Merge remote-tracking branch 'origin/master' into develop
commit
ceab485e58
|
@ -39,126 +39,7 @@
|
|||
* SOFTWARE.
|
||||
*/
|
||||
|
||||
#define SMC_PMSTAT_RUN ((uint8_t)0x01)
|
||||
#define SMC_PMSTAT_HSRUN ((uint8_t)0x80)
|
||||
|
||||
#define F_CPU KINETIS_SYSCLK_FREQUENCY
|
||||
|
||||
static inline int kinetis_hsrun_disable(void) {
|
||||
#if defined(MK66F18)
|
||||
if (SMC->PMSTAT == SMC_PMSTAT_HSRUN) {
|
||||
// First, reduce the CPU clock speed, but do not change
|
||||
// the peripheral speed (F_BUS). Serial1 & Serial2 baud
|
||||
// rates will be impacted, but most other peripherals
|
||||
// will continue functioning at the same speed.
|
||||
# if F_CPU == 256000000 && F_BUS == 64000000
|
||||
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 3, 1, 7); // TODO: TEST
|
||||
# elif F_CPU == 256000000 && F_BUS == 128000000
|
||||
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7); // TODO: TEST
|
||||
# elif F_CPU == 240000000 && F_BUS == 60000000
|
||||
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 3, 1, 7); // ok
|
||||
# elif F_CPU == 240000000 && F_BUS == 80000000
|
||||
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 8); // ok
|
||||
# elif F_CPU == 240000000 && F_BUS == 120000000
|
||||
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7); // ok
|
||||
# elif F_CPU == 216000000 && F_BUS == 54000000
|
||||
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 3, 1, 7); // ok
|
||||
# elif F_CPU == 216000000 && F_BUS == 72000000
|
||||
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 8); // ok
|
||||
# elif F_CPU == 216000000 && F_BUS == 108000000
|
||||
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7); // ok
|
||||
# elif F_CPU == 192000000 && F_BUS == 48000000
|
||||
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 3, 1, 7); // ok
|
||||
# elif F_CPU == 192000000 && F_BUS == 64000000
|
||||
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 8); // ok
|
||||
# elif F_CPU == 192000000 && F_BUS == 96000000
|
||||
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7); // ok
|
||||
# elif F_CPU == 180000000 && F_BUS == 60000000
|
||||
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 8); // ok
|
||||
# elif F_CPU == 180000000 && F_BUS == 90000000
|
||||
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7); // ok
|
||||
# elif F_CPU == 168000000 && F_BUS == 56000000
|
||||
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 5); // ok
|
||||
# elif F_CPU == 144000000 && F_BUS == 48000000
|
||||
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 5); // ok
|
||||
# elif F_CPU == 144000000 && F_BUS == 72000000
|
||||
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 5); // ok
|
||||
# elif F_CPU == 120000000 && F_BUS == 60000000
|
||||
SIM->CLKDIV1 = SIM_CLKDIV1_OUTDIV1(KINETIS_CLKDIV1_OUTDIV1 - 1) | SIM_CLKDIV1_OUTDIV2(KINETIS_CLKDIV1_OUTDIV2 - 1) |
|
||||
# if defined(MK66F18)
|
||||
SIM_CLKDIV1_OUTDIV3(KINETIS_CLKDIV1_OUTDIV3 - 1) |
|
||||
# endif
|
||||
SIM_CLKDIV1_OUTDIV4(KINETIS_CLKDIV1_OUTDIV4 - 1);
|
||||
# else
|
||||
return 0;
|
||||
# endif
|
||||
// Then turn off HSRUN mode
|
||||
SMC->PMCTRL = SMC_PMCTRL_RUNM_SET(0);
|
||||
while (SMC->PMSTAT == SMC_PMSTAT_HSRUN)
|
||||
; // wait
|
||||
return 1;
|
||||
}
|
||||
#endif
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline int kinetis_hsrun_enable(void) {
|
||||
#if defined(MK66F18)
|
||||
if (SMC->PMSTAT == SMC_PMSTAT_RUN) {
|
||||
// Turn HSRUN mode on
|
||||
SMC->PMCTRL = SMC_PMCTRL_RUNM_SET(3);
|
||||
while (SMC->PMSTAT != SMC_PMSTAT_HSRUN) {
|
||||
;
|
||||
} // wait
|
||||
// Then configure clock for full speed
|
||||
# if F_CPU == 256000000 && F_BUS == 64000000
|
||||
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 3, 0, 7);
|
||||
# elif F_CPU == 256000000 && F_BUS == 128000000
|
||||
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 7);
|
||||
# elif F_CPU == 240000000 && F_BUS == 60000000
|
||||
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 3, 0, 7);
|
||||
# elif F_CPU == 240000000 && F_BUS == 80000000
|
||||
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 7);
|
||||
# elif F_CPU == 240000000 && F_BUS == 120000000
|
||||
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 7);
|
||||
# elif F_CPU == 216000000 && F_BUS == 54000000
|
||||
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 3, 0, 7);
|
||||
# elif F_CPU == 216000000 && F_BUS == 72000000
|
||||
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 7);
|
||||
# elif F_CPU == 216000000 && F_BUS == 108000000
|
||||
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 7);
|
||||
# elif F_CPU == 192000000 && F_BUS == 48000000
|
||||
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 3, 0, 6);
|
||||
# elif F_CPU == 192000000 && F_BUS == 64000000
|
||||
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 6);
|
||||
# elif F_CPU == 192000000 && F_BUS == 96000000
|
||||
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 6);
|
||||
# elif F_CPU == 180000000 && F_BUS == 60000000
|
||||
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 6);
|
||||
# elif F_CPU == 180000000 && F_BUS == 90000000
|
||||
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 6);
|
||||
# elif F_CPU == 168000000 && F_BUS == 56000000
|
||||
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 5);
|
||||
# elif F_CPU == 144000000 && F_BUS == 48000000
|
||||
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 4);
|
||||
# elif F_CPU == 144000000 && F_BUS == 72000000
|
||||
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 4);
|
||||
# elif F_CPU == 120000000 && F_BUS == 60000000
|
||||
SIM->CLKDIV1 = SIM_CLKDIV1_OUTDIV1(KINETIS_CLKDIV1_OUTDIV1 - 1) | SIM_CLKDIV1_OUTDIV2(KINETIS_CLKDIV1_OUTDIV2 - 1) |
|
||||
# if defined(MK66F18)
|
||||
SIM_CLKDIV1_OUTDIV3(KINETIS_CLKDIV1_OUTDIV3 - 1) |
|
||||
# endif
|
||||
SIM_CLKDIV1_OUTDIV4(KINETIS_CLKDIV1_OUTDIV4 - 1);
|
||||
# else
|
||||
return 0;
|
||||
# endif
|
||||
return 1;
|
||||
}
|
||||
#endif
|
||||
return 0;
|
||||
}
|
||||
|
||||
#if defined(K20x) || defined(MK66F18) /* chip selection */
|
||||
#if defined(K20x) /* chip selection */
|
||||
/* Teensy 3.0, 3.1, 3.2; mchck; infinity keyboard */
|
||||
|
||||
// The EEPROM is really RAM with a hardware-based backup system to
|
||||
|
@ -188,34 +69,22 @@ static inline int kinetis_hsrun_enable(void) {
|
|||
//
|
||||
# define HANDLE_UNALIGNED_WRITES
|
||||
|
||||
# if defined(K20x)
|
||||
# define EEPROM_MAX 2048
|
||||
# define EEPARTITION 0x03 // all 32K dataflash for EEPROM, none for Data
|
||||
# define EEESPLIT 0x30 // must be 0x30 on these chips
|
||||
# elif defined(MK66F18)
|
||||
# define EEPROM_MAX 4096
|
||||
# define EEPARTITION 0x05 // 128K dataflash for EEPROM, 128K for Data
|
||||
# define EEESPLIT 0x10 // best endurance: 0x00 = first 12%, 0x10 = first 25%, 0x30 = all equal
|
||||
# endif
|
||||
|
||||
// Minimum EEPROM Endurance
|
||||
// ------------------------
|
||||
# if (EEPROM_SIZE == 4096)
|
||||
# define EEESIZE 0x02
|
||||
# elif (EEPROM_SIZE == 2048) // 35000 writes/byte or 70000 writes/word
|
||||
# define EEESIZE 0x03
|
||||
# if (EEPROM_SIZE == 2048) // 35000 writes/byte or 70000 writes/word
|
||||
# define EEESIZE 0x33
|
||||
# elif (EEPROM_SIZE == 1024) // 75000 writes/byte or 150000 writes/word
|
||||
# define EEESIZE 0x04
|
||||
# define EEESIZE 0x34
|
||||
# elif (EEPROM_SIZE == 512) // 155000 writes/byte or 310000 writes/word
|
||||
# define EEESIZE 0x05
|
||||
# define EEESIZE 0x35
|
||||
# elif (EEPROM_SIZE == 256) // 315000 writes/byte or 630000 writes/word
|
||||
# define EEESIZE 0x06
|
||||
# define EEESIZE 0x36
|
||||
# elif (EEPROM_SIZE == 128) // 635000 writes/byte or 1270000 writes/word
|
||||
# define EEESIZE 0x07
|
||||
# define EEESIZE 0x37
|
||||
# elif (EEPROM_SIZE == 64) // 1275000 writes/byte or 2550000 writes/word
|
||||
# define EEESIZE 0x08
|
||||
# define EEESIZE 0x38
|
||||
# elif (EEPROM_SIZE == 32) // 2555000 writes/byte or 5110000 writes/word
|
||||
# define EEESIZE 0x09
|
||||
# define EEESIZE 0x39
|
||||
# endif
|
||||
|
||||
/** \brief eeprom initialization
|
||||
|
@ -228,21 +97,15 @@ void eeprom_initialize(void) {
|
|||
uint8_t status;
|
||||
|
||||
if (FTFL->FCNFG & FTFL_FCNFG_RAMRDY) {
|
||||
uint8_t stat = FTFL->FSTAT & 0x70;
|
||||
if (stat) FTFL->FSTAT = stat;
|
||||
|
||||
// FlexRAM is configured as traditional RAM
|
||||
// We need to reconfigure for EEPROM usage
|
||||
kinetis_hsrun_disable();
|
||||
FTFL->FCCOB0 = 0x80; // PGMPART = Program Partition Command
|
||||
FTFL->FCCOB3 = 0;
|
||||
FTFL->FCCOB4 = EEESPLIT | EEESIZE;
|
||||
FTFL->FCCOB5 = EEPARTITION;
|
||||
FTFL->FCCOB0 = 0x80; // PGMPART = Program Partition Command
|
||||
FTFL->FCCOB4 = EEESIZE; // EEPROM Size
|
||||
FTFL->FCCOB5 = 0x03; // 0K for Dataflash, 32K for EEPROM backup
|
||||
__disable_irq();
|
||||
// do_flash_cmd() must execute from RAM. Luckily the C syntax is simple...
|
||||
(*((void (*)(volatile uint8_t *))((uint32_t)do_flash_cmd | 1)))(&(FTFL->FSTAT));
|
||||
__enable_irq();
|
||||
kinetis_hsrun_enable();
|
||||
status = FTFL->FSTAT;
|
||||
if (status & (FTFL_FSTAT_RDCOLERR | FTFL_FSTAT_ACCERR | FTFL_FSTAT_FPVIOL)) {
|
||||
FTFL->FSTAT = (status & (FTFL_FSTAT_RDCOLERR | FTFL_FSTAT_ACCERR | FTFL_FSTAT_FPVIOL));
|
||||
|
@ -251,11 +114,11 @@ void eeprom_initialize(void) {
|
|||
}
|
||||
// wait for eeprom to become ready (is this really necessary?)
|
||||
while (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) {
|
||||
if (++count > 200000) break;
|
||||
if (++count > 20000) break;
|
||||
}
|
||||
}
|
||||
|
||||
# define FlexRAM ((volatile uint8_t *)0x14000000)
|
||||
# define FlexRAM ((uint8_t *)0x14000000)
|
||||
|
||||
/** \brief eeprom read byte
|
||||
*
|
||||
|
@ -332,12 +195,8 @@ void eeprom_write_byte(uint8_t *addr, uint8_t value) {
|
|||
if (offset >= EEPROM_SIZE) return;
|
||||
if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
|
||||
if (FlexRAM[offset] != value) {
|
||||
kinetis_hsrun_disable();
|
||||
uint8_t stat = FTFL->FSTAT & 0x70;
|
||||
if (stat) FTFL->FSTAT = stat;
|
||||
FlexRAM[offset] = value;
|
||||
flexram_wait();
|
||||
kinetis_hsrun_enable();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -354,30 +213,18 @@ void eeprom_write_word(uint16_t *addr, uint16_t value) {
|
|||
if ((offset & 1) == 0) {
|
||||
# endif
|
||||
if (*(uint16_t *)(&FlexRAM[offset]) != value) {
|
||||
kinetis_hsrun_disable();
|
||||
uint8_t stat = FTFL->FSTAT & 0x70;
|
||||
if (stat) FTFL->FSTAT = stat;
|
||||
*(uint16_t *)(&FlexRAM[offset]) = value;
|
||||
flexram_wait();
|
||||
kinetis_hsrun_enable();
|
||||
}
|
||||
# ifdef HANDLE_UNALIGNED_WRITES
|
||||
} else {
|
||||
if (FlexRAM[offset] != value) {
|
||||
kinetis_hsrun_disable();
|
||||
uint8_t stat = FTFL->FSTAT & 0x70;
|
||||
if (stat) FTFL->FSTAT = stat;
|
||||
FlexRAM[offset] = value;
|
||||
flexram_wait();
|
||||
kinetis_hsrun_enable();
|
||||
}
|
||||
if (FlexRAM[offset + 1] != (value >> 8)) {
|
||||
kinetis_hsrun_disable();
|
||||
uint8_t stat = FTFL->FSTAT & 0x70;
|
||||
if (stat) FTFL->FSTAT = stat;
|
||||
FlexRAM[offset + 1] = value >> 8;
|
||||
flexram_wait();
|
||||
kinetis_hsrun_enable();
|
||||
}
|
||||
}
|
||||
# endif
|
||||
|
@ -397,57 +244,33 @@ void eeprom_write_dword(uint32_t *addr, uint32_t value) {
|
|||
case 0:
|
||||
# endif
|
||||
if (*(uint32_t *)(&FlexRAM[offset]) != value) {
|
||||
kinetis_hsrun_disable();
|
||||
uint8_t stat = FTFL->FSTAT & 0x70;
|
||||
if (stat) FTFL->FSTAT = stat;
|
||||
*(uint32_t *)(&FlexRAM[offset]) = value;
|
||||
flexram_wait();
|
||||
kinetis_hsrun_enable();
|
||||
}
|
||||
return;
|
||||
# ifdef HANDLE_UNALIGNED_WRITES
|
||||
case 2:
|
||||
if (*(uint16_t *)(&FlexRAM[offset]) != value) {
|
||||
kinetis_hsrun_disable();
|
||||
uint8_t stat = FTFL->FSTAT & 0x70;
|
||||
if (stat) FTFL->FSTAT = stat;
|
||||
*(uint16_t *)(&FlexRAM[offset]) = value;
|
||||
flexram_wait();
|
||||
kinetis_hsrun_enable();
|
||||
}
|
||||
if (*(uint16_t *)(&FlexRAM[offset + 2]) != (value >> 16)) {
|
||||
kinetis_hsrun_disable();
|
||||
uint8_t stat = FTFL->FSTAT & 0x70;
|
||||
if (stat) FTFL->FSTAT = stat;
|
||||
*(uint16_t *)(&FlexRAM[offset + 2]) = value >> 16;
|
||||
flexram_wait();
|
||||
kinetis_hsrun_enable();
|
||||
}
|
||||
return;
|
||||
default:
|
||||
if (FlexRAM[offset] != value) {
|
||||
kinetis_hsrun_disable();
|
||||
uint8_t stat = FTFL->FSTAT & 0x70;
|
||||
if (stat) FTFL->FSTAT = stat;
|
||||
FlexRAM[offset] = value;
|
||||
flexram_wait();
|
||||
kinetis_hsrun_enable();
|
||||
}
|
||||
if (*(uint16_t *)(&FlexRAM[offset + 1]) != (value >> 8)) {
|
||||
kinetis_hsrun_disable();
|
||||
uint8_t stat = FTFL->FSTAT & 0x70;
|
||||
if (stat) FTFL->FSTAT = stat;
|
||||
*(uint16_t *)(&FlexRAM[offset + 1]) = value >> 8;
|
||||
flexram_wait();
|
||||
kinetis_hsrun_enable();
|
||||
}
|
||||
if (FlexRAM[offset + 3] != (value >> 24)) {
|
||||
kinetis_hsrun_disable();
|
||||
uint8_t stat = FTFL->FSTAT & 0x70;
|
||||
if (stat) FTFL->FSTAT = stat;
|
||||
FlexRAM[offset + 3] = value >> 24;
|
||||
flexram_wait();
|
||||
kinetis_hsrun_enable();
|
||||
}
|
||||
}
|
||||
# endif
|
||||
|
@ -465,7 +288,6 @@ void eeprom_write_block(const void *buf, void *addr, uint32_t len) {
|
|||
if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
|
||||
if (len >= EEPROM_SIZE) len = EEPROM_SIZE;
|
||||
if (offset + len >= EEPROM_SIZE) len = EEPROM_SIZE - offset;
|
||||
kinetis_hsrun_disable();
|
||||
while (len > 0) {
|
||||
uint32_t lsb = offset & 3;
|
||||
if (lsb == 0 && len >= 4) {
|
||||
|
@ -476,8 +298,6 @@ void eeprom_write_block(const void *buf, void *addr, uint32_t len) {
|
|||
val32 |= (*src++ << 16);
|
||||
val32 |= (*src++ << 24);
|
||||
if (*(uint32_t *)(&FlexRAM[offset]) != val32) {
|
||||
uint8_t stat = FTFL->FSTAT & 0x70;
|
||||
if (stat) FTFL->FSTAT = stat;
|
||||
*(uint32_t *)(&FlexRAM[offset]) = val32;
|
||||
flexram_wait();
|
||||
}
|
||||
|
@ -489,8 +309,6 @@ void eeprom_write_block(const void *buf, void *addr, uint32_t len) {
|
|||
val16 = *src++;
|
||||
val16 |= (*src++ << 8);
|
||||
if (*(uint16_t *)(&FlexRAM[offset]) != val16) {
|
||||
uint8_t stat = FTFL->FSTAT & 0x70;
|
||||
if (stat) FTFL->FSTAT = stat;
|
||||
*(uint16_t *)(&FlexRAM[offset]) = val16;
|
||||
flexram_wait();
|
||||
}
|
||||
|
@ -500,8 +318,6 @@ void eeprom_write_block(const void *buf, void *addr, uint32_t len) {
|
|||
// write 8 bits
|
||||
uint8_t val8 = *src++;
|
||||
if (FlexRAM[offset] != val8) {
|
||||
uint8_t stat = FTFL->FSTAT & 0x70;
|
||||
if (stat) FTFL->FSTAT = stat;
|
||||
FlexRAM[offset] = val8;
|
||||
flexram_wait();
|
||||
}
|
||||
|
@ -509,7 +325,6 @@ void eeprom_write_block(const void *buf, void *addr, uint32_t len) {
|
|||
len--;
|
||||
}
|
||||
}
|
||||
kinetis_hsrun_enable();
|
||||
}
|
||||
|
||||
/*
|
||||
|
|
Loading…
Reference in New Issue