2019-10-24 18:11:24 +02:00
configfile: "config.yaml"
2020-08-12 00:45:50 +02:00
include: "rules/common.smk"
include: "rules/renv.smk"
include: "rules/preprocessing.smk"
include: "rules/features.smk"
include: "rules/models.smk"
include: "rules/reports.smk"
2019-10-24 18:11:24 +02:00
2020-06-24 02:46:42 +02:00
import itertools
2020-08-11 22:18:06 +02:00
pids_android = list(filter(lambda pid: infer_participant_platform("data/external/" + pid) == "android", config["PIDS"]))
pids_ios = list(filter(lambda pid: infer_participant_platform("data/external/" + pid) == "ios", config["PIDS"]))
2020-06-23 17:33:34 +02:00
files_to_compute = []
if len(config["PIDS"]) == 0:
raise ValueError("Add participants IDs to PIDS in config.yaml. Remember to create their participant files in data/external")
2020-08-12 00:02:52 +02:00
if config["PHONE_VALID_SENSED_BINS"]["COMPUTE"] or config["PHONE_VALID_SENSED_DAYS"]["COMPUTE"]: # valid sensed bins is necessary for sensed days, so we add these files anyways if sensed days are requested
if len(config["PHONE_VALID_SENSED_BINS"]["DB_TABLES"]) == 0:
raise ValueError("If you want to compute PHONE_VALID_SENSED_BINS or PHONE_VALID_SENSED_DAYS, you need to add at least one table to [PHONE_VALID_SENSED_BINS][DB_TABLES] in config.yaml")
tables_android = [table for table in config["PHONE_VALID_SENSED_BINS"]["DB_TABLES"] if table not in [config["CONVERSATION"]["DB_TABLE"]["IOS"], config["ACTIVITY_RECOGNITION"]["DB_TABLE"]["IOS"]]] # for android, discard any ios tables that may exist
tables_ios = [table for table in config["PHONE_VALID_SENSED_BINS"]["DB_TABLES"] if table not in [config["CONVERSATION"]["DB_TABLE"]["ANDROID"], config["ACTIVITY_RECOGNITION"]["DB_TABLE"]["ANDROID"]]] # for ios, discard any android tables that may exist
for pids,table in zip([pids_android, pids_ios], [tables_android, tables_ios]):
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_raw.csv", pid=pids, sensor=table))
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_with_datetime.csv", pid=pids, sensor=table))
2020-07-09 19:01:50 +02:00
files_to_compute.extend(expand("data/interim/{pid}/phone_sensed_bins.csv", pid=config["PIDS"]))
if config["PHONE_VALID_SENSED_DAYS"]["COMPUTE"]:
2020-07-24 18:58:48 +02:00
files_to_compute.extend(expand("data/interim/{pid}/phone_valid_sensed_days_{min_valid_hours_per_day}hours_{min_valid_bins_per_hour}bins.csv",
pid=config["PIDS"],
min_valid_hours_per_day=config["PHONE_VALID_SENSED_DAYS"]["MIN_VALID_HOURS_PER_DAY"],
min_valid_bins_per_hour=config["PHONE_VALID_SENSED_DAYS"]["MIN_VALID_BINS_PER_HOUR"]))
2020-07-09 19:01:50 +02:00
2020-06-23 17:33:34 +02:00
if config["MESSAGES"]["COMPUTE"]:
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_raw.csv", pid=config["PIDS"], sensor=config["MESSAGES"]["DB_TABLE"]))
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_with_datetime.csv", pid=config["PIDS"], sensor=config["MESSAGES"]["DB_TABLE"]))
files_to_compute.extend(expand("data/processed/{pid}/messages_{messages_type}_{day_segment}.csv", pid=config["PIDS"], messages_type = config["MESSAGES"]["TYPES"], day_segment = config["MESSAGES"]["DAY_SEGMENTS"]))
if config["CALLS"]["COMPUTE"]:
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_raw.csv", pid=config["PIDS"], sensor=config["CALLS"]["DB_TABLE"]))
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_with_datetime.csv", pid=config["PIDS"], sensor=config["CALLS"]["DB_TABLE"]))
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_with_datetime_unified.csv", pid=config["PIDS"], sensor=config["CALLS"]["DB_TABLE"]))
2020-07-09 20:52:49 +02:00
files_to_compute.extend(expand("data/processed/{pid}/calls_{call_type}_{day_segment}.csv", pid=config["PIDS"], call_type=config["CALLS"]["TYPES"], day_segment = config["CALLS"]["DAY_SEGMENTS"]))
2020-06-23 17:33:34 +02:00
if config["BARNETT_LOCATION"]["COMPUTE"]:
2020-07-09 19:01:50 +02:00
if config["BARNETT_LOCATION"]["LOCATIONS_TO_USE"] == "RESAMPLE_FUSED":
2020-08-12 00:02:52 +02:00
if config["BARNETT_LOCATION"]["DB_TABLE"] in config["PHONE_VALID_SENSED_BINS"]["DB_TABLES"]:
2020-07-09 19:01:50 +02:00
files_to_compute.extend(expand("data/interim/{pid}/phone_sensed_bins.csv", pid=config["PIDS"]))
2020-07-21 21:33:28 +02:00
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_resampled.csv", pid=config["PIDS"], sensor=config["BARNETT_LOCATION"]["DB_TABLE"]))
2020-07-09 19:01:50 +02:00
else:
2020-08-12 00:02:52 +02:00
raise ValueError("Error: Add your locations table (and as many sensor tables as you have) to [PHONE_VALID_SENSED_BINS][DB_TABLES] in config.yaml. This is necessary to compute phone_sensed_bins (bins of time when the smartphone was sensing data) which is used to resample fused location data (RESAMPLED_FUSED)")
2020-06-23 17:33:34 +02:00
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_raw.csv", pid=config["PIDS"], sensor=config["BARNETT_LOCATION"]["DB_TABLE"]))
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_with_datetime.csv", pid=config["PIDS"], sensor=config["BARNETT_LOCATION"]["DB_TABLE"]))
2020-07-09 20:52:49 +02:00
files_to_compute.extend(expand("data/processed/{pid}/location_barnett_{day_segment}.csv", pid=config["PIDS"], day_segment = config["BARNETT_LOCATION"]["DAY_SEGMENTS"]))
2020-06-23 17:33:34 +02:00
if config["BLUETOOTH"]["COMPUTE"]:
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_raw.csv", pid=config["PIDS"], sensor=config["BLUETOOTH"]["DB_TABLE"]))
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_with_datetime.csv", pid=config["PIDS"], sensor=config["BLUETOOTH"]["DB_TABLE"]))
2020-07-09 20:52:49 +02:00
files_to_compute.extend(expand("data/processed/{pid}/bluetooth_{day_segment}.csv", pid=config["PIDS"], day_segment = config["BLUETOOTH"]["DAY_SEGMENTS"]))
2020-06-23 17:33:34 +02:00
if config["ACTIVITY_RECOGNITION"]["COMPUTE"]:
2020-08-11 22:18:06 +02:00
for pids,table in zip([pids_android, pids_ios], [config["ACTIVITY_RECOGNITION"]["DB_TABLE"]["ANDROID"], config["ACTIVITY_RECOGNITION"]["DB_TABLE"]["IOS"]]):
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_raw.csv", pid=pids, sensor=table))
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_with_datetime.csv", pid=pids, sensor=table))
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_with_datetime_unified.csv", pid=pids, sensor=table))
files_to_compute.extend(expand("data/processed/{pid}/{sensor}_deltas.csv", pid=pids, sensor=table))
2020-07-09 20:52:49 +02:00
files_to_compute.extend(expand("data/processed/{pid}/activity_recognition_{day_segment}.csv",pid=config["PIDS"], day_segment = config["ACTIVITY_RECOGNITION"]["DAY_SEGMENTS"]))
2020-06-23 17:33:34 +02:00
if config["BATTERY"]["COMPUTE"]:
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_raw.csv", pid=config["PIDS"], sensor=config["BATTERY"]["DB_TABLE"]))
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_with_datetime.csv", pid=config["PIDS"], sensor=config["BATTERY"]["DB_TABLE"]))
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_with_datetime_unified.csv", pid=config["PIDS"], sensor=config["BATTERY"]["DB_TABLE"]))
files_to_compute.extend(expand("data/processed/{pid}/battery_deltas.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/processed/{pid}/battery_{day_segment}.csv", pid = config["PIDS"], day_segment = config["BATTERY"]["DAY_SEGMENTS"]))
if config["SCREEN"]["COMPUTE"]:
2020-08-12 00:02:52 +02:00
if config["SCREEN"]["DB_TABLE"] in config["PHONE_VALID_SENSED_BINS"]["DB_TABLES"]:
2020-07-09 19:01:50 +02:00
files_to_compute.extend(expand("data/interim/{pid}/phone_sensed_bins.csv", pid=config["PIDS"]))
else:
2020-08-12 00:02:52 +02:00
raise ValueError("Error: Add your screen table (and as many sensor tables as you have) to [PHONE_VALID_SENSED_BINS][DB_TABLES] in config.yaml. This is necessary to compute phone_sensed_bins (bins of time when the smartphone was sensing data)")
2020-06-23 17:33:34 +02:00
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_raw.csv", pid=config["PIDS"], sensor=config["SCREEN"]["DB_TABLE"]))
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_with_datetime.csv", pid=config["PIDS"], sensor=config["SCREEN"]["DB_TABLE"]))
2020-06-30 23:34:18 +02:00
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_with_datetime_unified.csv", pid=config["PIDS"], sensor=config["SCREEN"]["DB_TABLE"]))
2020-06-23 17:33:34 +02:00
files_to_compute.extend(expand("data/processed/{pid}/screen_deltas.csv", pid=config["PIDS"]))
files_to_compute.extend(expand("data/processed/{pid}/screen_{day_segment}.csv", pid = config["PIDS"], day_segment = config["SCREEN"]["DAY_SEGMENTS"]))
if config["LIGHT"]["COMPUTE"]:
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_raw.csv", pid=config["PIDS"], sensor=config["LIGHT"]["DB_TABLE"]))
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_with_datetime.csv", pid=config["PIDS"], sensor=config["LIGHT"]["DB_TABLE"]))
files_to_compute.extend(expand("data/processed/{pid}/light_{day_segment}.csv", pid = config["PIDS"], day_segment = config["LIGHT"]["DAY_SEGMENTS"]))
if config["ACCELEROMETER"]["COMPUTE"]:
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_raw.csv", pid=config["PIDS"], sensor=config["ACCELEROMETER"]["DB_TABLE"]))
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_with_datetime.csv", pid=config["PIDS"], sensor=config["ACCELEROMETER"]["DB_TABLE"]))
files_to_compute.extend(expand("data/processed/{pid}/accelerometer_{day_segment}.csv", pid = config["PIDS"], day_segment = config["ACCELEROMETER"]["DAY_SEGMENTS"]))
if config["APPLICATIONS_FOREGROUND"]["COMPUTE"]:
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_raw.csv", pid=config["PIDS"], sensor=config["APPLICATIONS_FOREGROUND"]["DB_TABLE"]))
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_with_datetime.csv", pid=config["PIDS"], sensor=config["APPLICATIONS_FOREGROUND"]["DB_TABLE"]))
files_to_compute.extend(expand("data/interim/{pid}/{sensor}_with_datetime_with_genre.csv", pid=config["PIDS"], sensor=config["APPLICATIONS_FOREGROUND"]["DB_TABLE"]))
files_to_compute.extend(expand("data/processed/{pid}/applications_foreground_{day_segment}.csv", pid = config["PIDS"], day_segment = config["APPLICATIONS_FOREGROUND"]["DAY_SEGMENTS"]))
if config["WIFI"]["COMPUTE"]:
2020-07-24 22:35:41 +02:00
if len(config["WIFI"]["DB_TABLE"]["VISIBLE_ACCESS_POINTS"]) > 0:
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_raw.csv", pid=config["PIDS"], sensor=config["WIFI"]["DB_TABLE"]["VISIBLE_ACCESS_POINTS"]))
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_with_datetime.csv", pid=config["PIDS"], sensor=config["WIFI"]["DB_TABLE"]["VISIBLE_ACCESS_POINTS"]))
files_to_compute.extend(expand("data/processed/{pid}/wifi_{day_segment}.csv", pid = config["PIDS"], day_segment = config["WIFI"]["DAY_SEGMENTS"]))
if len(config["WIFI"]["DB_TABLE"]["CONNECTED_ACCESS_POINTS"]) > 0:
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_raw.csv", pid=config["PIDS"], sensor=config["WIFI"]["DB_TABLE"]["CONNECTED_ACCESS_POINTS"]))
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_with_datetime.csv", pid=config["PIDS"], sensor=config["WIFI"]["DB_TABLE"]["CONNECTED_ACCESS_POINTS"]))
files_to_compute.extend(expand("data/processed/{pid}/wifi_{day_segment}.csv", pid = config["PIDS"], day_segment = config["WIFI"]["DAY_SEGMENTS"]))
2020-06-23 17:33:34 +02:00
if config["HEARTRATE"]["COMPUTE"]:
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_raw.csv", pid=config["PIDS"], sensor=config["HEARTRATE"]["DB_TABLE"]))
files_to_compute.extend(expand("data/raw/{pid}/fitbit_heartrate_{fitbit_data_type}_with_datetime.csv", pid=config["PIDS"], fitbit_data_type=["summary", "intraday"]))
files_to_compute.extend(expand("data/processed/{pid}/fitbit_heartrate_{day_segment}.csv", pid = config["PIDS"], day_segment = config["HEARTRATE"]["DAY_SEGMENTS"]))
if config["STEP"]["COMPUTE"]:
2020-06-24 19:33:58 +02:00
if config["STEP"]["EXCLUDE_SLEEP"]["EXCLUDE"] == True and config["STEP"]["EXCLUDE_SLEEP"]["TYPE"] == "FITBIT_BASED":
files_to_compute.extend(expand("data/raw/{pid}/fitbit_sleep_{fitbit_data_type}_with_datetime.csv", pid=config["PIDS"], fitbit_data_type=["summary"]))
2020-06-23 17:33:34 +02:00
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_raw.csv", pid=config["PIDS"], sensor=config["STEP"]["DB_TABLE"]))
files_to_compute.extend(expand("data/raw/{pid}/fitbit_step_{fitbit_data_type}_with_datetime.csv", pid=config["PIDS"], fitbit_data_type=["intraday"]))
files_to_compute.extend(expand("data/processed/{pid}/fitbit_step_{day_segment}.csv", pid = config["PIDS"], day_segment = config["STEP"]["DAY_SEGMENTS"]))
if config["SLEEP"]["COMPUTE"]:
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_raw.csv", pid=config["PIDS"], sensor=config["SLEEP"]["DB_TABLE"]))
2020-06-24 19:33:58 +02:00
files_to_compute.extend(expand("data/raw/{pid}/fitbit_sleep_{fitbit_data_type}_with_datetime.csv", pid=config["PIDS"], fitbit_data_type=["intraday", "summary"]))
2020-06-23 17:33:34 +02:00
files_to_compute.extend(expand("data/processed/{pid}/fitbit_sleep_{day_segment}.csv", pid = config["PIDS"], day_segment = config["SLEEP"]["DAY_SEGMENTS"]))
if config["CONVERSATION"]["COMPUTE"]:
2020-08-11 22:18:06 +02:00
for pids,table in zip([pids_android, pids_ios], [config["CONVERSATION"]["DB_TABLE"]["ANDROID"], config["CONVERSATION"]["DB_TABLE"]["IOS"]]):
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_raw.csv", pid=pids, sensor=table))
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_with_datetime.csv", pid=pids, sensor=table))
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_with_datetime_unified.csv", pid=pids, sensor=table))
2020-07-09 20:52:49 +02:00
files_to_compute.extend(expand("data/processed/{pid}/conversation_{day_segment}.csv",pid=config["PIDS"], day_segment = config["CONVERSATION"]["DAY_SEGMENTS"]))
2020-05-16 00:45:45 +02:00
2020-07-16 20:26:43 +02:00
if config["DORYAB_LOCATION"]["COMPUTE"]:
if config["DORYAB_LOCATION"]["LOCATIONS_TO_USE"] == "RESAMPLE_FUSED":
2020-08-12 00:02:52 +02:00
if config["DORYAB_LOCATION"]["DB_TABLE"] in config["PHONE_VALID_SENSED_BINS"]["DB_TABLES"]:
2020-07-16 20:26:43 +02:00
files_to_compute.extend(expand("data/interim/{pid}/phone_sensed_bins.csv", pid=config["PIDS"]))
2020-07-21 21:33:28 +02:00
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_resampled.csv", pid=config["PIDS"], sensor=config["DORYAB_LOCATION"]["DB_TABLE"]))
2020-07-16 20:26:43 +02:00
else:
2020-08-12 00:02:52 +02:00
raise ValueError("Error: Add your locations table (and as many sensor tables as you have) to [PHONE_VALID_SENSED_BINS][DB_TABLES] in config.yaml. This is necessary to compute phone_sensed_bins (bins of time when the smartphone was sensing data) which is used to resample fused location data (RESAMPLED_FUSED)")
2020-07-16 20:26:43 +02:00
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_raw.csv", pid=config["PIDS"], sensor=config["DORYAB_LOCATION"]["DB_TABLE"]))
files_to_compute.extend(expand("data/raw/{pid}/{sensor}_with_datetime.csv", pid=config["PIDS"], sensor=config["DORYAB_LOCATION"]["DB_TABLE"]))
files_to_compute.extend(expand("data/processed/{pid}/location_doryab_{segment}.csv", pid=config["PIDS"], segment = config["DORYAB_LOCATION"]["DAY_SEGMENTS"]))
2020-07-22 22:47:32 +02:00
# visualization for data exploration
if config["HEATMAP_FEATURES_CORRELATIONS"]["PLOT"]:
2020-07-27 02:11:25 +02:00
files_to_compute.extend(expand("reports/data_exploration/{min_valid_hours_per_day}hours_{min_valid_bins_per_hour}bins/heatmap_features_correlations.html", min_valid_hours_per_day=config["HEATMAP_FEATURES_CORRELATIONS"]["MIN_VALID_HOURS_PER_DAY"], min_valid_bins_per_hour=config["PHONE_VALID_SENSED_DAYS"]["MIN_VALID_BINS_PER_HOUR"]))
2020-07-22 22:47:32 +02:00
if config["HISTOGRAM_VALID_SENSED_HOURS"]["PLOT"]:
2020-07-27 02:11:25 +02:00
files_to_compute.extend(expand("reports/data_exploration/{min_valid_hours_per_day}hours_{min_valid_bins_per_hour}bins/histogram_valid_sensed_hours.html", min_valid_hours_per_day=config["HISTOGRAM_VALID_SENSED_HOURS"]["MIN_VALID_HOURS_PER_DAY"], min_valid_bins_per_hour=config["PHONE_VALID_SENSED_DAYS"]["MIN_VALID_BINS_PER_HOUR"]))
2020-07-22 22:47:32 +02:00
if config["HEATMAP_DAYS_BY_SENSORS"]["PLOT"]:
2020-07-27 02:11:25 +02:00
files_to_compute.extend(expand("reports/interim/{min_valid_hours_per_day}hours_{min_valid_bins_per_hour}bins/{pid}/heatmap_days_by_sensors.html", pid=config["PIDS"], min_valid_hours_per_day=config["HEATMAP_DAYS_BY_SENSORS"]["MIN_VALID_HOURS_PER_DAY"], min_valid_bins_per_hour=config["PHONE_VALID_SENSED_DAYS"]["MIN_VALID_BINS_PER_HOUR"]))
files_to_compute.extend(expand("reports/data_exploration/{min_valid_hours_per_day}hours_{min_valid_bins_per_hour}bins/heatmap_days_by_sensors_all_participants.html", min_valid_hours_per_day=config["HEATMAP_DAYS_BY_SENSORS"]["MIN_VALID_HOURS_PER_DAY"], min_valid_bins_per_hour=config["PHONE_VALID_SENSED_DAYS"]["MIN_VALID_BINS_PER_HOUR"]))
2020-07-22 22:47:32 +02:00
if config["HEATMAP_SENSED_BINS"]["PLOT"]:
files_to_compute.extend(expand("reports/interim/heatmap_sensed_bins/{pid}/heatmap_sensed_bins.html", pid=config["PIDS"]))
files_to_compute.extend(["reports/data_exploration/heatmap_sensed_bins_all_participants.html"])
if config["OVERALL_COMPLIANCE_HEATMAP"]["PLOT"]:
2020-07-24 18:58:48 +02:00
files_to_compute.extend(expand("reports/data_exploration/{min_valid_hours_per_day}hours_{min_valid_bins_per_hour}bins/overall_compliance_heatmap.html", min_valid_hours_per_day=config["OVERALL_COMPLIANCE_HEATMAP"]["MIN_VALID_HOURS_PER_DAY"], min_valid_bins_per_hour=config["PHONE_VALID_SENSED_DAYS"]["MIN_VALID_BINS_PER_HOUR"]))
2020-07-22 22:47:32 +02:00
# analysis example
2020-06-24 02:46:42 +02:00
if config["PARAMS_FOR_ANALYSIS"]["COMPUTE"]:
rows_nan_threshold = config["PARAMS_FOR_ANALYSIS"]["ROWS_NAN_THRESHOLD"]
cols_nan_threshold = config["PARAMS_FOR_ANALYSIS"]["COLS_NAN_THRESHOLD"]
models, scalers, rows_nan_thresholds, cols_nan_thresholds = [], [], [], []
for model_name in config["PARAMS_FOR_ANALYSIS"]["MODEL_NAMES"]:
models = models + [model_name] * len(config["PARAMS_FOR_ANALYSIS"]["MODEL_SCALER"][model_name]) * len(rows_nan_threshold)
scalers = scalers + config["PARAMS_FOR_ANALYSIS"]["MODEL_SCALER"][model_name] * len(rows_nan_threshold)
rows_nan_thresholds = rows_nan_thresholds + list(itertools.chain.from_iterable([threshold] * len(config["PARAMS_FOR_ANALYSIS"]["MODEL_SCALER"][model_name]) for threshold in rows_nan_threshold))
cols_nan_thresholds = cols_nan_thresholds + list(itertools.chain.from_iterable([threshold] * len(config["PARAMS_FOR_ANALYSIS"]["MODEL_SCALER"][model_name]) for threshold in cols_nan_threshold))
results = config["PARAMS_FOR_ANALYSIS"]["RESULT_COMPONENTS"] + ["merged_population_model_results"]
2020-07-28 00:27:36 +02:00
files_to_compute.extend(expand("data/processed/{pid}/data_for_individual_model/{min_valid_hours_per_day}hours_{min_valid_bins_per_hour}bins/{source}_{day_segment}_original.csv",
2020-06-24 02:46:42 +02:00
pid = config["PIDS"],
2020-07-28 00:27:36 +02:00
min_valid_hours_per_day=config["OVERALL_COMPLIANCE_HEATMAP"]["MIN_VALID_HOURS_PER_DAY"],
min_valid_bins_per_hour=config["PHONE_VALID_SENSED_DAYS"]["MIN_VALID_BINS_PER_HOUR"],
2020-06-24 02:46:42 +02:00
source = config["PARAMS_FOR_ANALYSIS"]["SOURCES"],
day_segment = config["PARAMS_FOR_ANALYSIS"]["DAY_SEGMENTS"]))
2020-07-28 00:27:36 +02:00
files_to_compute.extend(expand("data/processed/data_for_population_model/{min_valid_hours_per_day}hours_{min_valid_bins_per_hour}bins/{source}_{day_segment}_original.csv",
min_valid_hours_per_day=config["OVERALL_COMPLIANCE_HEATMAP"]["MIN_VALID_HOURS_PER_DAY"],
min_valid_bins_per_hour=config["PHONE_VALID_SENSED_DAYS"]["MIN_VALID_BINS_PER_HOUR"],
2020-06-24 02:46:42 +02:00
source = config["PARAMS_FOR_ANALYSIS"]["SOURCES"],
day_segment = config["PARAMS_FOR_ANALYSIS"]["DAY_SEGMENTS"]))
files_to_compute.extend(expand(
2020-07-28 00:27:36 +02:00
expand("data/processed/{pid}/data_for_individual_model/{min_valid_hours_per_day}hours_{min_valid_bins_per_hour}bins/{{rows_nan_threshold}}|{{cols_nan_threshold}}_{days_before_threshold}|{days_after_threshold}_{cols_var_threshold}/{source}_{day_segment}_clean.csv",
2020-06-24 02:46:42 +02:00
pid = config["PIDS"],
2020-07-28 00:27:36 +02:00
min_valid_hours_per_day=config["OVERALL_COMPLIANCE_HEATMAP"]["MIN_VALID_HOURS_PER_DAY"],
min_valid_bins_per_hour=config["PHONE_VALID_SENSED_DAYS"]["MIN_VALID_BINS_PER_HOUR"],
2020-06-24 02:46:42 +02:00
days_before_threshold = config["PARAMS_FOR_ANALYSIS"]["PARTICIPANT_DAYS_BEFORE_THRESHOLD"],
days_after_threshold = config["PARAMS_FOR_ANALYSIS"]["PARTICIPANT_DAYS_AFTER_THRESHOLD"],
cols_var_threshold = config["PARAMS_FOR_ANALYSIS"]["COLS_VAR_THRESHOLD"],
source = config["PARAMS_FOR_ANALYSIS"]["SOURCES"],
day_segment = config["PARAMS_FOR_ANALYSIS"]["DAY_SEGMENTS"]),
zip,
rows_nan_threshold = config["PARAMS_FOR_ANALYSIS"]["ROWS_NAN_THRESHOLD"],
cols_nan_threshold = config["PARAMS_FOR_ANALYSIS"]["COLS_NAN_THRESHOLD"]))
files_to_compute.extend(expand(
2020-07-28 00:27:36 +02:00
expand("data/processed/data_for_population_model/{min_valid_hours_per_day}hours_{min_valid_bins_per_hour}bins/{{rows_nan_threshold}}|{{cols_nan_threshold}}_{days_before_threshold}|{days_after_threshold}_{cols_var_threshold}/{source}_{day_segment}_clean.csv",
min_valid_hours_per_day=config["OVERALL_COMPLIANCE_HEATMAP"]["MIN_VALID_HOURS_PER_DAY"],
min_valid_bins_per_hour=config["PHONE_VALID_SENSED_DAYS"]["MIN_VALID_BINS_PER_HOUR"],
2020-06-24 02:46:42 +02:00
days_before_threshold = config["PARAMS_FOR_ANALYSIS"]["PARTICIPANT_DAYS_BEFORE_THRESHOLD"],
days_after_threshold = config["PARAMS_FOR_ANALYSIS"]["PARTICIPANT_DAYS_AFTER_THRESHOLD"],
cols_var_threshold = config["PARAMS_FOR_ANALYSIS"]["COLS_VAR_THRESHOLD"],
source = config["PARAMS_FOR_ANALYSIS"]["SOURCES"],
day_segment = config["PARAMS_FOR_ANALYSIS"]["DAY_SEGMENTS"]),
zip,
rows_nan_threshold = config["PARAMS_FOR_ANALYSIS"]["ROWS_NAN_THRESHOLD"],
cols_nan_threshold = config["PARAMS_FOR_ANALYSIS"]["COLS_NAN_THRESHOLD"]))
files_to_compute.extend(expand("data/processed/data_for_population_model/demographic_features.csv"))
files_to_compute.extend(expand("data/processed/data_for_population_model/targets_{summarised}.csv",
summarised = config["PARAMS_FOR_ANALYSIS"]["SUMMARISED"]))
files_to_compute.extend(expand(
2020-07-28 04:59:32 +02:00
expand("data/processed/data_for_population_model/{min_valid_hours_per_day}hours_{min_valid_bins_per_hour}bins/{{rows_nan_threshold}}|{{cols_nan_threshold}}_{days_before_threshold}|{days_after_threshold}_{cols_var_threshold}/{source}_{day_segment}_nancellsratio.csv",
min_valid_hours_per_day=config["OVERALL_COMPLIANCE_HEATMAP"]["MIN_VALID_HOURS_PER_DAY"],
min_valid_bins_per_hour=config["PHONE_VALID_SENSED_DAYS"]["MIN_VALID_BINS_PER_HOUR"],
2020-06-24 02:46:42 +02:00
days_before_threshold = config["PARAMS_FOR_ANALYSIS"]["PARTICIPANT_DAYS_BEFORE_THRESHOLD"],
days_after_threshold = config["PARAMS_FOR_ANALYSIS"]["PARTICIPANT_DAYS_AFTER_THRESHOLD"],
cols_var_threshold = config["PARAMS_FOR_ANALYSIS"]["COLS_VAR_THRESHOLD"],
source = config["PARAMS_FOR_ANALYSIS"]["SOURCES"],
day_segment = config["PARAMS_FOR_ANALYSIS"]["DAY_SEGMENTS"]),
zip,
rows_nan_threshold = config["PARAMS_FOR_ANALYSIS"]["ROWS_NAN_THRESHOLD"],
cols_nan_threshold = config["PARAMS_FOR_ANALYSIS"]["COLS_NAN_THRESHOLD"]))
files_to_compute.extend(expand(
2020-07-28 04:59:32 +02:00
expand("data/processed/data_for_population_model/{min_valid_hours_per_day}hours_{min_valid_bins_per_hour}bins/{{rows_nan_threshold}}|{{cols_nan_threshold}}_{days_before_threshold}|{days_after_threshold}_{cols_var_threshold}/{source}_{day_segment}_{summarised}.csv",
min_valid_hours_per_day=config["OVERALL_COMPLIANCE_HEATMAP"]["MIN_VALID_HOURS_PER_DAY"],
min_valid_bins_per_hour=config["PHONE_VALID_SENSED_DAYS"]["MIN_VALID_BINS_PER_HOUR"],
2020-06-24 02:46:42 +02:00
days_before_threshold = config["PARAMS_FOR_ANALYSIS"]["PARTICIPANT_DAYS_BEFORE_THRESHOLD"],
days_after_threshold = config["PARAMS_FOR_ANALYSIS"]["PARTICIPANT_DAYS_AFTER_THRESHOLD"],
cols_var_threshold = config["PARAMS_FOR_ANALYSIS"]["COLS_VAR_THRESHOLD"],
source = config["PARAMS_FOR_ANALYSIS"]["SOURCES"],
day_segment = config["PARAMS_FOR_ANALYSIS"]["DAY_SEGMENTS"],
summarised = config["PARAMS_FOR_ANALYSIS"]["SUMMARISED"]),
zip,
rows_nan_threshold = config["PARAMS_FOR_ANALYSIS"]["ROWS_NAN_THRESHOLD"],
cols_nan_threshold = config["PARAMS_FOR_ANALYSIS"]["COLS_NAN_THRESHOLD"]))
files_to_compute.extend(expand(
2020-08-05 13:51:35 +02:00
expand("data/processed/output_population_model/{min_valid_hours_per_day}hours_{min_valid_bins_per_hour}bins/{{rows_nan_threshold}}|{{cols_nan_threshold}}_{days_before_threshold}|{days_after_threshold}_{cols_var_threshold}/baseline/{cv_method}/{source}_{day_segment}_{summarised}.csv",
2020-07-28 04:59:32 +02:00
min_valid_hours_per_day=config["OVERALL_COMPLIANCE_HEATMAP"]["MIN_VALID_HOURS_PER_DAY"],
min_valid_bins_per_hour=config["PHONE_VALID_SENSED_DAYS"]["MIN_VALID_BINS_PER_HOUR"],
2020-06-24 02:46:42 +02:00
days_before_threshold = config["PARAMS_FOR_ANALYSIS"]["PARTICIPANT_DAYS_BEFORE_THRESHOLD"],
days_after_threshold = config["PARAMS_FOR_ANALYSIS"]["PARTICIPANT_DAYS_AFTER_THRESHOLD"],
cols_var_threshold = config["PARAMS_FOR_ANALYSIS"]["COLS_VAR_THRESHOLD"],
cv_method = config["PARAMS_FOR_ANALYSIS"]["CV_METHODS"],
source = config["PARAMS_FOR_ANALYSIS"]["SOURCES"],
day_segment = config["PARAMS_FOR_ANALYSIS"]["DAY_SEGMENTS"],
summarised = config["PARAMS_FOR_ANALYSIS"]["SUMMARISED"]),
zip,
rows_nan_threshold = config["PARAMS_FOR_ANALYSIS"]["ROWS_NAN_THRESHOLD"],
cols_nan_threshold = config["PARAMS_FOR_ANALYSIS"]["COLS_NAN_THRESHOLD"]))
files_to_compute.extend(expand(
2020-07-28 04:59:32 +02:00
expand("data/processed/output_population_model/{min_valid_hours_per_day}hours_{min_valid_bins_per_hour}bins/{{rows_nan_threshold}}|{{cols_nan_threshold}}_{days_before_threshold}|{days_after_threshold}_{cols_var_threshold}/{{model}}/{cv_method}/{source}_{day_segment}_{summarised}_{{scaler}}/{result}.csv",
min_valid_hours_per_day=config["OVERALL_COMPLIANCE_HEATMAP"]["MIN_VALID_HOURS_PER_DAY"],
min_valid_bins_per_hour=config["PHONE_VALID_SENSED_DAYS"]["MIN_VALID_BINS_PER_HOUR"],
2020-06-24 02:46:42 +02:00
days_before_threshold = config["PARAMS_FOR_ANALYSIS"]["PARTICIPANT_DAYS_BEFORE_THRESHOLD"],
days_after_threshold = config["PARAMS_FOR_ANALYSIS"]["PARTICIPANT_DAYS_AFTER_THRESHOLD"],
cols_var_threshold = config["PARAMS_FOR_ANALYSIS"]["COLS_VAR_THRESHOLD"],
cv_method = config["PARAMS_FOR_ANALYSIS"]["CV_METHODS"],
source = config["PARAMS_FOR_ANALYSIS"]["SOURCES"],
day_segment = config["PARAMS_FOR_ANALYSIS"]["DAY_SEGMENTS"],
summarised = config["PARAMS_FOR_ANALYSIS"]["SUMMARISED"],
result = results),
zip,
rows_nan_threshold = rows_nan_thresholds,
cols_nan_threshold = cols_nan_thresholds,
model = models,
scaler = scalers))
2019-10-24 18:11:24 +02:00
rule all:
input:
2020-06-23 17:33:34 +02:00
files_to_compute
2019-10-24 18:11:24 +02:00
2019-12-18 06:28:23 +01:00
rule clean:
2019-10-24 18:11:24 +02:00
shell:
2019-12-18 23:50:58 +01:00
"rm -rf data/raw/* && rm -rf data/interim/* && rm -rf data/processed/* && rm -rf reports/figures/* && rm -rf reports/*.zip && rm -rf reports/compliance/*"