2020-12-15 02:30:34 +01:00
|
|
|
import pandas as pd
|
2021-02-12 02:56:27 +01:00
|
|
|
from scipy.stats import entropy
|
|
|
|
|
|
|
|
|
|
|
|
def statsFeatures(temperature_data, features, temperature_features):
|
|
|
|
col_name = "temperature"
|
|
|
|
if "sumtemp" in features:
|
|
|
|
temperature_features["sumtemp"] = temperature_data[["local_segment", col_name]].groupby(["local_segment"])[
|
|
|
|
col_name].sum()
|
|
|
|
if "maxtemp" in features:
|
|
|
|
temperature_features["maxtemp"] = temperature_data[["local_segment", col_name]].groupby(["local_segment"])[
|
|
|
|
col_name].max()
|
|
|
|
if "mintemp" in features:
|
|
|
|
temperature_features["mintemp"] = temperature_data[["local_segment", col_name]].groupby(["local_segment"])[
|
|
|
|
col_name].min()
|
|
|
|
if "avgtemp" in features:
|
|
|
|
temperature_features["avgtemp"] = temperature_data[["local_segment", col_name]].groupby(["local_segment"])[
|
|
|
|
col_name].mean()
|
|
|
|
if "mediantemp" in features:
|
|
|
|
temperature_features["mediantemp"] = temperature_data[["local_segment", col_name]].groupby(["local_segment"])[
|
|
|
|
col_name].median()
|
|
|
|
if "modetemp" in features:
|
|
|
|
temperature_features["modetemp"] = temperature_data[["local_segment", col_name]].groupby(["local_segment"])[
|
|
|
|
col_name].agg(lambda x: pd.Series.mode(x)[0])
|
|
|
|
if "stdtemp" in features:
|
|
|
|
temperature_features["stdtemp"] = temperature_data[["local_segment", col_name]].groupby(["local_segment"])[
|
|
|
|
col_name].std()
|
|
|
|
if "diffmaxmodetemp" in features:
|
|
|
|
temperature_features["diffmaxmodetemp"] = temperature_data[["local_segment", col_name]].groupby(["local_segment"])[
|
|
|
|
col_name].max() - \
|
|
|
|
temperature_data[["local_segment", col_name]].groupby(["local_segment"])[
|
|
|
|
col_name].agg(lambda x: pd.Series.mode(x)[0])
|
|
|
|
if "diffminmodetemp" in features:
|
|
|
|
temperature_features["diffminmodetemp"] = temperature_data[["local_segment", col_name]].groupby(["local_segment"])[
|
|
|
|
col_name].agg(lambda x: pd.Series.mode(x)[0]) - \
|
|
|
|
temperature_data[["local_segment", col_name]].groupby(["local_segment"])[
|
|
|
|
col_name].min()
|
|
|
|
if "entropytemp" in features:
|
|
|
|
temperature_features["entropytemp"] = temperature_data[["local_segment", col_name]].groupby(["local_segment"])[
|
|
|
|
col_name].agg(entropy)
|
|
|
|
|
|
|
|
return temperature_features
|
|
|
|
|
|
|
|
|
|
|
|
def extractTempFeaturesFromIntradayData(temperature_intraday_data, features, time_segment, filter_data_by_segment):
|
|
|
|
temperature_intraday_features = pd.DataFrame(columns=["local_segment"] + features)
|
|
|
|
if not temperature_intraday_data.empty:
|
|
|
|
temperature_intraday_data = filter_data_by_segment(temperature_intraday_data, time_segment)
|
|
|
|
|
|
|
|
if not temperature_intraday_data.empty:
|
|
|
|
temperature_intraday_features = pd.DataFrame()
|
|
|
|
|
|
|
|
# get stats of temperature
|
|
|
|
temperature_intraday_features = statsFeatures(temperature_intraday_data, features, temperature_intraday_features)
|
|
|
|
|
2021-02-16 01:00:04 +01:00
|
|
|
temperature_intraday_features.reset_index(inplace=True)
|
2021-02-12 02:56:27 +01:00
|
|
|
|
|
|
|
return temperature_intraday_features
|
|
|
|
|
2020-12-15 02:30:34 +01:00
|
|
|
|
|
|
|
def dbdp_features(sensor_data_files, time_segment, provider, filter_data_by_segment, *args, **kwargs):
|
2021-02-12 02:56:27 +01:00
|
|
|
temperature_intraday_data = pd.read_csv(sensor_data_files["sensor_data"])
|
2020-12-15 02:30:34 +01:00
|
|
|
|
2021-02-12 02:56:27 +01:00
|
|
|
requested_intraday_features = provider["FEATURES"]
|
2020-12-15 02:30:34 +01:00
|
|
|
# name of the features this function can compute
|
2021-02-12 02:56:27 +01:00
|
|
|
base_intraday_features_names = ["maxtemp", "mintemp", "avgtemp", "mediantemp", "modetemp", "stdtemp", "diffmaxmodetemp",
|
|
|
|
"diffminmodetemp", "entropytemp"]
|
2020-12-15 02:30:34 +01:00
|
|
|
# the subset of requested features this function can compute
|
2021-02-12 02:56:27 +01:00
|
|
|
intraday_features_to_compute = list(set(requested_intraday_features) & set(base_intraday_features_names))
|
2020-12-15 02:30:34 +01:00
|
|
|
|
2021-02-12 02:56:27 +01:00
|
|
|
# extract features from intraday data
|
|
|
|
temperature_intraday_features = extractTempFeaturesFromIntradayData(temperature_intraday_data,
|
|
|
|
intraday_features_to_compute, time_segment,
|
|
|
|
filter_data_by_segment)
|
2020-12-15 02:30:34 +01:00
|
|
|
|
2021-02-12 02:56:27 +01:00
|
|
|
return temperature_intraday_features
|