qmk_firmware/quantum/led_matrix/led_matrix.c

627 lines
21 KiB
C

/* Copyright 2017 Jason Williams
* Copyright 2017 Jack Humbert
* Copyright 2018 Yiancar
* Copyright 2019 Clueboard
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "led_matrix.h"
#include "progmem.h"
#include "eeprom.h"
#include "eeconfig.h"
#include "keyboard.h"
#include "sync_timer.h"
#include "debug.h"
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include "led_tables.h"
#include <lib/lib8tion/lib8tion.h>
#ifndef LED_MATRIX_CENTER
const led_point_t k_led_matrix_center = {112, 32};
#else
const led_point_t k_led_matrix_center = LED_MATRIX_CENTER;
#endif
// Generic effect runners
#include "led_matrix_runners.inc"
// ------------------------------------------
// -----Begin led effect includes macros-----
#define LED_MATRIX_EFFECT(name)
#define LED_MATRIX_CUSTOM_EFFECT_IMPLS
#include "led_matrix_effects.inc"
#ifdef LED_MATRIX_CUSTOM_KB
# include "led_matrix_kb.inc"
#endif
#ifdef LED_MATRIX_CUSTOM_USER
# include "led_matrix_user.inc"
#endif
#undef LED_MATRIX_CUSTOM_EFFECT_IMPLS
#undef LED_MATRIX_EFFECT
// -----End led effect includes macros-------
// ------------------------------------------
// globals
led_eeconfig_t led_matrix_eeconfig; // TODO: would like to prefix this with g_ for global consistancy, do this in another pr
uint32_t g_led_timer;
#ifdef LED_MATRIX_FRAMEBUFFER_EFFECTS
uint8_t g_led_frame_buffer[MATRIX_ROWS][MATRIX_COLS] = {{0}};
#endif // LED_MATRIX_FRAMEBUFFER_EFFECTS
#ifdef LED_MATRIX_KEYREACTIVE_ENABLED
last_hit_t g_last_hit_tracker;
#endif // LED_MATRIX_KEYREACTIVE_ENABLED
// internals
static bool suspend_state = false;
static uint8_t led_last_enable = UINT8_MAX;
static uint8_t led_last_effect = UINT8_MAX;
static effect_params_t led_effect_params = {0, LED_FLAG_ALL, false};
static led_task_states led_task_state = SYNCING;
// double buffers
static uint32_t led_timer_buffer;
#ifdef LED_MATRIX_KEYREACTIVE_ENABLED
static last_hit_t last_hit_buffer;
#endif // LED_MATRIX_KEYREACTIVE_ENABLED
// split led matrix
#if defined(LED_MATRIX_ENABLE) && defined(LED_MATRIX_SPLIT)
const uint8_t k_led_matrix_split[2] = LED_MATRIX_SPLIT;
#endif
EECONFIG_DEBOUNCE_HELPER(led_matrix, EECONFIG_LED_MATRIX, led_matrix_eeconfig);
void eeconfig_update_led_matrix(void) {
eeconfig_flush_led_matrix(true);
}
void eeconfig_update_led_matrix_default(void) {
dprintf("eeconfig_update_led_matrix_default\n");
led_matrix_eeconfig.enable = LED_MATRIX_DEFAULT_ON;
led_matrix_eeconfig.mode = LED_MATRIX_DEFAULT_MODE;
led_matrix_eeconfig.val = LED_MATRIX_DEFAULT_VAL;
led_matrix_eeconfig.speed = LED_MATRIX_DEFAULT_SPD;
led_matrix_eeconfig.flags = LED_MATRIX_DEFAULT_FLAGS;
eeconfig_flush_led_matrix(true);
}
void eeconfig_debug_led_matrix(void) {
dprintf("led_matrix_eeconfig EEPROM\n");
dprintf("led_matrix_eeconfig.enable = %d\n", led_matrix_eeconfig.enable);
dprintf("led_matrix_eeconfig.mode = %d\n", led_matrix_eeconfig.mode);
dprintf("led_matrix_eeconfig.val = %d\n", led_matrix_eeconfig.val);
dprintf("led_matrix_eeconfig.speed = %d\n", led_matrix_eeconfig.speed);
dprintf("led_matrix_eeconfig.flags = %d\n", led_matrix_eeconfig.flags);
}
void led_matrix_reload_from_eeprom(void) {
led_matrix_disable_noeeprom();
/* Reset back to what we have in eeprom */
eeconfig_init_led_matrix();
eeconfig_debug_led_matrix(); // display current eeprom values
if (led_matrix_eeconfig.enable) {
led_matrix_mode_noeeprom(led_matrix_eeconfig.mode);
}
}
__attribute__((weak)) uint8_t led_matrix_map_row_column_to_led_kb(uint8_t row, uint8_t column, uint8_t *led_i) {
return 0;
}
uint8_t led_matrix_map_row_column_to_led(uint8_t row, uint8_t column, uint8_t *led_i) {
uint8_t led_count = led_matrix_map_row_column_to_led_kb(row, column, led_i);
uint8_t led_index = g_led_config.matrix_co[row][column];
if (led_index != NO_LED) {
led_i[led_count] = led_index;
led_count++;
}
return led_count;
}
void led_matrix_update_pwm_buffers(void) {
led_matrix_driver.flush();
}
void led_matrix_set_value(int index, uint8_t value) {
#ifdef USE_CIE1931_CURVE
value = pgm_read_byte(&CIE1931_CURVE[value]);
#endif
led_matrix_driver.set_value(index, value);
}
void led_matrix_set_value_all(uint8_t value) {
#if defined(LED_MATRIX_ENABLE) && defined(LED_MATRIX_SPLIT)
for (uint8_t i = 0; i < LED_MATRIX_LED_COUNT; i++)
led_matrix_set_value(i, value);
#else
# ifdef USE_CIE1931_CURVE
led_matrix_driver.set_value_all(pgm_read_byte(&CIE1931_CURVE[value]));
# else
led_matrix_driver.set_value_all(value);
# endif
#endif
}
void process_led_matrix(uint8_t row, uint8_t col, bool pressed) {
#ifndef LED_MATRIX_SPLIT
if (!is_keyboard_master()) return;
#endif
#ifdef LED_MATRIX_KEYREACTIVE_ENABLED
uint8_t led[LED_HITS_TO_REMEMBER];
uint8_t led_count = 0;
# if defined(LED_MATRIX_KEYRELEASES)
if (!pressed)
# elif defined(LED_MATRIX_KEYPRESSES)
if (pressed)
# endif // defined(LED_MATRIX_KEYRELEASES)
{
led_count = led_matrix_map_row_column_to_led(row, col, led);
}
if (last_hit_buffer.count + led_count > LED_HITS_TO_REMEMBER) {
memcpy(&last_hit_buffer.x[0], &last_hit_buffer.x[led_count], LED_HITS_TO_REMEMBER - led_count);
memcpy(&last_hit_buffer.y[0], &last_hit_buffer.y[led_count], LED_HITS_TO_REMEMBER - led_count);
memcpy(&last_hit_buffer.tick[0], &last_hit_buffer.tick[led_count], (LED_HITS_TO_REMEMBER - led_count) * 2); // 16 bit
memcpy(&last_hit_buffer.index[0], &last_hit_buffer.index[led_count], LED_HITS_TO_REMEMBER - led_count);
last_hit_buffer.count = LED_HITS_TO_REMEMBER - led_count;
}
for (uint8_t i = 0; i < led_count; i++) {
uint8_t index = last_hit_buffer.count;
last_hit_buffer.x[index] = g_led_config.point[led[i]].x;
last_hit_buffer.y[index] = g_led_config.point[led[i]].y;
last_hit_buffer.index[index] = led[i];
last_hit_buffer.tick[index] = 0;
last_hit_buffer.count++;
}
#endif // LED_MATRIX_KEYREACTIVE_ENABLED
#if defined(LED_MATRIX_FRAMEBUFFER_EFFECTS) && defined(ENABLE_LED_MATRIX_TYPING_HEATMAP)
if (led_matrix_eeconfig.mode == LED_MATRIX_TYPING_HEATMAP) {
process_led_matrix_typing_heatmap(row, col);
}
#endif // defined(LED_MATRIX_FRAMEBUFFER_EFFECTS) && defined(ENABLE_LED_MATRIX_TYPING_HEATMAP)
}
static bool led_matrix_none(effect_params_t *params) {
if (!params->init) {
return false;
}
led_matrix_set_value_all(0);
return false;
}
static void led_task_timers(void) {
#if defined(LED_MATRIX_KEYREACTIVE_ENABLED)
uint32_t deltaTime = sync_timer_elapsed32(led_timer_buffer);
#endif // defined(LED_MATRIX_KEYREACTIVE_ENABLED)
led_timer_buffer = sync_timer_read32();
// Update double buffer last hit timers
#ifdef LED_MATRIX_KEYREACTIVE_ENABLED
uint8_t count = last_hit_buffer.count;
for (uint8_t i = 0; i < count; ++i) {
if (UINT16_MAX - deltaTime < last_hit_buffer.tick[i]) {
last_hit_buffer.count--;
continue;
}
last_hit_buffer.tick[i] += deltaTime;
}
#endif // LED_MATRIX_KEYREACTIVE_ENABLED
}
static void led_task_sync(void) {
eeconfig_flush_led_matrix(false);
// next task
if (sync_timer_elapsed32(g_led_timer) >= LED_MATRIX_LED_FLUSH_LIMIT) led_task_state = STARTING;
}
static void led_task_start(void) {
// reset iter
led_effect_params.iter = 0;
// update double buffers
g_led_timer = led_timer_buffer;
#ifdef LED_MATRIX_KEYREACTIVE_ENABLED
g_last_hit_tracker = last_hit_buffer;
#endif // LED_MATRIX_KEYREACTIVE_ENABLED
// next task
led_task_state = RENDERING;
}
static void led_task_render(uint8_t effect) {
bool rendering = false;
led_effect_params.init = (effect != led_last_effect) || (led_matrix_eeconfig.enable != led_last_enable);
if (led_effect_params.flags != led_matrix_eeconfig.flags) {
led_effect_params.flags = led_matrix_eeconfig.flags;
led_matrix_set_value_all(0);
}
// each effect can opt to do calculations
// and/or request PWM buffer updates.
switch (effect) {
case LED_MATRIX_NONE:
rendering = led_matrix_none(&led_effect_params);
break;
// ---------------------------------------------
// -----Begin led effect switch case macros-----
#define LED_MATRIX_EFFECT(name, ...) \
case LED_MATRIX_##name: \
rendering = name(&led_effect_params); \
break;
#include "led_matrix_effects.inc"
#undef LED_MATRIX_EFFECT
#if defined(LED_MATRIX_CUSTOM_KB) || defined(LED_MATRIX_CUSTOM_USER)
# define LED_MATRIX_EFFECT(name, ...) \
case LED_MATRIX_CUSTOM_##name: \
rendering = name(&led_effect_params); \
break;
# ifdef LED_MATRIX_CUSTOM_KB
# include "led_matrix_kb.inc"
# endif
# ifdef LED_MATRIX_CUSTOM_USER
# include "led_matrix_user.inc"
# endif
# undef LED_MATRIX_EFFECT
#endif
// -----End led effect switch case macros-------
// ---------------------------------------------
}
led_effect_params.iter++;
// next task
if (!rendering) {
led_task_state = FLUSHING;
if (!led_effect_params.init && effect == LED_MATRIX_NONE) {
// We only need to flush once if we are LED_MATRIX_NONE
led_task_state = SYNCING;
}
}
}
static void led_task_flush(uint8_t effect) {
// update last trackers after the first full render so we can init over several frames
led_last_effect = effect;
led_last_enable = led_matrix_eeconfig.enable;
// update pwm buffers
led_matrix_update_pwm_buffers();
// next task
led_task_state = SYNCING;
}
void led_matrix_task(void) {
led_task_timers();
// Ideally we would also stop sending zeros to the LED driver PWM buffers
// while suspended and just do a software shutdown. This is a cheap hack for now.
bool suspend_backlight = suspend_state ||
#if LED_MATRIX_TIMEOUT > 0
(last_input_activity_elapsed() > (uint32_t)LED_MATRIX_TIMEOUT) ||
#endif // LED_MATRIX_TIMEOUT > 0
false;
uint8_t effect = suspend_backlight || !led_matrix_eeconfig.enable ? 0 : led_matrix_eeconfig.mode;
switch (led_task_state) {
case STARTING:
led_task_start();
break;
case RENDERING:
led_task_render(effect);
if (effect) {
if (led_task_state == FLUSHING) {
led_matrix_indicators(); // ensure we only draw basic indicators once rendering is finished
}
led_matrix_indicators_advanced(&led_effect_params);
}
break;
case FLUSHING:
led_task_flush(effect);
break;
case SYNCING:
led_task_sync();
break;
}
}
void led_matrix_indicators(void) {
led_matrix_indicators_kb();
}
__attribute__((weak)) bool led_matrix_indicators_kb(void) {
return led_matrix_indicators_user();
}
__attribute__((weak)) bool led_matrix_indicators_user(void) {
return true;
}
void led_matrix_indicators_advanced(effect_params_t *params) {
/* special handling is needed for "params->iter", since it's already been incremented.
* Could move the invocations to led_task_render, but then it's missing a few checks
* and not sure which would be better. Otherwise, this should be called from
* led_task_render, right before the iter++ line.
*/
LED_MATRIX_USE_LIMITS_ITER(min, max, params->iter - 1);
led_matrix_indicators_advanced_kb(min, max);
}
__attribute__((weak)) bool led_matrix_indicators_advanced_kb(uint8_t led_min, uint8_t led_max) {
return led_matrix_indicators_advanced_user(led_min, led_max);
}
__attribute__((weak)) bool led_matrix_indicators_advanced_user(uint8_t led_min, uint8_t led_max) {
return true;
}
struct led_matrix_limits_t led_matrix_get_limits(uint8_t iter) {
struct led_matrix_limits_t limits = {0};
#if defined(LED_MATRIX_LED_PROCESS_LIMIT) && LED_MATRIX_LED_PROCESS_LIMIT > 0 && LED_MATRIX_LED_PROCESS_LIMIT < LED_MATRIX_LED_COUNT
# if defined(LED_MATRIX_SPLIT)
limits.led_min_index = LED_MATRIX_LED_PROCESS_LIMIT * (iter);
limits.led_max_index = limits.led_min_index + LED_MATRIX_LED_PROCESS_LIMIT;
if (limits.led_max_index > LED_MATRIX_LED_COUNT) limits.led_max_index = LED_MATRIX_LED_COUNT;
uint8_t k_led_matrix_split[2] = LED_MATRIX_SPLIT;
if (is_keyboard_left() && (limits.led_max_index > k_led_matrix_split[0])) limits.led_max_index = k_led_matrix_split[0];
if (!(is_keyboard_left()) && (limits.led_min_index < k_led_matrix_split[0])) limits.led_min_index = k_led_matrix_split[0];
# else
limits.led_min_index = LED_MATRIX_LED_PROCESS_LIMIT * (iter);
limits.led_max_index = limits.led_min_index + LED_MATRIX_LED_PROCESS_LIMIT;
if (limits.led_max_index > LED_MATRIX_LED_COUNT) limits.led_max_index = LED_MATRIX_LED_COUNT;
# endif
#else
# if defined(LED_MATRIX_SPLIT)
limits.led_min_index = 0;
limits.led_max_index = LED_MATRIX_LED_COUNT;
const uint8_t k_led_matrix_split[2] = LED_MATRIX_SPLIT;
if (is_keyboard_left() && (limits.led_max_index > k_led_matrix_split[0])) limits.led_max_index = k_led_matrix_split[0];
if (!(is_keyboard_left()) && (limits.led_min_index < k_led_matrix_split[0])) limits.led_min_index = k_led_matrix_split[0];
# else
limits.led_min_index = 0;
limits.led_max_index = LED_MATRIX_LED_COUNT;
# endif
#endif
return limits;
}
void led_matrix_init(void) {
led_matrix_driver.init();
#ifdef LED_MATRIX_KEYREACTIVE_ENABLED
g_last_hit_tracker.count = 0;
for (uint8_t i = 0; i < LED_HITS_TO_REMEMBER; ++i) {
g_last_hit_tracker.tick[i] = UINT16_MAX;
}
last_hit_buffer.count = 0;
for (uint8_t i = 0; i < LED_HITS_TO_REMEMBER; ++i) {
last_hit_buffer.tick[i] = UINT16_MAX;
}
#endif // LED_MATRIX_KEYREACTIVE_ENABLED
eeconfig_init_led_matrix();
if (!led_matrix_eeconfig.mode) {
dprintf("led_matrix_init_drivers led_matrix_eeconfig.mode = 0. Write default values to EEPROM.\n");
eeconfig_update_led_matrix_default();
}
eeconfig_debug_led_matrix(); // display current eeprom values
}
void led_matrix_set_suspend_state(bool state) {
#ifdef LED_MATRIX_SLEEP
if (state && !suspend_state && is_keyboard_master()) { // only run if turning off, and only once
led_task_render(0); // turn off all LEDs when suspending
led_task_flush(0); // and actually flash led state to LEDs
}
suspend_state = state;
#endif
}
bool led_matrix_get_suspend_state(void) {
return suspend_state;
}
void led_matrix_toggle_eeprom_helper(bool write_to_eeprom) {
led_matrix_eeconfig.enable ^= 1;
led_task_state = STARTING;
eeconfig_flag_led_matrix(write_to_eeprom);
dprintf("led matrix toggle [%s]: led_matrix_eeconfig.enable = %u\n", (write_to_eeprom) ? "EEPROM" : "NOEEPROM", led_matrix_eeconfig.enable);
}
void led_matrix_toggle_noeeprom(void) {
led_matrix_toggle_eeprom_helper(false);
}
void led_matrix_toggle(void) {
led_matrix_toggle_eeprom_helper(true);
}
void led_matrix_enable(void) {
led_matrix_enable_noeeprom();
eeconfig_flag_led_matrix(true);
}
void led_matrix_enable_noeeprom(void) {
if (!led_matrix_eeconfig.enable) led_task_state = STARTING;
led_matrix_eeconfig.enable = 1;
}
void led_matrix_disable(void) {
led_matrix_disable_noeeprom();
eeconfig_flag_led_matrix(true);
}
void led_matrix_disable_noeeprom(void) {
if (led_matrix_eeconfig.enable) led_task_state = STARTING;
led_matrix_eeconfig.enable = 0;
}
uint8_t led_matrix_is_enabled(void) {
return led_matrix_eeconfig.enable;
}
void led_matrix_mode_eeprom_helper(uint8_t mode, bool write_to_eeprom) {
if (!led_matrix_eeconfig.enable) {
return;
}
if (mode < 1) {
led_matrix_eeconfig.mode = 1;
} else if (mode >= LED_MATRIX_EFFECT_MAX) {
led_matrix_eeconfig.mode = LED_MATRIX_EFFECT_MAX - 1;
} else {
led_matrix_eeconfig.mode = mode;
}
led_task_state = STARTING;
eeconfig_flag_led_matrix(write_to_eeprom);
dprintf("led matrix mode [%s]: %u\n", (write_to_eeprom) ? "EEPROM" : "NOEEPROM", led_matrix_eeconfig.mode);
}
void led_matrix_mode_noeeprom(uint8_t mode) {
led_matrix_mode_eeprom_helper(mode, false);
}
void led_matrix_mode(uint8_t mode) {
led_matrix_mode_eeprom_helper(mode, true);
}
uint8_t led_matrix_get_mode(void) {
return led_matrix_eeconfig.mode;
}
void led_matrix_step_helper(bool write_to_eeprom) {
uint8_t mode = led_matrix_eeconfig.mode + 1;
led_matrix_mode_eeprom_helper((mode < LED_MATRIX_EFFECT_MAX) ? mode : 1, write_to_eeprom);
}
void led_matrix_step_noeeprom(void) {
led_matrix_step_helper(false);
}
void led_matrix_step(void) {
led_matrix_step_helper(true);
}
void led_matrix_step_reverse_helper(bool write_to_eeprom) {
uint8_t mode = led_matrix_eeconfig.mode - 1;
led_matrix_mode_eeprom_helper((mode < 1) ? LED_MATRIX_EFFECT_MAX - 1 : mode, write_to_eeprom);
}
void led_matrix_step_reverse_noeeprom(void) {
led_matrix_step_reverse_helper(false);
}
void led_matrix_step_reverse(void) {
led_matrix_step_reverse_helper(true);
}
void led_matrix_set_val_eeprom_helper(uint8_t val, bool write_to_eeprom) {
if (!led_matrix_eeconfig.enable) {
return;
}
led_matrix_eeconfig.val = (val > LED_MATRIX_MAXIMUM_BRIGHTNESS) ? LED_MATRIX_MAXIMUM_BRIGHTNESS : val;
eeconfig_flag_led_matrix(write_to_eeprom);
dprintf("led matrix set val [%s]: %u\n", (write_to_eeprom) ? "EEPROM" : "NOEEPROM", led_matrix_eeconfig.val);
}
void led_matrix_set_val_noeeprom(uint8_t val) {
led_matrix_set_val_eeprom_helper(val, false);
}
void led_matrix_set_val(uint8_t val) {
led_matrix_set_val_eeprom_helper(val, true);
}
uint8_t led_matrix_get_val(void) {
return led_matrix_eeconfig.val;
}
void led_matrix_increase_val_helper(bool write_to_eeprom) {
led_matrix_set_val_eeprom_helper(qadd8(led_matrix_eeconfig.val, LED_MATRIX_VAL_STEP), write_to_eeprom);
}
void led_matrix_increase_val_noeeprom(void) {
led_matrix_increase_val_helper(false);
}
void led_matrix_increase_val(void) {
led_matrix_increase_val_helper(true);
}
void led_matrix_decrease_val_helper(bool write_to_eeprom) {
led_matrix_set_val_eeprom_helper(qsub8(led_matrix_eeconfig.val, LED_MATRIX_VAL_STEP), write_to_eeprom);
}
void led_matrix_decrease_val_noeeprom(void) {
led_matrix_decrease_val_helper(false);
}
void led_matrix_decrease_val(void) {
led_matrix_decrease_val_helper(true);
}
void led_matrix_set_speed_eeprom_helper(uint8_t speed, bool write_to_eeprom) {
led_matrix_eeconfig.speed = speed;
eeconfig_flag_led_matrix(write_to_eeprom);
dprintf("led matrix set speed [%s]: %u\n", (write_to_eeprom) ? "EEPROM" : "NOEEPROM", led_matrix_eeconfig.speed);
}
void led_matrix_set_speed_noeeprom(uint8_t speed) {
led_matrix_set_speed_eeprom_helper(speed, false);
}
void led_matrix_set_speed(uint8_t speed) {
led_matrix_set_speed_eeprom_helper(speed, true);
}
uint8_t led_matrix_get_speed(void) {
return led_matrix_eeconfig.speed;
}
void led_matrix_increase_speed_helper(bool write_to_eeprom) {
led_matrix_set_speed_eeprom_helper(qadd8(led_matrix_eeconfig.speed, LED_MATRIX_SPD_STEP), write_to_eeprom);
}
void led_matrix_increase_speed_noeeprom(void) {
led_matrix_increase_speed_helper(false);
}
void led_matrix_increase_speed(void) {
led_matrix_increase_speed_helper(true);
}
void led_matrix_decrease_speed_helper(bool write_to_eeprom) {
led_matrix_set_speed_eeprom_helper(qsub8(led_matrix_eeconfig.speed, LED_MATRIX_SPD_STEP), write_to_eeprom);
}
void led_matrix_decrease_speed_noeeprom(void) {
led_matrix_decrease_speed_helper(false);
}
void led_matrix_decrease_speed(void) {
led_matrix_decrease_speed_helper(true);
}
void led_matrix_set_flags_eeprom_helper(led_flags_t flags, bool write_to_eeprom) {
led_matrix_eeconfig.flags = flags;
eeconfig_flag_led_matrix(write_to_eeprom);
dprintf("led matrix set flags [%s]: %u\n", (write_to_eeprom) ? "EEPROM" : "NOEEPROM", led_matrix_eeconfig.flags);
}
led_flags_t led_matrix_get_flags(void) {
return led_matrix_eeconfig.flags;
}
void led_matrix_set_flags(led_flags_t flags) {
led_matrix_set_flags_eeprom_helper(flags, true);
}
void led_matrix_set_flags_noeeprom(led_flags_t flags) {
led_matrix_set_flags_eeprom_helper(flags, false);
}