rapids/Snakefile

114 lines
8.3 KiB
Plaintext
Raw Normal View History

2019-10-24 18:11:24 +02:00
configfile: "config.yaml"
2020-05-02 01:46:04 +02:00
include: "rules/renv.snakefile"
2019-10-24 18:11:24 +02:00
include: "rules/preprocessing.snakefile"
2019-10-24 22:27:43 +02:00
include: "rules/features.snakefile"
include: "rules/models.snakefile"
2019-10-25 17:12:55 +02:00
include: "rules/reports.snakefile"
include: "rules/mystudy.snakefile" # You can add snakfiles with rules tailored to your project
2019-10-24 18:11:24 +02:00
rule all:
input:
# My study (this is an example of a rule created specifically for a study)
expand("data/interim/{pid}/days_to_analyse_{days_before_surgery}_{days_in_hospital}_{days_after_discharge}.csv",
pid = config["PIDS"],
days_before_surgery = config["PARAMS_FOR_ANALYSIS"]["DAYS_TO_ANALYSE"]["DAYS_BEFORE_SURGERY"],
days_after_discharge = config["PARAMS_FOR_ANALYSIS"]["DAYS_TO_ANALYSE"]["DAYS_AFTER_DISCHARGE"],
days_in_hospital = config["PARAMS_FOR_ANALYSIS"]["DAYS_TO_ANALYSE"]["DAYS_IN_HOSPITAL"]),
expand("data/processed/{pid}/targets_{summarised}.csv",
pid = config["PIDS"],
summarised = config["PARAMS_FOR_ANALYSIS"]["SUMMARISED"]),
expand("data/processed/{pid}/demographic_features.csv", pid=config["PIDS"]),
# Feature extraction
2019-10-24 22:08:05 +02:00
expand("data/raw/{pid}/{sensor}_raw.csv", pid=config["PIDS"], sensor=config["SENSORS"]),
2020-01-15 23:18:10 +01:00
expand("data/raw/{pid}/{sensor}_raw.csv", pid=config["PIDS"], sensor=config["FITBIT_TABLE"]),
2019-10-24 22:27:43 +02:00
expand("data/raw/{pid}/{sensor}_with_datetime.csv", pid=config["PIDS"], sensor=config["SENSORS"]),
2019-11-05 16:47:55 +01:00
expand("data/processed/{pid}/battery_deltas.csv", pid=config["PIDS"]),
expand("data/interim/{pid}/applications_foreground_with_datetime_with_genre.csv", pid=config["PIDS"]),
2019-11-27 21:27:48 +01:00
expand("data/processed/{pid}/screen_deltas.csv", pid=config["PIDS"]),
expand("data/processed/{pid}/plugin_google_activity_recognition_deltas.csv", pid=config["PIDS"]),
2019-11-05 18:34:22 +01:00
expand("data/interim/{pid}/phone_valid_sensed_days.csv", pid=config["PIDS"]),
expand("data/interim/{pid}/phone_sensed_bins.csv", pid=config["PIDS"]),
expand("data/processed/{pid}/sms_{sms_type}_{day_segment}.csv",
2019-10-24 22:27:43 +02:00
pid=config["PIDS"],
sms_type = config["SMS"]["TYPES"],
day_segment = config["SMS"]["DAY_SEGMENTS"]),
expand("data/processed/{pid}/call_{call_type}_{segment}.csv",
2019-10-25 16:21:09 +02:00
pid=config["PIDS"],
call_type=config["CALLS"]["TYPES"],
segment = config["CALLS"]["DAY_SEGMENTS"]),
expand("data/processed/{pid}/location_barnett_{segment}.csv",
pid=config["PIDS"],
segment = config["BARNETT_LOCATION"]["DAY_SEGMENTS"]),
2019-11-06 18:19:30 +01:00
expand("data/processed/{pid}/bluetooth_{segment}.csv",
pid=config["PIDS"],
segment = config["BLUETOOTH"]["DAY_SEGMENTS"]),
expand("data/processed/{pid}/activity_recognition_{segment}.csv",pid=config["PIDS"],
segment = config["ACTIVITY_RECOGNITION"]["DAY_SEGMENTS"]),
expand("data/processed/{pid}/battery_{day_segment}.csv",
pid = config["PIDS"],
day_segment = config["BATTERY"]["DAY_SEGMENTS"]),
2019-11-27 20:25:17 +01:00
expand("data/processed/{pid}/screen_{day_segment}.csv",
pid = config["PIDS"],
day_segment = config["SCREEN"]["DAY_SEGMENTS"]),
2020-01-14 15:51:39 +01:00
expand("data/processed/{pid}/light_{day_segment}.csv",
pid = config["PIDS"],
day_segment = config["LIGHT"]["DAY_SEGMENTS"]),
2020-01-15 20:15:24 +01:00
expand("data/processed/{pid}/accelerometer_{day_segment}.csv",
2020-01-15 23:18:10 +01:00
pid = config["PIDS"],
day_segment = config["ACCELEROMETER"]["DAY_SEGMENTS"]),
2020-02-07 17:52:55 +01:00
expand("data/processed/{pid}/applications_foreground_{day_segment}.csv",
pid = config["PIDS"],
day_segment = config["APPLICATIONS_FOREGROUND"]["DAY_SEGMENTS"]),
2020-01-15 23:18:10 +01:00
expand("data/raw/{pid}/fitbit_{fitbit_sensor}_with_datetime.csv",
pid=config["PIDS"],
fitbit_sensor=config["FITBIT_SENSORS"]),
2020-02-07 17:35:15 +01:00
expand("data/processed/{pid}/fitbit_heartrate_{day_segment}.csv",
pid = config["PIDS"],
day_segment = config["HEARTRATE"]["DAY_SEGMENTS"]),
2020-01-29 22:22:53 +01:00
expand("data/processed/{pid}/fitbit_step_{day_segment}.csv",
pid = config["PIDS"],
day_segment = config["STEP"]["DAY_SEGMENTS"]),
2020-04-13 19:24:52 +02:00
expand("data/processed/{pid}/wifi_{segment}.csv",
pid=config["PIDS"],
segment = config["WIFI"]["DAY_SEGMENTS"]),
# Models
expand("data/processed/{pid}/data_for_individual_model/{source}_{day_segment}_original.csv",
2020-04-30 00:53:54 +02:00
pid = config["PIDS"],
source = config["PARAMS_FOR_ANALYSIS"]["SOURCES"],
day_segment = config["PARAMS_FOR_ANALYSIS"]["DAY_SEGMENTS"]),
expand("data/processed/data_for_population_model/{source}_{day_segment}_original.csv",
2020-04-30 00:53:54 +02:00
source = config["PARAMS_FOR_ANALYSIS"]["SOURCES"],
day_segment = config["PARAMS_FOR_ANALYSIS"]["DAY_SEGMENTS"]),
expand("data/processed/{pid}/data_for_individual_model/{source}_{day_segment}_clean.csv",
2020-04-30 00:53:54 +02:00
pid = config["PIDS"],
source = config["PARAMS_FOR_ANALYSIS"]["SOURCES"],
day_segment = config["PARAMS_FOR_ANALYSIS"]["DAY_SEGMENTS"]),
expand("data/processed/data_for_population_model/{source}_{day_segment}_clean.csv",
2020-04-30 00:53:54 +02:00
source = config["PARAMS_FOR_ANALYSIS"]["SOURCES"],
day_segment = config["PARAMS_FOR_ANALYSIS"]["DAY_SEGMENTS"]),
expand("data/processed/data_for_population_model/demographic_features.csv"),
expand("data/processed/data_for_population_model/targets_{summarised}.csv",
summarised = config["PARAMS_FOR_ANALYSIS"]["SUMMARISED"]),
2020-04-30 00:53:54 +02:00
expand("data/processed/output_population_model/{rows_nan_threshold}_{cols_nan_threshold}_{days_before_threshold}|{days_after_threshold}_{cols_var_threshold}/{model}/{cv_method}/{source}_{day_segment}_{summarised}_{scaler}/{result_component}.csv",
rows_nan_threshold = config["PARAMS_FOR_ANALYSIS"]["ROWS_NAN_THRESHOLD"],
cols_nan_threshold = config["PARAMS_FOR_ANALYSIS"]["COLS_NAN_THRESHOLD"],
days_before_threshold = config["PARAMS_FOR_ANALYSIS"]["PARTICIPANT_DAYS_BEFORE_THRESHOLD"],
days_after_threshold = config["PARAMS_FOR_ANALYSIS"]["PARTICIPANT_DAYS_AFTER_THRESHOLD"],
cols_var_threshold = config["PARAMS_FOR_ANALYSIS"]["COLS_VAR_THRESHOLD"],
model = config["PARAMS_FOR_ANALYSIS"]["MODEL_NAMES"],
cv_method = config["PARAMS_FOR_ANALYSIS"]["CV_METHODS"],
source = config["PARAMS_FOR_ANALYSIS"]["SOURCES"],
day_segment = config["PARAMS_FOR_ANALYSIS"]["DAY_SEGMENTS"],
summarised = config["PARAMS_FOR_ANALYSIS"]["SUMMARISED"],
scaler = config["PARAMS_FOR_ANALYSIS"]["SCALER"],
result_component = config["PARAMS_FOR_ANALYSIS"]["RESULT_COMPONENTS"]),
# Vizualisations
expand("reports/figures/{pid}/{sensor}_heatmap_rows.html", pid=config["PIDS"], sensor=config["SENSORS"]),
expand("reports/figures/{pid}/compliance_heatmap.html", pid=config["PIDS"]),
expand("reports/figures/{pid}/battery_consumption_rates_barchart.html", pid=config["PIDS"]),
2019-12-18 21:23:42 +01:00
expand("reports/compliance/{pid}/compliance_report.html", pid=config["PIDS"]),
expand("reports/figures/overall_compliance_heatmap.html"),
2019-10-24 18:11:24 +02:00
rule clean:
2019-10-24 18:11:24 +02:00
shell:
2019-12-18 23:50:58 +01:00
"rm -rf data/raw/* && rm -rf data/interim/* && rm -rf data/processed/* && rm -rf reports/figures/* && rm -rf reports/*.zip && rm -rf reports/compliance/*"