Add baseline

pull/95/head
Meng Li 2020-05-15 18:45:45 -04:00
parent 8c8378f74a
commit 8df8a5c2b3
3 changed files with 119 additions and 0 deletions

View File

@ -6,6 +6,11 @@ include: "rules/models.snakefile"
include: "rules/reports.snakefile"
include: "rules/mystudy.snakefile" # You can add snakfiles with rules tailored to your project
models, scalers = [], []
for model_name in config["PARAMS_FOR_ANALYSIS"]["MODEL_NAMES"]:
models = models + [model_name] * len(config["PARAMS_FOR_ANALYSIS"]["MODEL_SCALER"][model_name])
scalers = scalers + config["PARAMS_FOR_ANALYSIS"]["MODEL_SCALER"][model_name]
rule all:
input:
# My study (this is an example of a rule created specifically for a study)
@ -120,6 +125,16 @@ rule all:
source = config["PARAMS_FOR_ANALYSIS"]["SOURCES"],
day_segment = config["PARAMS_FOR_ANALYSIS"]["DAY_SEGMENTS"],
summarised = config["PARAMS_FOR_ANALYSIS"]["SUMMARISED"]),
expand("data/processed/output_population_model/{rows_nan_threshold}|{cols_nan_threshold}_{days_before_threshold}|{days_after_threshold}_{cols_var_threshold}/{source}_{day_segment}_{summarised}_{cv_method}_baseline.csv",
rows_nan_threshold = config["PARAMS_FOR_ANALYSIS"]["ROWS_NAN_THRESHOLD"],
cols_nan_threshold = config["PARAMS_FOR_ANALYSIS"]["COLS_NAN_THRESHOLD"],
days_before_threshold = config["PARAMS_FOR_ANALYSIS"]["PARTICIPANT_DAYS_BEFORE_THRESHOLD"],
days_after_threshold = config["PARAMS_FOR_ANALYSIS"]["PARTICIPANT_DAYS_AFTER_THRESHOLD"],
cols_var_threshold = config["PARAMS_FOR_ANALYSIS"]["COLS_VAR_THRESHOLD"],
cv_method = config["PARAMS_FOR_ANALYSIS"]["CV_METHODS"],
source = config["PARAMS_FOR_ANALYSIS"]["SOURCES"],
day_segment = config["PARAMS_FOR_ANALYSIS"]["DAY_SEGMENTS"],
summarised = config["PARAMS_FOR_ANALYSIS"]["SUMMARISED"]),
expand(
expand("data/processed/output_population_model/{rows_nan_threshold}|{cols_nan_threshold}_{days_before_threshold}|{days_after_threshold}_{cols_var_threshold}/{{model}}/{cv_method}/{source}_{day_segment}_{summarised}_{{scaler}}/{result_component}.csv",
rows_nan_threshold = config["PARAMS_FOR_ANALYSIS"]["ROWS_NAN_THRESHOLD"],

View File

@ -110,6 +110,21 @@ rule merge_features_and_targets:
script:
"../src/models/merge_features_and_targets.py"
rule baseline:
input:
"data/processed/data_for_population_model/{rows_nan_threshold}|{cols_nan_threshold}_{days_before_threshold}|{days_after_threshold}_{cols_var_threshold}/{source}_{day_segment}_{summarised}.csv"
params:
cv_method = "{cv_method}",
rowsnan_colsnan_days_colsvar_threshold = "{rows_nan_threshold}|{cols_nan_threshold}_{days_before_threshold}|{days_after_threshold}_{cols_var_threshold}",
demographic_features = config["PARAMS_FOR_ANALYSIS"]["DEMOGRAPHIC_FEATURES"]
output:
"data/processed/output_population_model/{rows_nan_threshold}|{cols_nan_threshold}_{days_before_threshold}|{days_after_threshold}_{cols_var_threshold}/{source}_{day_segment}_{summarised}_{cv_method}_baseline.csv"
log:
"data/processed/output_population_model/{rows_nan_threshold}|{cols_nan_threshold}_{days_before_threshold}|{days_after_threshold}_{cols_var_threshold}/{source}_{day_segment}_{summarised}_{cv_method}_notes.log"
script:
"../src/models/baseline.py"
rule modeling:
input:
data = "data/processed/data_for_population_model/{rows_nan_threshold}|{cols_nan_threshold}_{days_before_threshold}|{days_after_threshold}_{cols_var_threshold}/{source}_{day_segment}_{summarised}.csv"

View File

@ -0,0 +1,89 @@
import numpy as np
import pandas as pd
from statistics import mean
from modeling_utils import getMetrics, createPipeline
from sklearn.model_selection import LeaveOneOut
# As we do not have probability of each category, use label to denote the probability directly.
# The probability will only be used to calculate the AUC value.
def baselineAccuracyOfMajorityClassClassifier(targets):
majority_class = targets["target"].value_counts().idxmax()
pred_y = [majority_class] * targets.shape[0]
pred_y_prob = pred_y
metrics = getMetrics(pred_y, pred_y_prob, targets["target"].values.ravel().tolist())
return metrics, majority_class
def baselineMetricsOfRandomWeightedClassifier(targets, majority_ratio, majority_class, iter_times):
metrics_all_iters = {"accuracy": [], "precision0":[], "recall0": [], "f10": [], "precision1": [], "recall1": [], "f11": [], "auc": [], "kappa": []}
probabilities = [0, 0]
probabilities[majority_class], probabilities[1 - majority_class] = majority_ratio, 1 - majority_ratio
for i in range(iter_times):
pred_y = np.random.RandomState(i).multinomial(1, probabilities, targets.shape[0])[:,1].tolist()
pred_y_prob = pred_y
metrics = getMetrics(pred_y, pred_y_prob, targets["target"].values.ravel().tolist())
for key in metrics_all_iters.keys():
metrics_all_iters[key].append(metrics[key].item())
# Calculate average metrics across all iterations
avg_metrics = {}
for key in metrics_all_iters.keys():
avg_metrics[key] = mean(metrics_all_iters[key])
return avg_metrics
def baselineMetricsOfDTWithDemographicFeatures(cv_method, data_x, data_y, oversampler_type):
pred_y, true_y = [], []
for train_index, test_index in cv_method.split(data_x):
train_x, test_x = data_x.iloc[train_index], data_x.iloc[test_index]
train_y, test_y = data_y.iloc[train_index], data_y.iloc[test_index]
clf = createPipeline("DT", oversampler_type)
clf.fit(train_x, train_y.values.ravel())
pred_y = pred_y + clf.predict(test_x).ravel().tolist()
pred_y_prob = pred_y
true_y = true_y + test_y.values.ravel().tolist()
return getMetrics(pred_y, pred_y_prob, true_y)
cv_method = globals()[snakemake.params["cv_method"]]()
colnames_demographic_features = snakemake.params["demographic_features"]
rowsnan_colsnan_days_colsvar_threshold = snakemake.params["rowsnan_colsnan_days_colsvar_threshold"]
data = pd.read_csv(snakemake.input[0], index_col=["pid"])
data_x, data_y = data.drop("target", axis=1), data[["target"]]
targets_value_counts = data_y["target"].value_counts()
baseline_metrics = pd.DataFrame(columns=["method", "fullMethodName", "accuracy", "precision0", "recall0", "f10", "precision1", "recall1", "f11", "auc", "kappa"])
if len(targets_value_counts) < 2:
fout = open(snakemake.log[0], "w")
fout.write(targets_value_counts.to_string())
fout.close()
else:
if min(targets_value_counts) >= 6:
oversampler_type = "SMOTE"
else:
oversampler_type = "RandomOverSampler"
# Baseline 1: majority class classifier => predict every sample as majority class
baseline1_metrics, majority_class = baselineAccuracyOfMajorityClassClassifier(data_y)
majority_ratio = baseline1_metrics["accuracy"]
# Baseline 2: random weighted classifier => random classifier with binomial distribution
baseline2_metrics = baselineMetricsOfRandomWeightedClassifier(data_y, majority_ratio, majority_class, 1000)
# Baseline 3: decision tree with demographic features
baseline3_metrics = baselineMetricsOfDTWithDemographicFeatures(cv_method, data_x[colnames_demographic_features], data_y, oversampler_type)
baselines = [baseline1_metrics, baseline2_metrics, baseline3_metrics]
baseline_metrics = pd.DataFrame({"method": ["majority", "rwc", "dt"],
"fullMethodName": ["MajorityClassClassifier", "RandomWeightedClassifier", "DecisionTreeWithDemographicFeatures"],
"accuracy": [baseline["accuracy"] for baseline in baselines],
"precision0": [baseline["precision0"] for baseline in baselines],
"recall0": [baseline["recall0"] for baseline in baselines],
"f10": [baseline["f10"] for baseline in baselines],
"precision1": [baseline["precision1"] for baseline in baselines],
"recall1": [baseline["recall1"] for baseline in baselines],
"f11": [baseline["f11"] for baseline in baselines],
"auc": [baseline["auc"] for baseline in baselines],
"kappa": [baseline["kappa"] for baseline in baselines]})
baseline_metrics.to_csv(snakemake.output[0], index=False)