Start empatica support
parent
8b2f8c3ce1
commit
8c726f5d4f
63
Snakefile
63
Snakefile
|
@ -288,6 +288,69 @@ for provider in config["FITBIT_STEPS_INTRADAY"]["PROVIDERS"].keys():
|
|||
# files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
|
||||
# files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
|
||||
|
||||
for provider in config["EMPATICA_ACCELEROMETER"]["PROVIDERS"].keys():
|
||||
if config["EMPATICA_ACCELEROMETER"]["PROVIDERS"][provider]["COMPUTE"]:
|
||||
files_to_compute.extend(expand("data/raw/{pid}/empatica_accelerometer_raw.csv", pid=config["PIDS"]))
|
||||
files_to_compute.extend(expand("data/raw/{pid}/empatica_accelerometer_with_datetime.csv", pid=config["PIDS"]))
|
||||
files_to_compute.extend(expand("data/interim/{pid}/empatica_accelerometer_features/empatica_accelerometer_{language}_{provider_key}.csv", pid=config["PIDS"], language=config["EMPATICA_ACCELEROMETER"]["PROVIDERS"][provider]["SRC_LANGUAGE"].lower(), provider_key=provider.lower()))
|
||||
files_to_compute.extend(expand("data/processed/features/{pid}/empatica_accelerometer.csv", pid=config["PIDS"]))
|
||||
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
|
||||
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
|
||||
|
||||
for provider in config["EMPATICA_HEARTRATE"]["PROVIDERS"].keys():
|
||||
if config["EMPATICA_HEARTRATE"]["PROVIDERS"][provider]["COMPUTE"]:
|
||||
files_to_compute.extend(expand("data/raw/{pid}/empatica_heartrate_raw.csv", pid=config["PIDS"]))
|
||||
files_to_compute.extend(expand("data/raw/{pid}/empatica_heartrate_with_datetime.csv", pid=config["PIDS"]))
|
||||
files_to_compute.extend(expand("data/interim/{pid}/empatica_heartrate_features/empatica_heartrate_{language}_{provider_key}.csv", pid=config["PIDS"], language=config["EMPATICA_HEARTRATE"]["PROVIDERS"][provider]["SRC_LANGUAGE"].lower(), provider_key=provider.lower()))
|
||||
files_to_compute.extend(expand("data/processed/features/{pid}/empatica_heartrate.csv", pid=config["PIDS"]))
|
||||
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
|
||||
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
|
||||
|
||||
for provider in config["EMPATICA_TEMPERATURE"]["PROVIDERS"].keys():
|
||||
if config["EMPATICA_TEMPERATURE"]["PROVIDERS"][provider]["COMPUTE"]:
|
||||
files_to_compute.extend(expand("data/raw/{pid}/empatica_temperature_raw.csv", pid=config["PIDS"]))
|
||||
files_to_compute.extend(expand("data/raw/{pid}/empatica_temperature_with_datetime.csv", pid=config["PIDS"]))
|
||||
files_to_compute.extend(expand("data/interim/{pid}/empatica_temperature_features/empatica_temperature_{language}_{provider_key}.csv", pid=config["PIDS"], language=config["EMPATICA_TEMPERATURE"]["PROVIDERS"][provider]["SRC_LANGUAGE"].lower(), provider_key=provider.lower()))
|
||||
files_to_compute.extend(expand("data/processed/features/{pid}/empatica_temperature.csv", pid=config["PIDS"]))
|
||||
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
|
||||
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
|
||||
|
||||
for provider in config["EMPATICA_ELECTRODERMAL_ACTIVITY"]["PROVIDERS"].keys():
|
||||
if config["EMPATICA_ELECTRODERMAL_ACTIVITY"]["PROVIDERS"][provider]["COMPUTE"]:
|
||||
files_to_compute.extend(expand("data/raw/{pid}/empatica_electrodermal_activity_raw.csv", pid=config["PIDS"]))
|
||||
files_to_compute.extend(expand("data/raw/{pid}/empatica_electrodermal_activity_with_datetime.csv", pid=config["PIDS"]))
|
||||
files_to_compute.extend(expand("data/interim/{pid}/empatica_electrodermal_activity_features/empatica_electrodermal_activity_{language}_{provider_key}.csv", pid=config["PIDS"], language=config["EMPATICA_ELECTRODERMAL_ACTIVITY"]["PROVIDERS"][provider]["SRC_LANGUAGE"].lower(), provider_key=provider.lower()))
|
||||
files_to_compute.extend(expand("data/processed/features/{pid}/empatica_electrodermal_activity.csv", pid=config["PIDS"]))
|
||||
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
|
||||
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
|
||||
|
||||
for provider in config["EMPATICA_BLOOD_VOLUME_PULSE"]["PROVIDERS"].keys():
|
||||
if config["EMPATICA_BLOOD_VOLUME_PULSE"]["PROVIDERS"][provider]["COMPUTE"]:
|
||||
files_to_compute.extend(expand("data/raw/{pid}/empatica_blood_volume_pulse_raw.csv", pid=config["PIDS"]))
|
||||
files_to_compute.extend(expand("data/raw/{pid}/empatica_blood_volume_pulse_with_datetime.csv", pid=config["PIDS"]))
|
||||
files_to_compute.extend(expand("data/interim/{pid}/empatica_blood_volume_pulse_features/empatica_blood_volume_pulse_{language}_{provider_key}.csv", pid=config["PIDS"], language=config["EMPATICA_BLOOD_VOLUME_PULSE"]["PROVIDERS"][provider]["SRC_LANGUAGE"].lower(), provider_key=provider.lower()))
|
||||
files_to_compute.extend(expand("data/processed/features/{pid}/empatica_blood_volume_pulse.csv", pid=config["PIDS"]))
|
||||
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
|
||||
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
|
||||
|
||||
for provider in config["EMPATICA_INTER_BEAT_INTERVAL"]["PROVIDERS"].keys():
|
||||
if config["EMPATICA_INTER_BEAT_INTERVAL"]["PROVIDERS"][provider]["COMPUTE"]:
|
||||
files_to_compute.extend(expand("data/raw/{pid}/empatica_inter_beat_interval_raw.csv", pid=config["PIDS"]))
|
||||
files_to_compute.extend(expand("data/raw/{pid}/empatica_inter_beat_interval_with_datetime.csv", pid=config["PIDS"]))
|
||||
files_to_compute.extend(expand("data/interim/{pid}/empatica_inter_beat_interval_features/empatica_inter_beat_interval_{language}_{provider_key}.csv", pid=config["PIDS"], language=config["EMPATICA_INTER_BEAT_INTERVAL"]["PROVIDERS"][provider]["SRC_LANGUAGE"].lower(), provider_key=provider.lower()))
|
||||
files_to_compute.extend(expand("data/processed/features/{pid}/empatica_inter_beat_interval.csv", pid=config["PIDS"]))
|
||||
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
|
||||
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
|
||||
|
||||
for provider in config["EMPATICA_TAGS"]["PROVIDERS"].keys():
|
||||
if config["EMPATICA_TAGS"]["PROVIDERS"][provider]["COMPUTE"]:
|
||||
files_to_compute.extend(expand("data/raw/{pid}/empatica_tags_raw.csv", pid=config["PIDS"]))
|
||||
files_to_compute.extend(expand("data/raw/{pid}/empatica_tags_with_datetime.csv", pid=config["PIDS"]))
|
||||
files_to_compute.extend(expand("data/interim/{pid}/empatica_tags_features/empatica_tags_{language}_{provider_key}.csv", pid=config["PIDS"], language=config["EMPATICA_TAGS"]["PROVIDERS"][provider]["SRC_LANGUAGE"].lower(), provider_key=provider.lower()))
|
||||
files_to_compute.extend(expand("data/processed/features/{pid}/empatica_tags.csv", pid=config["PIDS"]))
|
||||
files_to_compute.extend(expand("data/processed/features/{pid}/all_sensor_features.csv", pid=config["PIDS"]))
|
||||
files_to_compute.append("data/processed/features/all_participants/all_sensor_features.csv")
|
||||
|
||||
# Visualization for Data Exploration
|
||||
if config["HISTOGRAM_PHONE_DATA_YIELD"]["PLOT"]:
|
||||
files_to_compute.append("reports/data_exploration/histogram_phone_data_yield.html")
|
||||
|
|
78
config.yaml
78
config.yaml
|
@ -7,7 +7,7 @@ TIMEZONE: &timezone
|
|||
America/New_York
|
||||
|
||||
# See https://www.rapids.science/latest/setup/configuration/#participant-files
|
||||
PIDS: [test01]
|
||||
PIDS: [e01]
|
||||
|
||||
# See https://www.rapids.science/latest/setup/configuration/#automatic-creation-of-participant-files
|
||||
CREATE_PARTICIPANT_FILES:
|
||||
|
@ -408,6 +408,82 @@ FITBIT_STEPS_INTRADAY:
|
|||
# FEATURES: []
|
||||
|
||||
|
||||
########################################################################################################################
|
||||
# EMPATICA #
|
||||
########################################################################################################################
|
||||
|
||||
EMPATICA_DATA_CONFIGURATION:
|
||||
SOURCE:
|
||||
TYPE: FILE
|
||||
TIMEZONE:
|
||||
TYPE: SINGLE # Fitbit devices don't support time zones so we read this data in the timezone indicated by VALUE
|
||||
VALUE: *timezone
|
||||
|
||||
# Sensors ------
|
||||
|
||||
# See https://www.rapids.science/latest/features/fitbit-heartrate-summary/
|
||||
EMPATICA_ACCELEROMETER:
|
||||
TABLE: acc
|
||||
PROVIDERS:
|
||||
DBDP:
|
||||
COMPUTE: True
|
||||
FEATURES: []
|
||||
SRC_FOLDER: "dbdp" # inside src/features/empatica_accelerometer
|
||||
SRC_LANGUAGE: "python"
|
||||
|
||||
EMPATICA_HEARTRATE:
|
||||
TABLE: hr
|
||||
PROVIDERS:
|
||||
DBDP:
|
||||
COMPUTE: True
|
||||
FEATURES: []
|
||||
SRC_FOLDER: "dbdp" # inside src/features/empatica_heartrate
|
||||
SRC_LANGUAGE: "python"
|
||||
|
||||
EMPATICA_TEMPERATURE:
|
||||
TABLE: temp
|
||||
PROVIDERS:
|
||||
DBDP:
|
||||
COMPUTE: True
|
||||
FEATURES: []
|
||||
SRC_FOLDER: "dbdp" # inside src/features/empatica_heartrate
|
||||
SRC_LANGUAGE: "python"
|
||||
|
||||
EMPATICA_ELECTRODERMAL_ACTIVITY:
|
||||
TABLE: temp
|
||||
PROVIDERS:
|
||||
DBDP:
|
||||
COMPUTE: True
|
||||
FEATURES: []
|
||||
SRC_FOLDER: "dbdp" # inside src/features/empatica_heartrate
|
||||
SRC_LANGUAGE: "python"
|
||||
|
||||
EMPATICA_BLOOD_VOLUME_PULSE:
|
||||
TABLE: bvp
|
||||
PROVIDERS:
|
||||
DBDP:
|
||||
COMPUTE: True
|
||||
FEATURES: []
|
||||
SRC_FOLDER: "dbdp" # inside src/features/empatica_heartrate
|
||||
SRC_LANGUAGE: "python"
|
||||
|
||||
EMPATICA_INTER_BEAT_INTERVAL:
|
||||
TABLE: ibi
|
||||
PROVIDERS:
|
||||
DBDP:
|
||||
COMPUTE: True
|
||||
FEATURES: []
|
||||
SRC_FOLDER: "dbdp" # inside src/features/empatica_heartrate
|
||||
SRC_LANGUAGE: "python"
|
||||
|
||||
EMPATICA_TAGS:
|
||||
TABLE: tags
|
||||
PROVIDERS:
|
||||
DBDP:
|
||||
COMPUTE: True
|
||||
FEATURES: []
|
||||
SRC_FOLDER: "dbdp" # inside src/features/empatica_heartrate
|
||||
SRC_LANGUAGE: "python"
|
||||
|
||||
########################################################################################################################
|
||||
# PLOTS #
|
||||
|
|
|
@ -15,7 +15,7 @@ def optional_steps_sleep_input(wildcards):
|
|||
def input_merge_sensor_features_for_individual_participants(wildcards):
|
||||
feature_files = []
|
||||
for config_key in config.keys():
|
||||
if config_key.startswith(("PHONE", "FITBIT")) and "PROVIDERS" in config[config_key] and isinstance(config[config_key]["PROVIDERS"], dict):
|
||||
if config_key.startswith(("PHONE", "FITBIT", "EMPATICA")) and "PROVIDERS" in config[config_key] and isinstance(config[config_key]["PROVIDERS"], dict):
|
||||
for provider_key, provider in config[config_key]["PROVIDERS"].items():
|
||||
if "COMPUTE" in provider.keys() and provider["COMPUTE"]:
|
||||
feature_files.append("data/processed/features/{pid}/" + config_key.lower() + ".csv")
|
||||
|
|
|
@ -2,7 +2,7 @@ rule join_features_from_providers:
|
|||
input:
|
||||
sensor_features = find_features_files
|
||||
wildcard_constraints:
|
||||
sensor_key = '(phone|fitbit).*'
|
||||
sensor_key = '(phone|fitbit|empatica).*'
|
||||
output:
|
||||
"data/processed/features/{pid}/{sensor_key}.csv"
|
||||
script:
|
||||
|
@ -675,3 +675,185 @@ rule merge_sensor_features_for_all_participants:
|
|||
"data/processed/features/all_participants/all_sensor_features.csv"
|
||||
script:
|
||||
"../src/features/utils/merge_sensor_features_for_all_participants.R"
|
||||
|
||||
rule empatica_accelerometer_python_features:
|
||||
input:
|
||||
sensor_data = "data/raw/{pid}/empatica_accelerometer_with_datetime.csv",
|
||||
time_segments_labels = "data/interim/time_segments/{pid}_time_segments_labels.csv"
|
||||
params:
|
||||
provider = lambda wildcards: config["EMPATICA_ACCELEROMETER"]["PROVIDERS"][wildcards.provider_key.upper()],
|
||||
provider_key = "{provider_key}",
|
||||
sensor_key = "empatica_accelerometer"
|
||||
output:
|
||||
"data/interim/{pid}/empatica_accelerometer_features/empatica_accelerometer_python_{provider_key}.csv"
|
||||
script:
|
||||
"../src/features/entry.py"
|
||||
|
||||
rule empatica_accelerometer_r_features:
|
||||
input:
|
||||
sensor_data = "data/raw/{pid}/empatica_accelerometer_with_datetime.csv",
|
||||
time_segments_labels = "data/interim/time_segments/{pid}_time_segments_labels.csv"
|
||||
params:
|
||||
provider = lambda wildcards: config["EMPATICA_ACCELEROMETER"]["PROVIDERS"][wildcards.provider_key.upper()],
|
||||
provider_key = "{provider_key}",
|
||||
sensor_key = "empatica_accelerometer"
|
||||
output:
|
||||
"data/interim/{pid}/empatica_accelerometer_features/empatica_accelerometer_r_{provider_key}.csv"
|
||||
script:
|
||||
"../src/features/entry.R"
|
||||
|
||||
rule empatica_heartrate_python_features:
|
||||
input:
|
||||
sensor_data = "data/raw/{pid}/empatica_heartrate_with_datetime.csv",
|
||||
time_segments_labels = "data/interim/time_segments/{pid}_time_segments_labels.csv"
|
||||
params:
|
||||
provider = lambda wildcards: config["EMPATICA_HEARTRATE"]["PROVIDERS"][wildcards.provider_key.upper()],
|
||||
provider_key = "{provider_key}",
|
||||
sensor_key = "empatica_heartrate"
|
||||
output:
|
||||
"data/interim/{pid}/empatica_heartrate_features/empatica_heartrate_python_{provider_key}.csv"
|
||||
script:
|
||||
"../src/features/entry.py"
|
||||
|
||||
rule empatica_heartrate_r_features:
|
||||
input:
|
||||
sensor_data = "data/raw/{pid}/empatica_heartrate_with_datetime.csv",
|
||||
time_segments_labels = "data/interim/time_segments/{pid}_time_segments_labels.csv"
|
||||
params:
|
||||
provider = lambda wildcards: config["EMPATICA_HEARTRATE"]["PROVIDERS"][wildcards.provider_key.upper()],
|
||||
provider_key = "{provider_key}",
|
||||
sensor_key = "empatica_heartrate"
|
||||
output:
|
||||
"data/interim/{pid}/empatica_heartrate_features/empatica_heartrate_r_{provider_key}.csv"
|
||||
script:
|
||||
"../src/features/entry.R"
|
||||
|
||||
rule empatica_temperature_python_features:
|
||||
input:
|
||||
sensor_data = "data/raw/{pid}/empatica_temperature_with_datetime.csv",
|
||||
time_segments_labels = "data/interim/time_segments/{pid}_time_segments_labels.csv"
|
||||
params:
|
||||
provider = lambda wildcards: config["EMPATICA_TEMPERATURE"]["PROVIDERS"][wildcards.provider_key.upper()],
|
||||
provider_key = "{provider_key}",
|
||||
sensor_key = "empatica_temperature"
|
||||
output:
|
||||
"data/interim/{pid}/empatica_temperature_features/empatica_temperature_python_{provider_key}.csv"
|
||||
script:
|
||||
"../src/features/entry.py"
|
||||
|
||||
rule empatica_temperature_r_features:
|
||||
input:
|
||||
sensor_data = "data/raw/{pid}/empatica_temperature_with_datetime.csv",
|
||||
time_segments_labels = "data/interim/time_segments/{pid}_time_segments_labels.csv"
|
||||
params:
|
||||
provider = lambda wildcards: config["EMPATICA_TEMPERATURE"]["PROVIDERS"][wildcards.provider_key.upper()],
|
||||
provider_key = "{provider_key}",
|
||||
sensor_key = "empatica_temperature"
|
||||
output:
|
||||
"data/interim/{pid}/empatica_temperature_features/empatica_temperature_r_{provider_key}.csv"
|
||||
script:
|
||||
"../src/features/entry.R"
|
||||
|
||||
rule empatica_electrodermal_activity_python_features:
|
||||
input:
|
||||
sensor_data = "data/raw/{pid}/empatica_electrodermal_activity_with_datetime.csv",
|
||||
time_segments_labels = "data/interim/time_segments/{pid}_time_segments_labels.csv"
|
||||
params:
|
||||
provider = lambda wildcards: config["EMPATICA_ELECTRODERMAL_ACTIVITY"]["PROVIDERS"][wildcards.provider_key.upper()],
|
||||
provider_key = "{provider_key}",
|
||||
sensor_key = "empatica_electrodermal_activity"
|
||||
output:
|
||||
"data/interim/{pid}/empatica_electrodermal_activity_features/empatica_electrodermal_activity_python_{provider_key}.csv"
|
||||
script:
|
||||
"../src/features/entry.py"
|
||||
|
||||
rule empatica_electrodermal_activity_r_features:
|
||||
input:
|
||||
sensor_data = "data/raw/{pid}/empatica_electrodermal_activity_with_datetime.csv",
|
||||
time_segments_labels = "data/interim/time_segments/{pid}_time_segments_labels.csv"
|
||||
params:
|
||||
provider = lambda wildcards: config["EMPATICA_ELECTRODERMAL_ACTIVITY"]["PROVIDERS"][wildcards.provider_key.upper()],
|
||||
provider_key = "{provider_key}",
|
||||
sensor_key = "empatica_electrodermal_activity"
|
||||
output:
|
||||
"data/interim/{pid}/empatica_electrodermal_activity_features/empatica_electrodermal_activity_r_{provider_key}.csv"
|
||||
script:
|
||||
"../src/features/entry.R"
|
||||
|
||||
rule empatica_blood_volume_pulse_python_features:
|
||||
input:
|
||||
sensor_data = "data/raw/{pid}/empatica_blood_volume_pulse_with_datetime.csv",
|
||||
time_segments_labels = "data/interim/time_segments/{pid}_time_segments_labels.csv"
|
||||
params:
|
||||
provider = lambda wildcards: config["EMPATICA_BLOOD_VOLUME_PULSE"]["PROVIDERS"][wildcards.provider_key.upper()],
|
||||
provider_key = "{provider_key}",
|
||||
sensor_key = "empatica_blood_volume_pulse"
|
||||
output:
|
||||
"data/interim/{pid}/empatica_blood_volume_pulse_features/empatica_blood_volume_pulse_python_{provider_key}.csv"
|
||||
script:
|
||||
"../src/features/entry.py"
|
||||
|
||||
rule empatica_blood_volume_pulse_r_features:
|
||||
input:
|
||||
sensor_data = "data/raw/{pid}/empatica_blood_volume_pulse_with_datetime.csv",
|
||||
time_segments_labels = "data/interim/time_segments/{pid}_time_segments_labels.csv"
|
||||
params:
|
||||
provider = lambda wildcards: config["EMPATICA_BLOOD_VOLUME_PULSE"]["PROVIDERS"][wildcards.provider_key.upper()],
|
||||
provider_key = "{provider_key}",
|
||||
sensor_key = "empatica_blood_volume_pulse"
|
||||
output:
|
||||
"data/interim/{pid}/empatica_blood_volume_pulse_features/empatica_blood_volume_pulse_r_{provider_key}.csv"
|
||||
script:
|
||||
"../src/features/entry.R"
|
||||
|
||||
rule empatica_inter_beat_interval_python_features:
|
||||
input:
|
||||
sensor_data = "data/raw/{pid}/empatica_inter_beat_interval_with_datetime.csv",
|
||||
time_segments_labels = "data/interim/time_segments/{pid}_time_segments_labels.csv"
|
||||
params:
|
||||
provider = lambda wildcards: config["EMPATICA_INTER_BEAT_INTERVAL"]["PROVIDERS"][wildcards.provider_key.upper()],
|
||||
provider_key = "{provider_key}",
|
||||
sensor_key = "empatica_inter_beat_interval"
|
||||
output:
|
||||
"data/interim/{pid}/empatica_inter_beat_interval_features/empatica_inter_beat_interval_python_{provider_key}.csv"
|
||||
script:
|
||||
"../src/features/entry.py"
|
||||
|
||||
rule empatica_inter_beat_interval_r_features:
|
||||
input:
|
||||
sensor_data = "data/raw/{pid}/empatica_inter_beat_interval_with_datetime.csv",
|
||||
time_segments_labels = "data/interim/time_segments/{pid}_time_segments_labels.csv"
|
||||
params:
|
||||
provider = lambda wildcards: config["EMPATICA_INTER_BEAT_INTERVAL"]["PROVIDERS"][wildcards.provider_key.upper()],
|
||||
provider_key = "{provider_key}",
|
||||
sensor_key = "empatica_inter_beat_interval"
|
||||
output:
|
||||
"data/interim/{pid}/empatica_inter_beat_interval_features/empatica_inter_beat_interval_r_{provider_key}.csv"
|
||||
script:
|
||||
"../src/features/entry.R"
|
||||
|
||||
rule empatica_tags_python_features:
|
||||
input:
|
||||
sensor_data = "data/raw/{pid}/empatica_tags_with_datetime.csv",
|
||||
time_segments_labels = "data/interim/time_segments/{pid}_time_segments_labels.csv"
|
||||
params:
|
||||
provider = lambda wildcards: config["EMPATICA_TAGS"]["PROVIDERS"][wildcards.provider_key.upper()],
|
||||
provider_key = "{provider_key}",
|
||||
sensor_key = "empatica_tags"
|
||||
output:
|
||||
"data/interim/{pid}/empatica_tags_features/empatica_tags_python_{provider_key}.csv"
|
||||
script:
|
||||
"../src/features/entry.py"
|
||||
|
||||
rule empatica_tags_r_features:
|
||||
input:
|
||||
sensor_data = "data/raw/{pid}/empatica_tags_with_datetime.csv",
|
||||
time_segments_labels = "data/interim/time_segments/{pid}_time_segments_labels.csv"
|
||||
params:
|
||||
provider = lambda wildcards: config["EMPATICA_TAGS"]["PROVIDERS"][wildcards.provider_key.upper()],
|
||||
provider_key = "{provider_key}",
|
||||
sensor_key = "empatica_tags"
|
||||
output:
|
||||
"data/interim/{pid}/empatica_tags_features/empatica_tags_r_{provider_key}.csv"
|
||||
script:
|
||||
"../src/features/entry.R"
|
||||
|
|
|
@ -242,3 +242,34 @@ rule fitbit_readable_datetime:
|
|||
"data/raw/{pid}/fitbit_{sensor}_{fitbit_data_type}_parsed_with_datetime.csv"
|
||||
script:
|
||||
"../src/data/readable_datetime.R"
|
||||
|
||||
def empatica_input(wildcards):
|
||||
return expand("data/external/empatica/{{pid}}/{filename}.csv", filename=config["EMPATICA_" + str(wildcards.sensor).upper()]["TABLE"])
|
||||
|
||||
rule extract_empatica_data:
|
||||
input:
|
||||
input_file = empatica_input,
|
||||
participant_file = "data/external/participant_files/{pid}.yaml"
|
||||
params:
|
||||
data_configuration = config["EMPATICA_DATA_CONFIGURATION"],
|
||||
sensor = "{sensor}",
|
||||
table = lambda wildcards: config["EMPATICA_" + str(wildcards.sensor).upper()]["TABLE"],
|
||||
output:
|
||||
sensor_output = "data/raw/{pid}/empatica_{sensor}_raw.csv"
|
||||
script:
|
||||
"../src/data/empatica/extract_empatica_data.py"
|
||||
|
||||
|
||||
rule empatica_readable_datetime:
|
||||
input:
|
||||
sensor_input = "data/raw/{pid}/empatica_{sensor}_raw.csv",
|
||||
time_segments = "data/interim/time_segments/{pid}_time_segments.csv"
|
||||
params:
|
||||
timezones = config["PHONE_DATA_CONFIGURATION"]["TIMEZONE"]["TYPE"],
|
||||
fixed_timezone = config["PHONE_DATA_CONFIGURATION"]["TIMEZONE"]["VALUE"],
|
||||
time_segments_type = config["TIME_SEGMENTS"]["TYPE"],
|
||||
include_past_periodic_segments = config["TIME_SEGMENTS"]["INCLUDE_PAST_PERIODIC_SEGMENTS"]
|
||||
output:
|
||||
"data/raw/{pid}/empatica_{sensor}_with_datetime.csv"
|
||||
script:
|
||||
"../src/data/readable_datetime.R"
|
||||
|
|
|
@ -0,0 +1,32 @@
|
|||
import pandas as pd
|
||||
from pandas.core import indexing
|
||||
import yaml
|
||||
|
||||
|
||||
def extract_empatica_data(sensor_data_file, output_file, start_date, end_date, timezone, sensor):
|
||||
print(sensor_data_file)
|
||||
print(output_file)
|
||||
print(start_date)
|
||||
print(end_date)
|
||||
print(timezone)
|
||||
print(sensor)
|
||||
data = pd.read_csv(sensor_data_file)
|
||||
print(data)
|
||||
|
||||
# extract
|
||||
print(output_file)
|
||||
data.to_csv(output_file, index = False)
|
||||
|
||||
|
||||
sensor_data_file = snakemake.input[0]
|
||||
output_file = snakemake.output[0]
|
||||
with open(snakemake.input[1], "r", encoding="utf-8") as f:
|
||||
participant_file = yaml.safe_load(f)
|
||||
|
||||
start_date = participant_file["EMPATICA"]["START_DATE"]
|
||||
end_date = participant_file["EMPATICA"]["END_DATE"]
|
||||
timezone = snakemake.params["data_configuration"]["TIMEZONE"]["VALUE"]
|
||||
sensor = snakemake.params["sensor"]
|
||||
|
||||
extract_empatica_data(sensor_data_file, output_file, start_date, end_date, timezone, sensor)
|
||||
|
|
@ -0,0 +1,21 @@
|
|||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
def dbdp_features(sensor_data_files, time_segment, provider, filter_data_by_segment, *args, **kwargs):
|
||||
|
||||
sensor_data = pd.read_csv(sensor_data_files["sensor_data"])
|
||||
requested_features = provider["FEATURES"]
|
||||
# name of the features this function can compute
|
||||
base_features_names = [] # ["maxmagnitude", "minmagnitude", "avgmagnitude", "medianmagnitude", "stdmagnitude"]
|
||||
# the subset of requested features this function can compute
|
||||
features_to_compute = list(set(requested_features) & set(base_features_names))
|
||||
|
||||
features = pd.DataFrame(columns=["local_segment"] + features_to_compute)
|
||||
if not sensor_data.empty:
|
||||
sensor_data = filter_data_by_segment(sensor_data, time_segment)
|
||||
|
||||
if not sensor_data.empty:
|
||||
features = pd.DataFrame()
|
||||
|
||||
|
||||
return features
|
|
@ -0,0 +1,21 @@
|
|||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
def dbdp_features(sensor_data_files, time_segment, provider, filter_data_by_segment, *args, **kwargs):
|
||||
|
||||
sensor_data = pd.read_csv(sensor_data_files["sensor_data"])
|
||||
requested_features = provider["FEATURES"]
|
||||
# name of the features this function can compute
|
||||
base_features_names = [] # ["maxmagnitude", "minmagnitude", "avgmagnitude", "medianmagnitude", "stdmagnitude"]
|
||||
# the subset of requested features this function can compute
|
||||
features_to_compute = list(set(requested_features) & set(base_features_names))
|
||||
|
||||
features = pd.DataFrame(columns=["local_segment"] + features_to_compute)
|
||||
if not sensor_data.empty:
|
||||
sensor_data = filter_data_by_segment(sensor_data, time_segment)
|
||||
|
||||
if not sensor_data.empty:
|
||||
features = pd.DataFrame()
|
||||
|
||||
|
||||
return features
|
|
@ -0,0 +1,21 @@
|
|||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
def dbdp_features(sensor_data_files, time_segment, provider, filter_data_by_segment, *args, **kwargs):
|
||||
|
||||
sensor_data = pd.read_csv(sensor_data_files["sensor_data"])
|
||||
requested_features = provider["FEATURES"]
|
||||
# name of the features this function can compute
|
||||
base_features_names = [] # ["maxmagnitude", "minmagnitude", "avgmagnitude", "medianmagnitude", "stdmagnitude"]
|
||||
# the subset of requested features this function can compute
|
||||
features_to_compute = list(set(requested_features) & set(base_features_names))
|
||||
|
||||
features = pd.DataFrame(columns=["local_segment"] + features_to_compute)
|
||||
if not sensor_data.empty:
|
||||
sensor_data = filter_data_by_segment(sensor_data, time_segment)
|
||||
|
||||
if not sensor_data.empty:
|
||||
features = pd.DataFrame()
|
||||
|
||||
|
||||
return features
|
|
@ -0,0 +1,21 @@
|
|||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
def dbdp_features(sensor_data_files, time_segment, provider, filter_data_by_segment, *args, **kwargs):
|
||||
|
||||
sensor_data = pd.read_csv(sensor_data_files["sensor_data"])
|
||||
requested_features = provider["FEATURES"]
|
||||
# name of the features this function can compute
|
||||
base_features_names = [] # ["maxmagnitude", "minmagnitude", "avgmagnitude", "medianmagnitude", "stdmagnitude"]
|
||||
# the subset of requested features this function can compute
|
||||
features_to_compute = list(set(requested_features) & set(base_features_names))
|
||||
|
||||
features = pd.DataFrame(columns=["local_segment"] + features_to_compute)
|
||||
if not sensor_data.empty:
|
||||
sensor_data = filter_data_by_segment(sensor_data, time_segment)
|
||||
|
||||
if not sensor_data.empty:
|
||||
features = pd.DataFrame()
|
||||
|
||||
|
||||
return features
|
|
@ -0,0 +1,21 @@
|
|||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
def dbdp_features(sensor_data_files, time_segment, provider, filter_data_by_segment, *args, **kwargs):
|
||||
|
||||
sensor_data = pd.read_csv(sensor_data_files["sensor_data"])
|
||||
requested_features = provider["FEATURES"]
|
||||
# name of the features this function can compute
|
||||
base_features_names = [] # ["maxmagnitude", "minmagnitude", "avgmagnitude", "medianmagnitude", "stdmagnitude"]
|
||||
# the subset of requested features this function can compute
|
||||
features_to_compute = list(set(requested_features) & set(base_features_names))
|
||||
|
||||
features = pd.DataFrame(columns=["local_segment"] + features_to_compute)
|
||||
if not sensor_data.empty:
|
||||
sensor_data = filter_data_by_segment(sensor_data, time_segment)
|
||||
|
||||
if not sensor_data.empty:
|
||||
features = pd.DataFrame()
|
||||
|
||||
|
||||
return features
|
|
@ -0,0 +1,21 @@
|
|||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
def dbdp_features(sensor_data_files, time_segment, provider, filter_data_by_segment, *args, **kwargs):
|
||||
|
||||
sensor_data = pd.read_csv(sensor_data_files["sensor_data"])
|
||||
requested_features = provider["FEATURES"]
|
||||
# name of the features this function can compute
|
||||
base_features_names = [] # ["maxmagnitude", "minmagnitude", "avgmagnitude", "medianmagnitude", "stdmagnitude"]
|
||||
# the subset of requested features this function can compute
|
||||
features_to_compute = list(set(requested_features) & set(base_features_names))
|
||||
|
||||
features = pd.DataFrame(columns=["local_segment"] + features_to_compute)
|
||||
if not sensor_data.empty:
|
||||
sensor_data = filter_data_by_segment(sensor_data, time_segment)
|
||||
|
||||
if not sensor_data.empty:
|
||||
features = pd.DataFrame()
|
||||
|
||||
|
||||
return features
|
|
@ -0,0 +1,21 @@
|
|||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
def dbdp_features(sensor_data_files, time_segment, provider, filter_data_by_segment, *args, **kwargs):
|
||||
|
||||
sensor_data = pd.read_csv(sensor_data_files["sensor_data"])
|
||||
requested_features = provider["FEATURES"]
|
||||
# name of the features this function can compute
|
||||
base_features_names = [] # ["maxmagnitude", "minmagnitude", "avgmagnitude", "medianmagnitude", "stdmagnitude"]
|
||||
# the subset of requested features this function can compute
|
||||
features_to_compute = list(set(requested_features) & set(base_features_names))
|
||||
|
||||
features = pd.DataFrame(columns=["local_segment"] + features_to_compute)
|
||||
if not sensor_data.empty:
|
||||
sensor_data = filter_data_by_segment(sensor_data, time_segment)
|
||||
|
||||
if not sensor_data.empty:
|
||||
features = pd.DataFrame()
|
||||
|
||||
|
||||
return features
|
Loading…
Reference in New Issue