in [FEATURES].")
if provider["DATA_YIELD_RATIO_THRESHOLD"]:
features = features[features[data_yield_column] >= provider["DATA_YIELD_RATIO_THRESHOLD"]]
esm_cols = features.loc[:, features.columns.str.startswith('phone_esm')] # For later preservation of esm_cols
# Remove cols if threshold of NaN values is passed
features = features.loc[:, features.isna().sum() < provider["COLS_NAN_THRESHOLD"] * features.shape[0]]
# Remove cols where variance is 0
if provider["COLS_VAR_THRESHOLD"]:
features.drop(features.std()[features.std() == 0].index.values, axis=1, inplace=True)
# Preserve esm cols if deleted (has to come after drop cols operations)
for esm in esm_cols:
if esm not in features:
features[esm] = esm_cols[esm]
# Drop highly correlated features - To-Do še en thershold var, ki je v config + kako se tretirajo NaNs?
drop_corr_features = provider["DROP_HIGHLY_CORRELATED_FEATURES"]
if drop_corr_features["COMPUTE"]:
numerical_cols = features.select_dtypes(include=np.number).columns.tolist()
# Remove columns where NaN count threshold is passed
valid_features = features[numerical_cols].loc[:, features[numerical_cols].isna().sum() < drop_corr_features['MIN_OVERLAP_FOR_CORR_THRESHOLD'] * features[numerical_cols].shape[0]]
cor_matrix = valid_features.corr(method='spearman').abs()
upper_tri = cor_matrix.where(np.triu(np.ones(cor_matrix.shape), k=1).astype(np.bool))
to_drop = [column for column in upper_tri.columns if any(upper_tri[column] > drop_corr_features["CORR_THRESHOLD"])]
features.drop(to_drop, axis=1, inplace=True)
# Remove rows if threshold of NaN values is passed
min_count = math.ceil((1 - provider["ROWS_NAN_THRESHOLD"]) * features.shape[1]) # minimal not nan values in row
features.dropna(axis=0, thresh=min_count, inplace=True)
return features
def impute(df, method='zero'):
def k_nearest(df): # TODO: if needed, implement k-nearest imputation / interpolation
pass
return { # rest of the columns should be imputed with the selected method
'zero': df.fillna(0),
'mean': df.fillna(df.mean()),
'median': df.fillna(df.median()),
'k-nearest': k_nearest(df)
}[method]

View File

@ -39,16 +39,18 @@ rapids_cleaning <- function(sensor_data_files, provider){
if(!data_yield_column %in% colnames(clean_features)){
stop(paste0("Error: RAPIDS provider needs to clean data based on ", data_yield_column, " column, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyielded", data_yield_unit, "' in [FEATURES]."))
}
if (data_yield_ratio_threshold > 0) {
clean_features <- clean_features %>%
filter(.[[data_yield_column]] >= data_yield_ratio_threshold)
}
# Drop columns with a percentage of NA values above cols_nan_threshold
if(nrow(clean_features))
clean_features <- clean_features %>% select_if(~ sum(is.na(.)) / length(.) <= cols_nan_threshold )
clean_features <- clean_features %>% select(where(~ sum(is.na(.)) / length(.) <= cols_nan_threshold ), starts_with("phone_esm"))
# Drop columns with zero variance
if(drop_zero_variance_columns)
clean_features <- clean_features %>% select_if(grepl("pid|local_segment|local_segment_label|local_segment_start_datetime|local_segment_end_datetime",names(.)) | sapply(., n_distinct, na.rm = T) > 1)
clean_features <- clean_features %>% select_if(grepl("pid|local_segment|local_segment_label|local_segment_start_datetime|local_segment_end_datetime|phone_esm",names(.)) | sapply(., n_distinct, na.rm = T) > 1)
# Drop highly correlated features
if(as.logical(drop_highly_correlated_features$COMPUTE)){

View File

@ -0,0 +1,88 @@
import pandas as pd
import numpy as np
import math, sys
def straw_cleaning(sensor_data_files, provider):
features = pd.read_csv(sensor_data_files["sensor_data"][0])
# TODO: reorder the cleaning steps so it makes sense for the analysis
# TODO: add conditions that differentiates cleaning steps for standardized and nonstandardized features, for this
# the snakemake rules will also have to come with additional parameter (in rules/features.smk)
# Impute selected features event
impute_phone_features = provider["IMPUTE_PHONE_SELECTED_EVENT_FEATURES"]
if impute_phone_features["COMPUTE"]:
if not 'phone_data_yield_rapids_ratiovalidyieldedminutes' in features.columns:
raise KeyError("RAPIDS provider needs to impute the selected event features based on phone_data_yield_rapids_ratiovalidyieldedminutes column, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyieldedminutes' in [FEATURES].")
# TODO: if the type of the imputation will vary for different groups of features make conditional imputations here
phone_cols = [col for col in features if \
col.startswith('phone_applications_foreground_rapids_') or
col.startswith('phone_battery_rapids_') or
col.startswith('phone_calls_rapids_') or
col.startswith('phone_keyboard_rapids_') or
col.startswith('phone_messages_rapids_') or
col.startswith('phone_screen_rapids_') or
col.startswith('phone_wifi_')]
mask = features['phone_data_yield_rapids_ratiovalidyieldedminutes'] > impute_phone_features['MIN_DATA_YIELDED_MINUTES_TO_IMPUTE']
features.loc[mask, phone_cols] = impute(features[mask][phone_cols], method=impute_phone_features["TYPE"].lower())
# Drop rows with the value of data_yield_column less than data_yield_ratio_threshold
data_yield_unit = provider["DATA_YIELD_FEATURE"].split("_")[3].lower()
data_yield_column = "phone_data_yield_rapids_ratiovalidyielded" + data_yield_unit
if not data_yield_column in features.columns:
raise KeyError(f"RAPIDS provider needs to impute the selected event features based on {data_yield_column} column, please set config[PHONE_DATA_YIELD][PROVIDERS][RAPIDS][COMPUTE] to True and include 'ratiovalidyielded{data_yield_unit}' in [FEATURES].")
if provider["DATA_YIELD_RATIO_THRESHOLD"]:
features = features[features[data_yield_column] >= provider["DATA_YIELD_RATIO_THRESHOLD"]]
esm_cols = features.loc[:, features.columns.str.startswith('phone_esm')] # For later preservation of esm_cols
# Remove cols if threshold of NaN values is passed
features = features.loc[:, features.isna().sum() < provider["COLS_NAN_THRESHOLD"] * features.shape[0]]
# Remove cols where variance is 0
if provider["COLS_VAR_THRESHOLD"]:
features.drop(features.std()[features.std() == 0].index.values, axis=1, inplace=True)
# Preserve esm cols if deleted (has to come after drop cols operations)
for esm in esm_cols:
if esm not in features:
features[esm] = esm_cols[esm]
# Drop highly correlated features - To-Do še en thershold var, ki je v config + kako se tretirajo NaNs?
drop_corr_features = provider["DROP_HIGHLY_CORRELATED_FEATURES"]
if drop_corr_features["COMPUTE"]:
numerical_cols = features.select_dtypes(include=np.number).columns.tolist()
# Remove columns where NaN count threshold is passed
valid_features = features[numerical_cols].loc[:, features[numerical_cols].isna().sum() < drop_corr_features['MIN_OVERLAP_FOR_CORR_THRESHOLD'] * features[numerical_cols].shape[0]]
cor_matrix = valid_features.corr(method='spearman').abs()
upper_tri = cor_matrix.where(np.triu(np.ones(cor_matrix.shape), k=1).astype(np.bool))
to_drop = [column for column in upper_tri.columns if any(upper_tri[column] > drop_corr_features["CORR_THRESHOLD"])]
features.drop(to_drop, axis=1, inplace=True)
# Remove rows if threshold of NaN values is passed
min_count = math.ceil((1 - provider["ROWS_NAN_THRESHOLD"]) * features.shape[1]) # minimal not nan values in row
features.dropna(axis=0, thresh=min_count, inplace=True)
return features
def impute(df, method='zero'):
def k_nearest(df): # TODO: if needed, implement k-nearest imputation / interpolation
pass
return { # rest of the columns should be imputed with the selected method
'zero': df.fillna(0),
'mean': df.fillna(df.mean()),
'median': df.fillna(df.median()),
'k-nearest': k_nearest(df)
}[method]

View File

@ -0,0 +1,59 @@
import pandas as pd
import numpy as np
import math as m
import sys
def extract_second_order_features(intraday_features, so_features_names, prefix=""):
if prefix:
groupby_cols = ['local_segment', 'local_segment_label', 'local_segment_start_datetime', 'local_segment_end_datetime']
else:
groupby_cols = ['local_segment']
if not intraday_features.empty:
so_features = pd.DataFrame()
#print(intraday_features.drop("level_1", axis=1).groupby(["local_segment"]).nsmallest())
if "mean" in so_features_names:
so_features = pd.concat([so_features, intraday_features.drop(prefix+"level_1", axis=1).groupby(groupby_cols).mean().add_suffix("_SO_mean")], axis=1)
if "median" in so_features_names:
so_features = pd.concat([so_features, intraday_features.drop(prefix+"level_1", axis=1).groupby(groupby_cols).median().add_suffix("_SO_median")], axis=1)
if "sd" in so_features_names:
so_features = pd.concat([so_features, intraday_features.drop(prefix+"level_1", axis=1).groupby(groupby_cols).std().add_suffix("_SO_sd")], axis=1)
if "nlargest" in so_features_names: # largest 5 -- maybe there is a faster groupby solution?
for column in intraday_features.loc[:, ~intraday_features.columns.isin(groupby_cols+[prefix+"level_1"])]:
so_features[column+"_SO_nlargest"] = intraday_features.drop(prefix+"level_1", axis=1).groupby(groupby_cols)[column].apply(lambda x: x.nlargest(5).mean())
if "nsmallest" in so_features_names: # smallest 5 -- maybe there is a faster groupby solution?
for column in intraday_features.loc[:, ~intraday_features.columns.isin(groupby_cols+[prefix+"level_1"])]:
so_features[column+"_SO_nsmallest"] = intraday_features.drop(prefix+"level_1", axis=1).groupby(groupby_cols)[column].apply(lambda x: x.nsmallest(5).mean())
if "count_windows" in so_features_names:
so_features["SO_windowsCount"] = intraday_features.groupby(groupby_cols).count()[prefix+"level_1"]
# numPeaksNonZero specialized for EDA sensor
if "eda_num_peaks_non_zero" in so_features_names and prefix+"numPeaks" in intraday_features.columns:
so_features[prefix+"SO_numPeaksNonZero"] = intraday_features.groupby(groupby_cols)[prefix+"numPeaks"].apply(lambda x: (x!=0).sum())
# numWindowsNonZero specialized for BVP and IBI sensors
if "hrv_num_windows_non_nan" in so_features_names and prefix+"meanHr" in intraday_features.columns:
so_features[prefix+"SO_numWindowsNonNaN"] = intraday_features.groupby(groupby_cols)[prefix+"meanHr"].apply(lambda x: (~np.isnan(x)).sum())
so_features.reset_index(inplace=True)
else:
so_features = pd.DataFrame(columns=groupby_cols)
return so_features
def get_sample_rate(data): # To-Do get the sample rate information from the file's metadata
try:
timestamps_diff = data['timestamp'].diff().dropna().mean()
print("Timestamp diff:", timestamps_diff)
except:
raise Exception("Error occured while trying to get the mean sample rate from the data.")
return m.ceil(1000/timestamps_diff)

View File

@ -0,0 +1,71 @@
import pandas as pd
from scipy.stats import entropy
from cr_features.helper_functions import convert_to2d, accelerometer_features, frequency_features
from cr_features.calculate_features_old import calculateFeatures
from cr_features.calculate_features import calculate_features
from cr_features_helper_methods import extract_second_order_features
import sys
def extract_acc_features_from_intraday_data(acc_intraday_data, features, window_length, time_segment, filter_data_by_segment):
acc_intraday_features = pd.DataFrame(columns=["local_segment"] + features)
if not acc_intraday_data.empty:
sample_rate = 32
acc_intraday_data = filter_data_by_segment(acc_intraday_data, time_segment)
if not acc_intraday_data.empty:
acc_intraday_features = pd.DataFrame()
# apply methods from calculate features module
if window_length is None:
acc_intraday_features = \
acc_intraday_data.groupby('local_segment').apply(lambda x: calculate_features( \
convert_to2d(x['double_values_0'], x.shape[0]), \
convert_to2d(x['double_values_1'], x.shape[0]), \
convert_to2d(x['double_values_2'], x.shape[0]), \
fs=sample_rate, feature_names=features, show_progress=False))
else:
acc_intraday_features = \
acc_intraday_data.groupby('local_segment').apply(lambda x: calculate_features( \
convert_to2d(x['double_values_0'], window_length*sample_rate), \
convert_to2d(x['double_values_1'], window_length*sample_rate), \
convert_to2d(x['double_values_2'], window_length*sample_rate), \
fs=sample_rate, feature_names=features, show_progress=False))
acc_intraday_features.reset_index(inplace=True)
return acc_intraday_features
def cr_features(sensor_data_files, time_segment, provider, filter_data_by_segment, *args, **kwargs):
acc_intraday_data = pd.read_csv(sensor_data_files["sensor_data"])
requested_intraday_features = provider["FEATURES"]
calc_windows = kwargs.get('calc_windows', False)
if provider["WINDOWS"]["COMPUTE"] and calc_windows:
requested_window_length = provider["WINDOWS"]["WINDOW_LENGTH"]
else:
requested_window_length = None
# name of the features this function can compute
base_intraday_features_names = accelerometer_features + frequency_features
# the subset of requested features this function can compute
intraday_features_to_compute = list(set(requested_intraday_features) & set(base_intraday_features_names))
# extract features from intraday data
acc_intraday_features = extract_acc_features_from_intraday_data(acc_intraday_data, intraday_features_to_compute,
requested_window_length, time_segment, filter_data_by_segment)
if calc_windows:
so_features_names = provider["WINDOWS"]["SECOND_ORDER_FEATURES"]
acc_second_order_features = extract_second_order_features(acc_intraday_features, so_features_names)
return acc_intraday_features, acc_second_order_features
return acc_intraday_features

View File

@ -0,0 +1,73 @@
import pandas as pd
from sklearn.preprocessing import StandardScaler
from cr_features.helper_functions import convert_to2d, hrv_features
from cr_features.hrv import extract_hrv_features_2d_wrapper
from cr_features_helper_methods import extract_second_order_features
import sys
# pd.set_option('display.max_rows', 1000)
pd.set_option('display.max_columns', None)
def extract_bvp_features_from_intraday_data(bvp_intraday_data, features, window_length, time_segment, filter_data_by_segment):
bvp_intraday_features = pd.DataFrame(columns=["local_segment"] + features)
if not bvp_intraday_data.empty:
sample_rate = 64
bvp_intraday_data = filter_data_by_segment(bvp_intraday_data, time_segment)
if not bvp_intraday_data.empty:
bvp_intraday_features = pd.DataFrame()
# apply methods from calculate features module
if window_length is None:
bvp_intraday_features = \
bvp_intraday_data.groupby('local_segment').apply(\
lambda x:
extract_hrv_features_2d_wrapper(
convert_to2d(x['blood_volume_pulse'], x.shape[0]),
sampling=sample_rate, hampel_fiter=False, median_filter=False, mod_z_score_filter=True, feature_names=features))
else:
bvp_intraday_features = \
bvp_intraday_data.groupby('local_segment').apply(\
lambda x:
extract_hrv_features_2d_wrapper(
convert_to2d(x['blood_volume_pulse'], window_length*sample_rate),
sampling=sample_rate, hampel_fiter=False, median_filter=False, mod_z_score_filter=True, feature_names=features))
bvp_intraday_features.reset_index(inplace=True)
return bvp_intraday_features
def cr_features(sensor_data_files, time_segment, provider, filter_data_by_segment, *args, **kwargs):
bvp_intraday_data = pd.read_csv(sensor_data_files["sensor_data"])
requested_intraday_features = provider["FEATURES"]
calc_windows = kwargs.get('calc_windows', False)
if provider["WINDOWS"]["COMPUTE"] and calc_windows:
requested_window_length = provider["WINDOWS"]["WINDOW_LENGTH"]
else:
requested_window_length = None
# name of the features this function can compute
base_intraday_features_names = hrv_features
# the subset of requested features this function can compute
intraday_features_to_compute = list(set(requested_intraday_features) & set(base_intraday_features_names))
# extract features from intraday data
bvp_intraday_features = extract_bvp_features_from_intraday_data(bvp_intraday_data, intraday_features_to_compute,
requested_window_length, time_segment, filter_data_by_segment)
if calc_windows:
so_features_names = provider["WINDOWS"]["SECOND_ORDER_FEATURES"]
bvp_second_order_features = extract_second_order_features(bvp_intraday_features, so_features_names)
return bvp_intraday_features, bvp_second_order_features
return bvp_intraday_features

View File

@ -0,0 +1,78 @@
import pandas as pd
import numpy as np
from scipy.stats import entropy
from cr_features.helper_functions import convert_to2d, gsr_features
from cr_features.calculate_features import calculate_features
from cr_features.gsr import extractGsrFeatures2D
from cr_features_helper_methods import extract_second_order_features
import sys
#pd.set_option('display.max_columns', None)
#pd.set_option('display.max_rows', None)
#np.seterr(invalid='ignore')
def extract_eda_features_from_intraday_data(eda_intraday_data, features, window_length, time_segment, filter_data_by_segment):
eda_intraday_features = pd.DataFrame(columns=["local_segment"] + features)
if not eda_intraday_data.empty:
sample_rate = 4
eda_intraday_data = filter_data_by_segment(eda_intraday_data, time_segment)
if not eda_intraday_data.empty:
eda_intraday_features = pd.DataFrame()
# apply methods from calculate features module
if window_length is None:
eda_intraday_features = \
eda_intraday_data.groupby('local_segment').apply(\
lambda x: extractGsrFeatures2D(convert_to2d(x['electrodermal_activity'], x.shape[0]), sampleRate=sample_rate, featureNames=features,
threshold=.01, offset=1, riseTime=5, decayTime=15))
else:
eda_intraday_features = \
eda_intraday_data.groupby('local_segment').apply(\
lambda x: extractGsrFeatures2D(convert_to2d(x['electrodermal_activity'], window_length*sample_rate), sampleRate=sample_rate, featureNames=features,
threshold=.01, offset=1, riseTime=5, decayTime=15))
eda_intraday_features.reset_index(inplace=True)
return eda_intraday_features
def cr_features(sensor_data_files, time_segment, provider, filter_data_by_segment, *args, **kwargs):
eda_intraday_data = pd.read_csv(sensor_data_files["sensor_data"])
requested_intraday_features = provider["FEATURES"]
calc_windows = kwargs.get('calc_windows', False)
if provider["WINDOWS"]["COMPUTE"] and calc_windows:
requested_window_length = provider["WINDOWS"]["WINDOW_LENGTH"]
else:
requested_window_length = None
# name of the features this function can compute
base_intraday_features_names = gsr_features
# the subset of requested features this function can compute
intraday_features_to_compute = list(set(requested_intraday_features) & set(base_intraday_features_names))
# extract features from intraday data
eda_intraday_features = extract_eda_features_from_intraday_data(eda_intraday_data, intraday_features_to_compute,
requested_window_length, time_segment, filter_data_by_segment)
if calc_windows:
if provider["WINDOWS"]["IMPUTE_NANS"]:
eda_intraday_features[eda_intraday_features["numPeaks"] == 0] = \
eda_intraday_features[eda_intraday_features["numPeaks"] == 0].fillna(0)
pd.set_option('display.max_columns', None)
so_features_names = provider["WINDOWS"]["SECOND_ORDER_FEATURES"]
eda_second_order_features = extract_second_order_features(eda_intraday_features, so_features_names)
return eda_intraday_features, eda_second_order_features
return eda_intraday_features

View File

@ -0,0 +1,79 @@
import pandas as pd
from sklearn.preprocessing import StandardScaler
import numpy as np
from cr_features.helper_functions import convert_ibi_to2d_time, hrv_features
from cr_features.hrv import extract_hrv_features_2d_wrapper, get_HRV_features
from cr_features_helper_methods import extract_second_order_features
import math
import sys
# pd.set_option('display.max_rows', 1000)
pd.set_option('display.max_columns', None)
def extract_ibi_features_from_intraday_data(ibi_intraday_data, features, window_length, time_segment, filter_data_by_segment):
ibi_intraday_features = pd.DataFrame(columns=["local_segment"] + features)
if not ibi_intraday_data.empty:
ibi_intraday_data = filter_data_by_segment(ibi_intraday_data, time_segment)
if not ibi_intraday_data.empty:
ibi_intraday_features = pd.DataFrame()
# apply methods from calculate features module
if window_length is None:
ibi_intraday_features = \
ibi_intraday_data.groupby('local_segment').apply(\
lambda x:
extract_hrv_features_2d_wrapper(
signal_2D = \
convert_ibi_to2d_time(x[['timings', 'inter_beat_interval']], math.ceil(x['timings'].iloc[-1]))[0],
ibi_timings = \
convert_ibi_to2d_time(x[['timings', 'inter_beat_interval']], math.ceil(x['timings'].iloc[-1]))[1],
sampling=None, hampel_fiter=False, median_filter=False, mod_z_score_filter=True, feature_names=features))
else:
ibi_intraday_features = \
ibi_intraday_data.groupby('local_segment').apply(\
lambda x:
extract_hrv_features_2d_wrapper(
signal_2D = convert_ibi_to2d_time(x[['timings', 'inter_beat_interval']], window_length)[0],
ibi_timings = convert_ibi_to2d_time(x[['timings', 'inter_beat_interval']], window_length)[1],
sampling=None, hampel_fiter=False, median_filter=False, mod_z_score_filter=True, feature_names=features))
ibi_intraday_features.reset_index(inplace=True)
return ibi_intraday_features
def cr_features(sensor_data_files, time_segment, provider, filter_data_by_segment, *args, **kwargs):
ibi_intraday_data = pd.read_csv(sensor_data_files["sensor_data"])
requested_intraday_features = provider["FEATURES"]
calc_windows = kwargs.get('calc_windows', False)
if provider["WINDOWS"]["COMPUTE"] and calc_windows:
requested_window_length = provider["WINDOWS"]["WINDOW_LENGTH"]
else:
requested_window_length = None
# name of the features this function can compute
base_intraday_features_names = hrv_features
# the subset of requested features this function can compute
intraday_features_to_compute = list(set(requested_intraday_features) & set(base_intraday_features_names))
# extract features from intraday data
ibi_intraday_features = extract_ibi_features_from_intraday_data(ibi_intraday_data, intraday_features_to_compute,
requested_window_length, time_segment, filter_data_by_segment)
if calc_windows:
so_features_names = provider["WINDOWS"]["SECOND_ORDER_FEATURES"]
ibi_second_order_features = extract_second_order_features(ibi_intraday_features, so_features_names)
return ibi_intraday_features, ibi_second_order_features
return ibi_intraday_features

View File

@ -0,0 +1,65 @@
import pandas as pd
from scipy.stats import entropy
from cr_features.helper_functions import convert_to2d, generic_features
from cr_features.calculate_features_old import calculateFeatures
from cr_features.calculate_features import calculate_features
from cr_features_helper_methods import extract_second_order_features
import sys
def extract_temp_features_from_intraday_data(temperature_intraday_data, features, window_length, time_segment, filter_data_by_segment):
temperature_intraday_features = pd.DataFrame(columns=["local_segment"] + features)
if not temperature_intraday_data.empty:
sample_rate = 4
temperature_intraday_data = filter_data_by_segment(temperature_intraday_data, time_segment)
if not temperature_intraday_data.empty:
temperature_intraday_features = pd.DataFrame()
# apply methods from calculate features module
if window_length is None:
temperature_intraday_features = \
temperature_intraday_data.groupby('local_segment').apply(\
lambda x: calculate_features(convert_to2d(x['temperature'], x.shape[0]), fs=sample_rate, feature_names=features, show_progress=False))
else:
temperature_intraday_features = \
temperature_intraday_data.groupby('local_segment').apply(\
lambda x: calculate_features(convert_to2d(x['temperature'], window_length*sample_rate), fs=sample_rate, feature_names=features, show_progress=False))
temperature_intraday_features.reset_index(inplace=True)
return temperature_intraday_features
def cr_features(sensor_data_files, time_segment, provider, filter_data_by_segment, *args, **kwargs):
temperature_intraday_data = pd.read_csv(sensor_data_files["sensor_data"])
requested_intraday_features = provider["FEATURES"]
calc_windows = kwargs.get('calc_windows', False)
if provider["WINDOWS"]["COMPUTE"] and calc_windows:
requested_window_length = provider["WINDOWS"]["WINDOW_LENGTH"]
else:
requested_window_length = None
# name of the features this function can compute
base_intraday_features_names = generic_features
# the subset of requested features this function can compute
intraday_features_to_compute = list(set(requested_intraday_features) & set(base_intraday_features_names))
# extract features from intraday data
temperature_intraday_features = extract_temp_features_from_intraday_data(temperature_intraday_data, intraday_features_to_compute,
requested_window_length, time_segment, filter_data_by_segment)
if calc_windows:
so_features_names = provider["WINDOWS"]["SECOND_ORDER_FEATURES"]
temperature_second_order_features = extract_second_order_features(temperature_intraday_features, so_features_names)
return temperature_intraday_features, temperature_second_order_features
return temperature_intraday_features

View File

@ -1,12 +1,16 @@
import pandas as pd
from utils.utils import fetch_provider_features, run_provider_cleaning_script
import sys
sensor_data_files = dict(snakemake.input)
provider = snakemake.params["provider"]
provider_key = snakemake.params["provider_key"]
sensor_key = snakemake.params["sensor_key"]
calc_windows = True if (provider.get("WINDOWS", False) and provider["WINDOWS"].get("COMPUTE", False)) else False
if sensor_key == "all_cleaning_individual" or sensor_key == "all_cleaning_overall":
# Data cleaning
sensor_features = run_provider_cleaning_script(provider, provider_key, sensor_key, sensor_data_files)
@ -14,6 +18,18 @@ else:
# Extract sensor features
del sensor_data_files["time_segments_labels"]
time_segments_file = snakemake.input["time_segments_labels"]
sensor_features = fetch_provider_features(provider, provider_key, sensor_key, sensor_data_files, time_segments_file)
sensor_features.to_csv(snakemake.output[0], index=False)
if calc_windows:
window_features, second_order_features = fetch_provider_features(provider, provider_key, sensor_key, sensor_data_files, time_segments_file, calc_windows=True)
window_features.to_csv(snakemake.output[1], index=False)
second_order_features.to_csv(snakemake.output[0], index=False)
elif "empatica" in sensor_key:
pd.DataFrame().to_csv(snakemake.output[1], index=False)
if not calc_windows:
sensor_features = fetch_provider_features(provider, provider_key, sensor_key, sensor_data_files, time_segments_file, calc_windows=False)
if not calc_windows:
sensor_features.to_csv(snakemake.output[0], index=False)

View File

@ -3,9 +3,11 @@ library(tidyr)
library(readr)
compute_data_yield_features <- function(data, feature_name, time_segment, provider){
data <- data %>% filter_data_by_segment(time_segment)
if(nrow(data) == 0)
if(nrow(data) == 0){
return(tibble(local_segment = character(), ratiovalidyieldedminutes = numeric(), ratiovalidyieldedhours = numeric()))
}
features <- data %>%
separate(timestamps_segment, into = c("start_timestamp", "end_timestamp"), convert = T, sep = ",") %>%
mutate(duration_minutes = (end_timestamp - start_timestamp) / 60000,

View File

@ -0,0 +1,50 @@
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
import sys
sensor_data_files = dict(snakemake.input)
provider = snakemake.params["provider"]
provider_key = snakemake.params["provider_key"]
sensor_key = snakemake.params["sensor_key"]
pd.set_option('display.max_columns', None)
if provider_key == "cr":
sys.path.append('/rapids/src/features/')
from cr_features_helper_methods import extract_second_order_features
provider_main = snakemake.params["provider_main"]
prefix = sensor_key + "_" + provider_key + "_"
windows_features_data = pd.read_csv(sensor_data_files["windows_features_data"])
excluded_columns = ['local_segment', 'local_segment_label', 'local_segment_start_datetime', 'local_segment_end_datetime', prefix + "level_1"]
if windows_features_data.empty:
windows_features_data.to_csv(snakemake.output[1], index=False)
windows_features_data.to_csv(snakemake.output[0], index=False)
else:
windows_features_data.loc[:, ~windows_features_data.columns.isin(excluded_columns)] = StandardScaler().fit_transform(windows_features_data.loc[:, ~windows_features_data.columns.isin(excluded_columns)])
windows_features_data.to_csv(snakemake.output[1], index=False)
if provider_main["WINDOWS"]["COMPUTE"] and "SECOND_ORDER_FEATURES" in provider_main["WINDOWS"]:
so_features_names = provider_main["WINDOWS"]["SECOND_ORDER_FEATURES"]
windows_so_features_data = extract_second_order_features(windows_features_data, so_features_names, prefix)
windows_so_features_data.to_csv(snakemake.output[0], index=False)
else:
pd.DataFrame().to_csv(snakemake.output[0], index=False)
else:
for sensor_features in sensor_data_files["sensor_features"]:
if "/" + sensor_key + ".csv" in sensor_features:
sensor_data = pd.read_csv(sensor_features)
excluded_columns = ['local_segment', 'local_segment_label', 'local_segment_start_datetime', 'local_segment_end_datetime']
if not sensor_data.empty:
sensor_data.loc[:, ~sensor_data.columns.isin(excluded_columns)] = StandardScaler().fit_transform(sensor_data.loc[:, ~sensor_data.columns.isin(excluded_columns)])
sensor_data.to_csv(snakemake.output[0], index=False)
break

View File

@ -0,0 +1,17 @@
source("renv/activate.R")
library(tidyr)
library(purrr)
library("dplyr", warn.conflicts = F)
library(stringr)
feature_files <- snakemake@input[["feature_files"]]
features_of_all_participants <- tibble(filename = feature_files) %>% # create a data frame
mutate(file_contents = map(filename, ~ read.csv(., stringsAsFactors = F, colClasses = c(local_segment = "character", local_segment_label = "character", local_segment_start_datetime="character", local_segment_end_datetime="character"))),
pid = str_match(filename, ".*/(.*)/z_all_sensor_features.csv")[,2]) %>%
unnest(cols = c(file_contents)) %>%
select(-filename)
write.csv(features_of_all_participants, snakemake@output[[1]], row.names = FALSE)

View File

@ -88,11 +88,13 @@ def chunk_episodes(sensor_episodes):
return merged_sensor_episodes
def fetch_provider_features(provider, provider_key, sensor_key, sensor_data_files, time_segments_file):
def fetch_provider_features(provider, provider_key, sensor_key, sensor_data_files, time_segments_file, calc_windows=False):
import pandas as pd
from importlib import import_module, util
sensor_features = pd.DataFrame(columns=["local_segment"])
sensor_fo_features = pd.DataFrame(columns=["local_segment"])
sensor_so_features = pd.DataFrame(columns=["local_segment"])
time_segments_labels = pd.read_csv(time_segments_file, header=0)
if "FEATURES" not in provider:
raise ValueError("Provider config[{}][PROVIDERS][{}] is missing a FEATURES attribute in config.yaml".format(sensor_key.upper(), provider_key.upper()))
@ -106,7 +108,20 @@ def fetch_provider_features(provider, provider_key, sensor_key, sensor_data_file
time_segments_labels["label"] = [""]
for time_segment in time_segments_labels["label"]:
print("{} Processing {} {} {}".format(rapids_log_tag, sensor_key, provider_key, time_segment))
features = feature_function(sensor_data_files, time_segment, provider, filter_data_by_segment=filter_data_by_segment, chunk_episodes=chunk_episodes)
features = feature_function(sensor_data_files, time_segment, provider, filter_data_by_segment=filter_data_by_segment, chunk_episodes=chunk_episodes, calc_windows=calc_windows)
# In case of calc_window = True
if isinstance(features, tuple):
if not "local_segment" in features[0].columns or not "local_segment" in features[1].columns:
raise ValueError("The dataframe returned by the " + sensor_key + " provider '" + provider_key + "' is missing the 'local_segment' column added by the 'filter_data_by_segment()' function. Check the provider script is using such function and is not removing 'local_segment' by accident (" + provider["SRC_SCRIPT"] + ")\n The 'local_segment' column is used to index a provider's features (each row corresponds to a different time segment instance (e.g. 2020-01-01, 2020-01-02, 2020-01-03, etc.)")
features[0].columns = ["{}{}".format("" if col.startswith("local_segment") else (sensor_key + "_"+ provider_key + "_"), col) for col in features[0].columns]
features[1].columns = ["{}{}".format("" if col.startswith("local_segment") else (sensor_key + "_"+ provider_key + "_"), col) for col in features[1].columns]
if not features[0].empty:
sensor_fo_features = pd.concat([sensor_fo_features, features[0]], axis=0, sort=False)
if not features[1].empty:
sensor_so_features = pd.concat([sensor_so_features, features[1]], axis=0, sort=False)
else:
if not "local_segment" in features.columns:
raise ValueError("The dataframe returned by the " + sensor_key + " provider '" + provider_key + "' is missing the 'local_segment' column added by the 'filter_data_by_segment()' function. Check the provider script is using such function and is not removing 'local_segment' by accident (" + provider["SRC_SCRIPT"] + ")\n The 'local_segment' column is used to index a provider's features (each row corresponds to a different time segment instance (e.g. 2020-01-01, 2020-01-02, 2020-01-03, etc.)")
features.columns = ["{}{}".format("" if col.startswith("local_segment") else (sensor_key + "_"+ provider_key + "_"), col) for col in features.columns]
@ -114,6 +129,27 @@ def fetch_provider_features(provider, provider_key, sensor_key, sensor_data_file
else:
for feature in provider["FEATURES"]:
sensor_features[feature] = None
if calc_windows:
segment_colums = pd.DataFrame()
sensor_fo_features['local_segment'] = sensor_fo_features['local_segment'].str.replace(r'_RR\d+SS', '')
split_segemnt_columns = sensor_fo_features["local_segment"].str.split(pat="(.*)#(.*),(.*)", expand=True)
new_segment_columns = split_segemnt_columns.iloc[:,1:4] if split_segemnt_columns.shape[1] == 5 else pd.DataFrame(columns=["local_segment_label", "local_segment_start_datetime","local_segment_end_datetime"])
segment_colums[["local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]] = new_segment_columns
for i in range(segment_colums.shape[1]):
sensor_fo_features.insert(1 + i, segment_colums.columns[i], segment_colums[segment_colums.columns[i]])
segment_colums = pd.DataFrame()
sensor_so_features['local_segment'] = sensor_so_features['local_segment'].str.replace(r'_RR\d+SS', '')
split_segemnt_columns = sensor_so_features["local_segment"].str.split(pat="(.*)#(.*),(.*)", expand=True)
new_segment_columns = split_segemnt_columns.iloc[:,1:4] if split_segemnt_columns.shape[1] == 5 else pd.DataFrame(columns=["local_segment_label", "local_segment_start_datetime","local_segment_end_datetime"])
segment_colums[["local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]] = new_segment_columns
for i in range(segment_colums.shape[1]):
sensor_so_features.insert(1 + i, segment_colums.columns[i], segment_colums[segment_colums.columns[i]])
return sensor_fo_features, sensor_so_features
else:
segment_colums = pd.DataFrame()
sensor_features['local_segment'] = sensor_features['local_segment'].str.replace(r'_RR\d+SS', '')
split_segemnt_columns = sensor_features["local_segment"].str.split(pat="(.*)#(.*),(.*)", expand=True)

View File

@ -10,7 +10,7 @@ def retain_target_column(df_input: pd.DataFrame, target_variable_name: str):
if all(~target_variable_index):
raise ValueError("The requested target (", target_variable_name,
")cannot be found in the dataset.",
"Please check the names of phone_esm_ columns in all_sensor_features_cleaned_rapids.csv")
"Please check the names of phone_esm_ columns in z_all_sensor_features_cleaned_straw_py.csv")
sensor_features_plus_target = df_input.drop(esm_names, axis=1)
sensor_features_plus_target["target"] = df_input[esm_names[target_variable_index]]
# We will only keep one column related to phone_esm and that will be our target variable.

View File

@ -0,0 +1,39 @@
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
participant = "p031"
all_sensors = ["eda", "bvp", "ibi", "temp", "acc"]
for sensor in all_sensors:
if sensor == "eda":
path = f"/rapids/data/interim/{participant}/empatica_electrodermal_activity_features/empatica_electrodermal_activity_python_cr_windows.csv"
elif sensor == "bvp":
path = f"/rapids/data/interim/{participant}/empatica_blood_volume_pulse_features/empatica_blood_volume_pulse_python_cr_windows.csv"
elif sensor == "ibi":
path = f"/rapids/data/interim/{participant}/empatica_inter_beat_interval_features/empatica_inter_beat_interval_python_cr_windows.csv"
elif sensor == "acc":
path = f"/rapids/data/interim/{participant}/empatica_accelerometer_features/empatica_accelerometer_python_cr_windows.csv"
elif sensor == "temp":
path = f"/rapids/data/interim/{participant}/empatica_temperature_features/empatica_temperature_python_cr_windows.csv"
else:
path = "/rapids/data/processed/features/all_participants/all_sensor_features.csv" # all features all participants
df = pd.read_csv(path)
print(df)
is_NaN = df.isnull()
row_has_NaN = is_NaN.any(axis=1)
rows_with_NaN = df[row_has_NaN]
print("All rows:", len(df.index))
print("\nCount NaN vals:", rows_with_NaN.size)
print("\nDf mean:")
print(df.mean())
sns.heatmap(df.isna(), cbar=False)
plt.savefig(f'{sensor}_{participant}_windows_NaN.png', bbox_inches='tight')

View File

@ -0,0 +1,23 @@
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import os, sys
participant = "p032"
folder = f"/rapids/data/processed/features/{participant}/"
for filename in os.listdir(folder):
if filename.startswith("phone_"):
df = pd.read_csv(f"{folder}{filename}")
plt.figure()
sns.heatmap(df[[col for col in df if col.startswith('phone_')]], cbar=True)
plt.savefig(f'{participant}_{filename}.png', bbox_inches='tight')
plt.close()
plt.figure()
sns.heatmap(df[[col for col in df if col.startswith('phone_')]].isna(), cbar=True)
plt.savefig(f'is_na_{participant}_{filename}.png', bbox_inches='tight')
plt.close()

View File

@ -0,0 +1,48 @@
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from itertools import compress
participant = "p031"
sensor = "eda"
if sensor == "eda":
path = f"/rapids/data/interim/{participant}/empatica_electrodermal_activity_features/empatica_electrodermal_activity_python_cr_windows.csv"
elif sensor == "bvp":
path = f"/rapids/data/interim/{participant}/empatica_blood_volume_pulse_features/empatica_blood_volume_pulse_python_cr_windows.csv"
elif sensor == "ibi":
path = f"/rapids/data/interim/{participant}/empatica_inter_beat_interval_features/empatica_inter_beat_interval_python_cr_windows.csv"
elif sensor == "acc":
path = f"/rapids/data/interim/{participant}/empatica_accelerometer_features/empatica_accelerometer_python_cr_windows.csv"
elif sensor == "temp":
path = f"/rapids/data/interim/{participant}/empatica_temperature_features/empatica_temperature_python_cr_windows.csv"
else:
path = "/rapids/data/processed/features/all_participants/all_sensor_features.csv" # all features all participants"
df = pd.read_csv(path)
df_num_peaks_zero = df[df["empatica_electrodermal_activity_cr_numPeaks"] == 0]
columns_num_peaks_zero = df_num_peaks_zero.columns[df_num_peaks_zero.isna().any()].tolist()
df_num_peaks_non_zero = df[df["empatica_electrodermal_activity_cr_numPeaks"] != 0]
df_num_peaks_non_zero = df_num_peaks_non_zero[columns_num_peaks_zero]
pd.set_option('display.max_columns', None)
df_q = pd.DataFrame()
for col in df_num_peaks_non_zero:
df_q[col] = pd.to_numeric(pd.cut(df_num_peaks_non_zero[col], bins=[-1,0,0.000000000001,1000], labels=[-1,0,1], right=False))
sns.heatmap(df_q)
plt.savefig(f'eda_{participant}_window_non_zero_peak_other_vals.png', bbox_inches='tight')
plt.close()
# Filter columns that do not contain 0
non_zero_cols = list(compress(columns_num_peaks_zero, df_num_peaks_non_zero.all().tolist()))
zero_cols = list(set(columns_num_peaks_zero) - set(non_zero_cols))
print(non_zero_cols, "\n")
print(zero_cols)