Keyboard: Migrate Quefrency to use split common files (#3642)
parent
ad2bb529c7
commit
89838d0939
|
@ -1,162 +0,0 @@
|
|||
#include <util/twi.h>
|
||||
#include <avr/io.h>
|
||||
#include <stdlib.h>
|
||||
#include <avr/interrupt.h>
|
||||
#include <util/twi.h>
|
||||
#include <stdbool.h>
|
||||
#include "i2c.h"
|
||||
|
||||
#ifdef USE_I2C
|
||||
|
||||
// Limits the amount of we wait for any one i2c transaction.
|
||||
// Since were running SCL line 100kHz (=> 10μs/bit), and each transactions is
|
||||
// 9 bits, a single transaction will take around 90μs to complete.
|
||||
//
|
||||
// (F_CPU/SCL_CLOCK) => # of μC cycles to transfer a bit
|
||||
// poll loop takes at least 8 clock cycles to execute
|
||||
#define I2C_LOOP_TIMEOUT (9+1)*(F_CPU/SCL_CLOCK)/8
|
||||
|
||||
#define BUFFER_POS_INC() (slave_buffer_pos = (slave_buffer_pos+1)%SLAVE_BUFFER_SIZE)
|
||||
|
||||
volatile uint8_t i2c_slave_buffer[SLAVE_BUFFER_SIZE];
|
||||
|
||||
static volatile uint8_t slave_buffer_pos;
|
||||
static volatile bool slave_has_register_set = false;
|
||||
|
||||
// Wait for an i2c operation to finish
|
||||
inline static
|
||||
void i2c_delay(void) {
|
||||
uint16_t lim = 0;
|
||||
while(!(TWCR & (1<<TWINT)) && lim < I2C_LOOP_TIMEOUT)
|
||||
lim++;
|
||||
|
||||
// easier way, but will wait slightly longer
|
||||
// _delay_us(100);
|
||||
}
|
||||
|
||||
// Setup twi to run at 100kHz
|
||||
void i2c_master_init(void) {
|
||||
// no prescaler
|
||||
TWSR = 0;
|
||||
// Set TWI clock frequency to SCL_CLOCK. Need TWBR>10.
|
||||
// Check datasheets for more info.
|
||||
TWBR = ((F_CPU/SCL_CLOCK)-16)/2;
|
||||
}
|
||||
|
||||
// Start a transaction with the given i2c slave address. The direction of the
|
||||
// transfer is set with I2C_READ and I2C_WRITE.
|
||||
// returns: 0 => success
|
||||
// 1 => error
|
||||
uint8_t i2c_master_start(uint8_t address) {
|
||||
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTA);
|
||||
|
||||
i2c_delay();
|
||||
|
||||
// check that we started successfully
|
||||
if ( (TW_STATUS != TW_START) && (TW_STATUS != TW_REP_START))
|
||||
return 1;
|
||||
|
||||
TWDR = address;
|
||||
TWCR = (1<<TWINT) | (1<<TWEN);
|
||||
|
||||
i2c_delay();
|
||||
|
||||
if ( (TW_STATUS != TW_MT_SLA_ACK) && (TW_STATUS != TW_MR_SLA_ACK) )
|
||||
return 1; // slave did not acknowledge
|
||||
else
|
||||
return 0; // success
|
||||
}
|
||||
|
||||
|
||||
// Finish the i2c transaction.
|
||||
void i2c_master_stop(void) {
|
||||
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTO);
|
||||
|
||||
uint16_t lim = 0;
|
||||
while(!(TWCR & (1<<TWSTO)) && lim < I2C_LOOP_TIMEOUT)
|
||||
lim++;
|
||||
}
|
||||
|
||||
// Write one byte to the i2c slave.
|
||||
// returns 0 => slave ACK
|
||||
// 1 => slave NACK
|
||||
uint8_t i2c_master_write(uint8_t data) {
|
||||
TWDR = data;
|
||||
TWCR = (1<<TWINT) | (1<<TWEN);
|
||||
|
||||
i2c_delay();
|
||||
|
||||
// check if the slave acknowledged us
|
||||
return (TW_STATUS == TW_MT_DATA_ACK) ? 0 : 1;
|
||||
}
|
||||
|
||||
// Read one byte from the i2c slave. If ack=1 the slave is acknowledged,
|
||||
// if ack=0 the acknowledge bit is not set.
|
||||
// returns: byte read from i2c device
|
||||
uint8_t i2c_master_read(int ack) {
|
||||
TWCR = (1<<TWINT) | (1<<TWEN) | (ack<<TWEA);
|
||||
|
||||
i2c_delay();
|
||||
return TWDR;
|
||||
}
|
||||
|
||||
void i2c_reset_state(void) {
|
||||
TWCR = 0;
|
||||
}
|
||||
|
||||
void i2c_slave_init(uint8_t address) {
|
||||
TWAR = address << 0; // slave i2c address
|
||||
// TWEN - twi enable
|
||||
// TWEA - enable address acknowledgement
|
||||
// TWINT - twi interrupt flag
|
||||
// TWIE - enable the twi interrupt
|
||||
TWCR = (1<<TWIE) | (1<<TWEA) | (1<<TWINT) | (1<<TWEN);
|
||||
}
|
||||
|
||||
ISR(TWI_vect);
|
||||
|
||||
ISR(TWI_vect) {
|
||||
uint8_t ack = 1;
|
||||
switch(TW_STATUS) {
|
||||
case TW_SR_SLA_ACK:
|
||||
// this device has been addressed as a slave receiver
|
||||
slave_has_register_set = false;
|
||||
break;
|
||||
|
||||
case TW_SR_DATA_ACK:
|
||||
// this device has received data as a slave receiver
|
||||
// The first byte that we receive in this transaction sets the location
|
||||
// of the read/write location of the slaves memory that it exposes over
|
||||
// i2c. After that, bytes will be written at slave_buffer_pos, incrementing
|
||||
// slave_buffer_pos after each write.
|
||||
if(!slave_has_register_set) {
|
||||
slave_buffer_pos = TWDR;
|
||||
// don't acknowledge the master if this memory loctaion is out of bounds
|
||||
if ( slave_buffer_pos >= SLAVE_BUFFER_SIZE ) {
|
||||
ack = 0;
|
||||
slave_buffer_pos = 0;
|
||||
}
|
||||
slave_has_register_set = true;
|
||||
} else {
|
||||
i2c_slave_buffer[slave_buffer_pos] = TWDR;
|
||||
BUFFER_POS_INC();
|
||||
}
|
||||
break;
|
||||
|
||||
case TW_ST_SLA_ACK:
|
||||
case TW_ST_DATA_ACK:
|
||||
// master has addressed this device as a slave transmitter and is
|
||||
// requesting data.
|
||||
TWDR = i2c_slave_buffer[slave_buffer_pos];
|
||||
BUFFER_POS_INC();
|
||||
break;
|
||||
|
||||
case TW_BUS_ERROR: // something went wrong, reset twi state
|
||||
TWCR = 0;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
// Reset everything, so we are ready for the next TWI interrupt
|
||||
TWCR |= (1<<TWIE) | (1<<TWINT) | (ack<<TWEA) | (1<<TWEN);
|
||||
}
|
||||
#endif
|
|
@ -1,49 +0,0 @@
|
|||
#ifndef I2C_H
|
||||
#define I2C_H
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#ifndef F_CPU
|
||||
#define F_CPU 16000000UL
|
||||
#endif
|
||||
|
||||
#define I2C_READ 1
|
||||
#define I2C_WRITE 0
|
||||
|
||||
#define I2C_ACK 1
|
||||
#define I2C_NACK 0
|
||||
|
||||
#define SLAVE_BUFFER_SIZE 0x10
|
||||
|
||||
// i2c SCL clock frequency
|
||||
#define SCL_CLOCK 400000L
|
||||
|
||||
extern volatile uint8_t i2c_slave_buffer[SLAVE_BUFFER_SIZE];
|
||||
|
||||
void i2c_master_init(void);
|
||||
uint8_t i2c_master_start(uint8_t address);
|
||||
void i2c_master_stop(void);
|
||||
uint8_t i2c_master_write(uint8_t data);
|
||||
uint8_t i2c_master_read(int);
|
||||
void i2c_reset_state(void);
|
||||
void i2c_slave_init(uint8_t address);
|
||||
|
||||
|
||||
static inline unsigned char i2c_start_read(unsigned char addr) {
|
||||
return i2c_master_start((addr << 1) | I2C_READ);
|
||||
}
|
||||
|
||||
static inline unsigned char i2c_start_write(unsigned char addr) {
|
||||
return i2c_master_start((addr << 1) | I2C_WRITE);
|
||||
}
|
||||
|
||||
// from SSD1306 scrips
|
||||
extern unsigned char i2c_rep_start(unsigned char addr);
|
||||
extern void i2c_start_wait(unsigned char addr);
|
||||
extern unsigned char i2c_readAck(void);
|
||||
extern unsigned char i2c_readNak(void);
|
||||
extern unsigned char i2c_read(unsigned char ack);
|
||||
|
||||
#define i2c_read(ack) (ack) ? i2c_readAck() : i2c_readNak();
|
||||
|
||||
#endif
|
|
@ -3,6 +3,7 @@ This is the c configuration file for the keymap
|
|||
|
||||
Copyright 2012 Jun Wako <wakojun@gmail.com>
|
||||
Copyright 2015 Jack Humbert
|
||||
Copyright 2018 Danny Nguyen <danny@keeb.io>
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
|
@ -18,14 +19,9 @@ You should have received a copy of the GNU General Public License
|
|||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef CONFIG_USER_H
|
||||
#define CONFIG_USER_H
|
||||
|
||||
#include "config_common.h"
|
||||
#pragma once
|
||||
|
||||
/* Use I2C or Serial, not both */
|
||||
|
||||
#define USE_SERIAL
|
||||
// #define USE_I2C
|
||||
|
||||
#endif
|
||||
|
|
|
@ -1,467 +0,0 @@
|
|||
/*
|
||||
Copyright 2012 Jun Wako <wakojun@gmail.com>
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/*
|
||||
* scan matrix
|
||||
*/
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
#include <avr/io.h>
|
||||
#include "wait.h"
|
||||
#include "print.h"
|
||||
#include "debug.h"
|
||||
#include "util.h"
|
||||
#include "matrix.h"
|
||||
#include "split_util.h"
|
||||
#include "pro_micro.h"
|
||||
#include "config.h"
|
||||
#include "timer.h"
|
||||
#include "backlight.h"
|
||||
|
||||
#ifdef USE_I2C
|
||||
# include "i2c.h"
|
||||
#else // USE_SERIAL
|
||||
# include "serial.h"
|
||||
#endif
|
||||
|
||||
#ifndef DEBOUNCING_DELAY
|
||||
# define DEBOUNCING_DELAY 5
|
||||
#endif
|
||||
|
||||
#if (DEBOUNCING_DELAY > 0)
|
||||
static uint16_t debouncing_time;
|
||||
static bool debouncing = false;
|
||||
#endif
|
||||
|
||||
#if (MATRIX_COLS <= 8)
|
||||
# define print_matrix_header() print("\nr/c 01234567\n")
|
||||
# define print_matrix_row(row) print_bin_reverse8(matrix_get_row(row))
|
||||
# define matrix_bitpop(i) bitpop(matrix[i])
|
||||
# define ROW_SHIFTER ((uint8_t)1)
|
||||
#else
|
||||
# error "Currently only supports 8 COLS"
|
||||
#endif
|
||||
static matrix_row_t matrix_debouncing[MATRIX_ROWS];
|
||||
|
||||
#define ERROR_DISCONNECT_COUNT 5
|
||||
|
||||
#define SERIAL_LED_ADDR 0x00
|
||||
|
||||
#define ROWS_PER_HAND (MATRIX_ROWS/2)
|
||||
|
||||
static uint8_t error_count = 0;
|
||||
|
||||
static const uint8_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS;
|
||||
static const uint8_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS;
|
||||
|
||||
/* matrix state(1:on, 0:off) */
|
||||
static matrix_row_t matrix[MATRIX_ROWS];
|
||||
static matrix_row_t matrix_debouncing[MATRIX_ROWS];
|
||||
|
||||
#if (DIODE_DIRECTION == COL2ROW)
|
||||
static void init_cols(void);
|
||||
static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row);
|
||||
static void unselect_rows(void);
|
||||
static void select_row(uint8_t row);
|
||||
static void unselect_row(uint8_t row);
|
||||
#elif (DIODE_DIRECTION == ROW2COL)
|
||||
static void init_rows(void);
|
||||
static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col);
|
||||
static void unselect_cols(void);
|
||||
static void unselect_col(uint8_t col);
|
||||
static void select_col(uint8_t col);
|
||||
#endif
|
||||
|
||||
__attribute__ ((weak))
|
||||
void matrix_init_kb(void) {
|
||||
matrix_init_user();
|
||||
}
|
||||
|
||||
__attribute__ ((weak))
|
||||
void matrix_scan_kb(void) {
|
||||
matrix_scan_user();
|
||||
}
|
||||
|
||||
__attribute__ ((weak))
|
||||
void matrix_init_user(void) {
|
||||
}
|
||||
|
||||
__attribute__ ((weak))
|
||||
void matrix_scan_user(void) {
|
||||
}
|
||||
|
||||
inline
|
||||
uint8_t matrix_rows(void)
|
||||
{
|
||||
return MATRIX_ROWS;
|
||||
}
|
||||
|
||||
inline
|
||||
uint8_t matrix_cols(void)
|
||||
{
|
||||
return MATRIX_COLS;
|
||||
}
|
||||
|
||||
void matrix_init(void)
|
||||
{
|
||||
debug_enable = true;
|
||||
debug_matrix = true;
|
||||
debug_mouse = true;
|
||||
// initialize row and col
|
||||
unselect_rows();
|
||||
init_cols();
|
||||
|
||||
TX_RX_LED_INIT;
|
||||
|
||||
// initialize matrix state: all keys off
|
||||
for (uint8_t i=0; i < MATRIX_ROWS; i++) {
|
||||
matrix[i] = 0;
|
||||
matrix_debouncing[i] = 0;
|
||||
}
|
||||
|
||||
matrix_init_quantum();
|
||||
|
||||
}
|
||||
|
||||
uint8_t _matrix_scan(void)
|
||||
{
|
||||
int offset = isLeftHand ? 0 : (ROWS_PER_HAND);
|
||||
#if (DIODE_DIRECTION == COL2ROW)
|
||||
// Set row, read cols
|
||||
for (uint8_t current_row = 0; current_row < ROWS_PER_HAND; current_row++) {
|
||||
# if (DEBOUNCING_DELAY > 0)
|
||||
bool matrix_changed = read_cols_on_row(matrix_debouncing+offset, current_row);
|
||||
|
||||
if (matrix_changed) {
|
||||
debouncing = true;
|
||||
debouncing_time = timer_read();
|
||||
}
|
||||
|
||||
# else
|
||||
read_cols_on_row(matrix+offset, current_row);
|
||||
# endif
|
||||
|
||||
}
|
||||
|
||||
#elif (DIODE_DIRECTION == ROW2COL)
|
||||
// Set col, read rows
|
||||
for (uint8_t current_col = 0; current_col < MATRIX_COLS; current_col++) {
|
||||
# if (DEBOUNCING_DELAY > 0)
|
||||
bool matrix_changed = read_rows_on_col(matrix_debouncing+offset, current_col);
|
||||
if (matrix_changed) {
|
||||
debouncing = true;
|
||||
debouncing_time = timer_read();
|
||||
}
|
||||
# else
|
||||
read_rows_on_col(matrix+offset, current_col);
|
||||
# endif
|
||||
|
||||
}
|
||||
#endif
|
||||
|
||||
# if (DEBOUNCING_DELAY > 0)
|
||||
if (debouncing && (timer_elapsed(debouncing_time) > DEBOUNCING_DELAY)) {
|
||||
for (uint8_t i = 0; i < ROWS_PER_HAND; i++) {
|
||||
matrix[i+offset] = matrix_debouncing[i+offset];
|
||||
}
|
||||
debouncing = false;
|
||||
}
|
||||
# endif
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
#ifdef USE_I2C
|
||||
|
||||
// Get rows from other half over i2c
|
||||
int i2c_transaction(void) {
|
||||
int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
|
||||
|
||||
int err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE);
|
||||
if (err) goto i2c_error;
|
||||
|
||||
// start of matrix stored at 0x00
|
||||
err = i2c_master_write(0x00);
|
||||
if (err) goto i2c_error;
|
||||
|
||||
// Start read
|
||||
err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_READ);
|
||||
if (err) goto i2c_error;
|
||||
|
||||
if (!err) {
|
||||
int i;
|
||||
for (i = 0; i < ROWS_PER_HAND-1; ++i) {
|
||||
matrix[slaveOffset+i] = i2c_master_read(I2C_ACK);
|
||||
}
|
||||
matrix[slaveOffset+i] = i2c_master_read(I2C_NACK);
|
||||
i2c_master_stop();
|
||||
} else {
|
||||
i2c_error: // the cable is disconnceted, or something else went wrong
|
||||
i2c_reset_state();
|
||||
return err;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
#else // USE_SERIAL
|
||||
|
||||
int serial_transaction(void) {
|
||||
int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
|
||||
|
||||
if (serial_update_buffers()) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
for (int i = 0; i < ROWS_PER_HAND; ++i) {
|
||||
matrix[slaveOffset+i] = serial_slave_buffer[i];
|
||||
}
|
||||
|
||||
#ifdef BACKLIGHT_ENABLE
|
||||
// Write backlight level for slave to read
|
||||
serial_master_buffer[SERIAL_LED_ADDR] = get_backlight_level();
|
||||
#endif
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
uint8_t matrix_scan(void)
|
||||
{
|
||||
uint8_t ret = _matrix_scan();
|
||||
|
||||
#ifdef USE_I2C
|
||||
if( i2c_transaction() ) {
|
||||
#else // USE_SERIAL
|
||||
if( serial_transaction() ) {
|
||||
#endif
|
||||
// turn on the indicator led when halves are disconnected
|
||||
TXLED1;
|
||||
|
||||
error_count++;
|
||||
|
||||
if (error_count > ERROR_DISCONNECT_COUNT) {
|
||||
// reset other half if disconnected
|
||||
int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
|
||||
for (int i = 0; i < ROWS_PER_HAND; ++i) {
|
||||
matrix[slaveOffset+i] = 0;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// turn off the indicator led on no error
|
||||
TXLED0;
|
||||
error_count = 0;
|
||||
}
|
||||
matrix_scan_quantum();
|
||||
return ret;
|
||||
}
|
||||
|
||||
void matrix_slave_scan(void) {
|
||||
_matrix_scan();
|
||||
|
||||
int offset = (isLeftHand) ? 0 : ROWS_PER_HAND;
|
||||
|
||||
#ifdef USE_I2C
|
||||
for (int i = 0; i < ROWS_PER_HAND; ++i) {
|
||||
i2c_slave_buffer[i] = matrix[offset+i];
|
||||
}
|
||||
#else // USE_SERIAL
|
||||
for (int i = 0; i < ROWS_PER_HAND; ++i) {
|
||||
serial_slave_buffer[i] = matrix[offset+i];
|
||||
}
|
||||
|
||||
#ifdef BACKLIGHT_ENABLE
|
||||
// Read backlight level sent from master and update level on slave
|
||||
backlight_set(serial_master_buffer[SERIAL_LED_ADDR]);
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
|
||||
bool matrix_is_modified(void)
|
||||
{
|
||||
if (debouncing) return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
inline
|
||||
bool matrix_is_on(uint8_t row, uint8_t col)
|
||||
{
|
||||
return (matrix[row] & ((matrix_row_t)1<<col));
|
||||
}
|
||||
|
||||
inline
|
||||
matrix_row_t matrix_get_row(uint8_t row)
|
||||
{
|
||||
return matrix[row];
|
||||
}
|
||||
|
||||
void matrix_print(void)
|
||||
{
|
||||
print("\nr/c 0123456789ABCDEF\n");
|
||||
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
|
||||
phex(row); print(": ");
|
||||
pbin_reverse16(matrix_get_row(row));
|
||||
print("\n");
|
||||
}
|
||||
}
|
||||
|
||||
uint8_t matrix_key_count(void)
|
||||
{
|
||||
uint8_t count = 0;
|
||||
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
|
||||
count += bitpop16(matrix[i]);
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
#if (DIODE_DIRECTION == COL2ROW)
|
||||
|
||||
static void init_cols(void)
|
||||
{
|
||||
for(uint8_t x = 0; x < MATRIX_COLS; x++) {
|
||||
uint8_t pin = col_pins[x];
|
||||
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
|
||||
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
|
||||
}
|
||||
}
|
||||
|
||||
static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row)
|
||||
{
|
||||
// Store last value of row prior to reading
|
||||
matrix_row_t last_row_value = current_matrix[current_row];
|
||||
|
||||
// Clear data in matrix row
|
||||
current_matrix[current_row] = 0;
|
||||
|
||||
// Select row and wait for row selecton to stabilize
|
||||
select_row(current_row);
|
||||
wait_us(30);
|
||||
|
||||
// For each col...
|
||||
for(uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) {
|
||||
|
||||
// Select the col pin to read (active low)
|
||||
uint8_t pin = col_pins[col_index];
|
||||
uint8_t pin_state = (_SFR_IO8(pin >> 4) & _BV(pin & 0xF));
|
||||
|
||||
// Populate the matrix row with the state of the col pin
|
||||
current_matrix[current_row] |= pin_state ? 0 : (ROW_SHIFTER << col_index);
|
||||
}
|
||||
|
||||
// Unselect row
|
||||
unselect_row(current_row);
|
||||
|
||||
return (last_row_value != current_matrix[current_row]);
|
||||
}
|
||||
|
||||
static void select_row(uint8_t row)
|
||||
{
|
||||
uint8_t pin = row_pins[row];
|
||||
_SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); // OUT
|
||||
_SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW
|
||||
}
|
||||
|
||||
static void unselect_row(uint8_t row)
|
||||
{
|
||||
uint8_t pin = row_pins[row];
|
||||
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
|
||||
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
|
||||
}
|
||||
|
||||
static void unselect_rows(void)
|
||||
{
|
||||
for(uint8_t x = 0; x < ROWS_PER_HAND; x++) {
|
||||
uint8_t pin = row_pins[x];
|
||||
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
|
||||
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
|
||||
}
|
||||
}
|
||||
|
||||
#elif (DIODE_DIRECTION == ROW2COL)
|
||||
|
||||
static void init_rows(void)
|
||||
{
|
||||
for(uint8_t x = 0; x < ROWS_PER_HAND; x++) {
|
||||
uint8_t pin = row_pins[x];
|
||||
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
|
||||
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
|
||||
}
|
||||
}
|
||||
|
||||
static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col)
|
||||
{
|
||||
bool matrix_changed = false;
|
||||
|
||||
// Select col and wait for col selecton to stabilize
|
||||
select_col(current_col);
|
||||
wait_us(30);
|
||||
|
||||
// For each row...
|
||||
for(uint8_t row_index = 0; row_index < ROWS_PER_HAND; row_index++)
|
||||
{
|
||||
|
||||
// Store last value of row prior to reading
|
||||
matrix_row_t last_row_value = current_matrix[row_index];
|
||||
|
||||
// Check row pin state
|
||||
if ((_SFR_IO8(row_pins[row_index] >> 4) & _BV(row_pins[row_index] & 0xF)) == 0)
|
||||
{
|
||||
// Pin LO, set col bit
|
||||
current_matrix[row_index] |= (ROW_SHIFTER << current_col);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Pin HI, clear col bit
|
||||
current_matrix[row_index] &= ~(ROW_SHIFTER << current_col);
|
||||
}
|
||||
|
||||
// Determine if the matrix changed state
|
||||
if ((last_row_value != current_matrix[row_index]) && !(matrix_changed))
|
||||
{
|
||||
matrix_changed = true;
|
||||
}
|
||||
}
|
||||
|
||||
// Unselect col
|
||||
unselect_col(current_col);
|
||||
|
||||
return matrix_changed;
|
||||
}
|
||||
|
||||
static void select_col(uint8_t col)
|
||||
{
|
||||
uint8_t pin = col_pins[col];
|
||||
_SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); // OUT
|
||||
_SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW
|
||||
}
|
||||
|
||||
static void unselect_col(uint8_t col)
|
||||
{
|
||||
uint8_t pin = col_pins[col];
|
||||
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
|
||||
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
|
||||
}
|
||||
|
||||
static void unselect_cols(void)
|
||||
{
|
||||
for(uint8_t x = 0; x < MATRIX_COLS; x++) {
|
||||
uint8_t pin = col_pins[x];
|
||||
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
|
||||
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
|
@ -15,6 +15,8 @@ Example of flashing this keyboard:
|
|||
|
||||
make quefrency/rev1:default:avrdude
|
||||
|
||||
Handedness detection is already hardwired onto the PCB, so no need to deal with `EE_HANDS` or flashing .eep files.
|
||||
|
||||
See [build environment setup](https://docs.qmk.fm/build_environment_setup.html) then the [make instructions](https://docs.qmk.fm/make_instructions.html) for more information.
|
||||
|
||||
A build guide for this keyboard can be found here: [Keebio Build Guides](https://docs.keeb.io)
|
||||
|
|
|
@ -16,10 +16,9 @@ You should have received a copy of the GNU General Public License
|
|||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef REV1_CONFIG_H
|
||||
#define REV1_CONFIG_H
|
||||
#pragma once
|
||||
|
||||
#include "../config.h"
|
||||
#include QMK_KEYBOARD_CONFIG_H
|
||||
|
||||
/* USB Device descriptor parameter */
|
||||
#define VENDOR_ID 0xCB10
|
||||
|
@ -37,9 +36,7 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|||
// wiring of each half
|
||||
#define MATRIX_ROW_PINS { F4, D4, D7, E6, B4 }
|
||||
#define MATRIX_COL_PINS { F5, F6, F7, B1, B3, B2, B6, C6 }
|
||||
|
||||
/* define if matrix has ghost */
|
||||
//#define MATRIX_HAS_GHOST
|
||||
#define SPLIT_HAND_PIN D2
|
||||
|
||||
/* Set 0 if debouncing isn't needed */
|
||||
#define DEBOUNCING_DELAY 5
|
||||
|
@ -56,29 +53,5 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|||
|
||||
/* ws2812 RGB LED */
|
||||
#define RGB_DI_PIN D3
|
||||
#define RGBLIGHT_TIMER
|
||||
#define RGBLIGHT_ANIMATIONS
|
||||
#define RGBLED_NUM 16 // Number of LEDs
|
||||
#define ws2812_PORTREG PORTD
|
||||
#define ws2812_DDRREG DDRD
|
||||
|
||||
/*
|
||||
* Feature disable options
|
||||
* These options are also useful to firmware size reduction.
|
||||
*/
|
||||
|
||||
/* disable debug print */
|
||||
// #define NO_DEBUG
|
||||
|
||||
/* disable print */
|
||||
// #define NO_PRINT
|
||||
|
||||
/* disable action features */
|
||||
//#define NO_ACTION_LAYER
|
||||
//#define NO_ACTION_TAPPING
|
||||
//#define NO_ACTION_ONESHOT
|
||||
//#define NO_ACTION_MACRO
|
||||
//#define NO_ACTION_FUNCTION
|
||||
|
||||
|
||||
#endif
|
||||
|
|
|
@ -1,7 +1,5 @@
|
|||
#include "quefrency.h"
|
||||
|
||||
|
||||
void matrix_init_kb(void) {
|
||||
matrix_init_user();
|
||||
};
|
||||
|
||||
|
|
|
@ -1,7 +1,6 @@
|
|||
#ifndef REV1_H
|
||||
#define REV1_H
|
||||
#pragma once
|
||||
|
||||
#include "../quefrency.h"
|
||||
#include "quefrency.h"
|
||||
|
||||
#include "quantum.h"
|
||||
|
||||
|
@ -33,5 +32,3 @@
|
|||
{ RD1, RD2, RD3, RD4, KC_NO, RD6, RD7, RD8 }, \
|
||||
{ RE1, KC_NO, KC_NO, RE4, RE5, RE6, RE7, RE8 } \
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -1,48 +1,7 @@
|
|||
SRC += matrix.c \
|
||||
i2c.c \
|
||||
split_util.c \
|
||||
serial.c
|
||||
|
||||
# MCU name
|
||||
#MCU = at90usb1287
|
||||
MCU = atmega32u4
|
||||
|
||||
# Processor frequency.
|
||||
# This will define a symbol, F_CPU, in all source code files equal to the
|
||||
# processor frequency in Hz. You can then use this symbol in your source code to
|
||||
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
|
||||
# automatically to create a 32-bit value in your source code.
|
||||
#
|
||||
# This will be an integer division of F_USB below, as it is sourced by
|
||||
# F_USB after it has run through any CPU prescalers. Note that this value
|
||||
# does not *change* the processor frequency - it should merely be updated to
|
||||
# reflect the processor speed set externally so that the code can use accurate
|
||||
# software delays.
|
||||
F_CPU = 16000000
|
||||
|
||||
#
|
||||
# LUFA specific
|
||||
#
|
||||
# Target architecture (see library "Board Types" documentation).
|
||||
ARCH = AVR8
|
||||
|
||||
# Input clock frequency.
|
||||
# This will define a symbol, F_USB, in all source code files equal to the
|
||||
# input clock frequency (before any prescaling is performed) in Hz. This value may
|
||||
# differ from F_CPU if prescaling is used on the latter, and is required as the
|
||||
# raw input clock is fed directly to the PLL sections of the AVR for high speed
|
||||
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
|
||||
# at the end, this will be done automatically to create a 32-bit value in your
|
||||
# source code.
|
||||
#
|
||||
# If no clock division is performed on the input clock inside the AVR (via the
|
||||
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
|
||||
F_USB = $(F_CPU)
|
||||
|
||||
# Bootloader
|
||||
# This definition is optional, and if your keyboard supports multiple bootloaders of
|
||||
# different sizes, comment this out, and the correct address will be loaded
|
||||
# automatically (+60). See bootloader.mk for all options.
|
||||
BOOTLOADER = caterina
|
||||
|
||||
# Interrupt driven control endpoint task(+60)
|
||||
|
@ -69,6 +28,6 @@ USE_I2C = yes
|
|||
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
|
||||
SLEEP_LED_ENABLE = no # Breathing sleep LED during USB suspend
|
||||
|
||||
CUSTOM_MATRIX = yes
|
||||
SPLIT_KEYBOARD = yes
|
||||
|
||||
DEFAULT_FOLDER = quefrency/rev1
|
||||
|
|
|
@ -1,228 +0,0 @@
|
|||
/*
|
||||
* WARNING: be careful changing this code, it is very timing dependent
|
||||
*/
|
||||
|
||||
#ifndef F_CPU
|
||||
#define F_CPU 16000000
|
||||
#endif
|
||||
|
||||
#include <avr/io.h>
|
||||
#include <avr/interrupt.h>
|
||||
#include <util/delay.h>
|
||||
#include <stdbool.h>
|
||||
#include "serial.h"
|
||||
|
||||
#ifndef USE_I2C
|
||||
|
||||
// Serial pulse period in microseconds. Its probably a bad idea to lower this
|
||||
// value.
|
||||
#define SERIAL_DELAY 24
|
||||
|
||||
uint8_t volatile serial_slave_buffer[SERIAL_SLAVE_BUFFER_LENGTH] = {0};
|
||||
uint8_t volatile serial_master_buffer[SERIAL_MASTER_BUFFER_LENGTH] = {0};
|
||||
|
||||
#define SLAVE_DATA_CORRUPT (1<<0)
|
||||
volatile uint8_t status = 0;
|
||||
|
||||
inline static
|
||||
void serial_delay(void) {
|
||||
_delay_us(SERIAL_DELAY);
|
||||
}
|
||||
|
||||
inline static
|
||||
void serial_output(void) {
|
||||
SERIAL_PIN_DDR |= SERIAL_PIN_MASK;
|
||||
}
|
||||
|
||||
// make the serial pin an input with pull-up resistor
|
||||
inline static
|
||||
void serial_input(void) {
|
||||
SERIAL_PIN_DDR &= ~SERIAL_PIN_MASK;
|
||||
SERIAL_PIN_PORT |= SERIAL_PIN_MASK;
|
||||
}
|
||||
|
||||
inline static
|
||||
uint8_t serial_read_pin(void) {
|
||||
return !!(SERIAL_PIN_INPUT & SERIAL_PIN_MASK);
|
||||
}
|
||||
|
||||
inline static
|
||||
void serial_low(void) {
|
||||
SERIAL_PIN_PORT &= ~SERIAL_PIN_MASK;
|
||||
}
|
||||
|
||||
inline static
|
||||
void serial_high(void) {
|
||||
SERIAL_PIN_PORT |= SERIAL_PIN_MASK;
|
||||
}
|
||||
|
||||
void serial_master_init(void) {
|
||||
serial_output();
|
||||
serial_high();
|
||||
}
|
||||
|
||||
void serial_slave_init(void) {
|
||||
serial_input();
|
||||
|
||||
// Enable INT0
|
||||
EIMSK |= _BV(INT0);
|
||||
// Trigger on falling edge of INT0
|
||||
EICRA &= ~(_BV(ISC00) | _BV(ISC01));
|
||||
}
|
||||
|
||||
// Used by the master to synchronize timing with the slave.
|
||||
static
|
||||
void sync_recv(void) {
|
||||
serial_input();
|
||||
// This shouldn't hang if the slave disconnects because the
|
||||
// serial line will float to high if the slave does disconnect.
|
||||
while (!serial_read_pin());
|
||||
serial_delay();
|
||||
}
|
||||
|
||||
// Used by the slave to send a synchronization signal to the master.
|
||||
static
|
||||
void sync_send(void) {
|
||||
serial_output();
|
||||
|
||||
serial_low();
|
||||
serial_delay();
|
||||
|
||||
serial_high();
|
||||
}
|
||||
|
||||
// Reads a byte from the serial line
|
||||
static
|
||||
uint8_t serial_read_byte(void) {
|
||||
uint8_t byte = 0;
|
||||
serial_input();
|
||||
for ( uint8_t i = 0; i < 8; ++i) {
|
||||
byte = (byte << 1) | serial_read_pin();
|
||||
serial_delay();
|
||||
_delay_us(1);
|
||||
}
|
||||
|
||||
return byte;
|
||||
}
|
||||
|
||||
// Sends a byte with MSB ordering
|
||||
static
|
||||
void serial_write_byte(uint8_t data) {
|
||||
uint8_t b = 8;
|
||||
serial_output();
|
||||
while( b-- ) {
|
||||
if(data & (1 << b)) {
|
||||
serial_high();
|
||||
} else {
|
||||
serial_low();
|
||||
}
|
||||
serial_delay();
|
||||
}
|
||||
}
|
||||
|
||||
// interrupt handle to be used by the slave device
|
||||
ISR(SERIAL_PIN_INTERRUPT) {
|
||||
sync_send();
|
||||
|
||||
uint8_t checksum = 0;
|
||||
for (int i = 0; i < SERIAL_SLAVE_BUFFER_LENGTH; ++i) {
|
||||
serial_write_byte(serial_slave_buffer[i]);
|
||||
sync_send();
|
||||
checksum += serial_slave_buffer[i];
|
||||
}
|
||||
serial_write_byte(checksum);
|
||||
sync_send();
|
||||
|
||||
// wait for the sync to finish sending
|
||||
serial_delay();
|
||||
|
||||
// read the middle of pulses
|
||||
_delay_us(SERIAL_DELAY/2);
|
||||
|
||||
uint8_t checksum_computed = 0;
|
||||
for (int i = 0; i < SERIAL_MASTER_BUFFER_LENGTH; ++i) {
|
||||
serial_master_buffer[i] = serial_read_byte();
|
||||
sync_send();
|
||||
checksum_computed += serial_master_buffer[i];
|
||||
}
|
||||
uint8_t checksum_received = serial_read_byte();
|
||||
sync_send();
|
||||
|
||||
serial_input(); // end transaction
|
||||
|
||||
if ( checksum_computed != checksum_received ) {
|
||||
status |= SLAVE_DATA_CORRUPT;
|
||||
} else {
|
||||
status &= ~SLAVE_DATA_CORRUPT;
|
||||
}
|
||||
}
|
||||
|
||||
inline
|
||||
bool serial_slave_DATA_CORRUPT(void) {
|
||||
return status & SLAVE_DATA_CORRUPT;
|
||||
}
|
||||
|
||||
// Copies the serial_slave_buffer to the master and sends the
|
||||
// serial_master_buffer to the slave.
|
||||
//
|
||||
// Returns:
|
||||
// 0 => no error
|
||||
// 1 => slave did not respond
|
||||
int serial_update_buffers(void) {
|
||||
// this code is very time dependent, so we need to disable interrupts
|
||||
cli();
|
||||
|
||||
// signal to the slave that we want to start a transaction
|
||||
serial_output();
|
||||
serial_low();
|
||||
_delay_us(1);
|
||||
|
||||
// wait for the slaves response
|
||||
serial_input();
|
||||
serial_high();
|
||||
_delay_us(SERIAL_DELAY);
|
||||
|
||||
// check if the slave is present
|
||||
if (serial_read_pin()) {
|
||||
// slave failed to pull the line low, assume not present
|
||||
sei();
|
||||
return 1;
|
||||
}
|
||||
|
||||
// if the slave is present syncronize with it
|
||||
sync_recv();
|
||||
|
||||
uint8_t checksum_computed = 0;
|
||||
// receive data from the slave
|
||||
for (int i = 0; i < SERIAL_SLAVE_BUFFER_LENGTH; ++i) {
|
||||
serial_slave_buffer[i] = serial_read_byte();
|
||||
sync_recv();
|
||||
checksum_computed += serial_slave_buffer[i];
|
||||
}
|
||||
uint8_t checksum_received = serial_read_byte();
|
||||
sync_recv();
|
||||
|
||||
if (checksum_computed != checksum_received) {
|
||||
sei();
|
||||
return 1;
|
||||
}
|
||||
|
||||
uint8_t checksum = 0;
|
||||
// send data to the slave
|
||||
for (int i = 0; i < SERIAL_MASTER_BUFFER_LENGTH; ++i) {
|
||||
serial_write_byte(serial_master_buffer[i]);
|
||||
sync_recv();
|
||||
checksum += serial_master_buffer[i];
|
||||
}
|
||||
serial_write_byte(checksum);
|
||||
sync_recv();
|
||||
|
||||
// always, release the line when not in use
|
||||
serial_output();
|
||||
serial_high();
|
||||
|
||||
sei();
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif
|
|
@ -1,26 +0,0 @@
|
|||
#ifndef MY_SERIAL_H
|
||||
#define MY_SERIAL_H
|
||||
|
||||
#include "config.h"
|
||||
#include <stdbool.h>
|
||||
|
||||
/* TODO: some defines for interrupt setup */
|
||||
#define SERIAL_PIN_DDR DDRD
|
||||
#define SERIAL_PIN_PORT PORTD
|
||||
#define SERIAL_PIN_INPUT PIND
|
||||
#define SERIAL_PIN_MASK _BV(PD0)
|
||||
#define SERIAL_PIN_INTERRUPT INT0_vect
|
||||
|
||||
#define SERIAL_SLAVE_BUFFER_LENGTH MATRIX_ROWS/2
|
||||
#define SERIAL_MASTER_BUFFER_LENGTH 1
|
||||
|
||||
// Buffers for master - slave communication
|
||||
extern volatile uint8_t serial_slave_buffer[SERIAL_SLAVE_BUFFER_LENGTH];
|
||||
extern volatile uint8_t serial_master_buffer[SERIAL_MASTER_BUFFER_LENGTH];
|
||||
|
||||
void serial_master_init(void);
|
||||
void serial_slave_init(void);
|
||||
int serial_update_buffers(void);
|
||||
bool serial_slave_data_corrupt(void);
|
||||
|
||||
#endif
|
|
@ -1,80 +0,0 @@
|
|||
#include <avr/io.h>
|
||||
#include <avr/wdt.h>
|
||||
#include <avr/power.h>
|
||||
#include <avr/interrupt.h>
|
||||
#include <util/delay.h>
|
||||
#include <avr/eeprom.h>
|
||||
#include "split_util.h"
|
||||
#include "matrix.h"
|
||||
#include "keyboard.h"
|
||||
#include "config.h"
|
||||
#include "timer.h"
|
||||
#include "pincontrol.h"
|
||||
|
||||
#ifdef USE_I2C
|
||||
# include "i2c.h"
|
||||
#else
|
||||
# include "serial.h"
|
||||
#endif
|
||||
|
||||
volatile bool isLeftHand = true;
|
||||
|
||||
static void setup_handedness(void) {
|
||||
// Test D2 pin for handedness, if D2 is grounded, it's the right hand
|
||||
pinMode(D2, PinDirectionInput);
|
||||
isLeftHand = digitalRead(D2);
|
||||
}
|
||||
|
||||
static void keyboard_master_setup(void) {
|
||||
#ifdef USE_I2C
|
||||
i2c_master_init();
|
||||
#ifdef SSD1306OLED
|
||||
matrix_master_OLED_init();
|
||||
#endif
|
||||
#else
|
||||
serial_master_init();
|
||||
#endif
|
||||
}
|
||||
|
||||
static void keyboard_slave_setup(void) {
|
||||
timer_init();
|
||||
#ifdef USE_I2C
|
||||
i2c_slave_init(SLAVE_I2C_ADDRESS);
|
||||
#else
|
||||
serial_slave_init();
|
||||
#endif
|
||||
}
|
||||
|
||||
bool has_usb(void) {
|
||||
USBCON |= (1 << OTGPADE); //enables VBUS pad
|
||||
_delay_us(5);
|
||||
return (USBSTA & (1<<VBUS)); //checks state of VBUS
|
||||
}
|
||||
|
||||
void split_keyboard_setup(void) {
|
||||
setup_handedness();
|
||||
|
||||
if (has_usb()) {
|
||||
keyboard_master_setup();
|
||||
} else {
|
||||
keyboard_slave_setup();
|
||||
}
|
||||
sei();
|
||||
}
|
||||
|
||||
void keyboard_slave_loop(void) {
|
||||
matrix_init();
|
||||
|
||||
while (1) {
|
||||
matrix_slave_scan();
|
||||
}
|
||||
}
|
||||
|
||||
// this code runs before the usb and keyboard is initialized
|
||||
void matrix_setup(void) {
|
||||
split_keyboard_setup();
|
||||
|
||||
if (!has_usb()) {
|
||||
keyboard_slave_loop();
|
||||
}
|
||||
}
|
|
@ -1,20 +0,0 @@
|
|||
#ifndef SPLIT_KEYBOARD_UTIL_H
|
||||
#define SPLIT_KEYBOARD_UTIL_H
|
||||
|
||||
#include <stdbool.h>
|
||||
#include "eeconfig.h"
|
||||
|
||||
#define SLAVE_I2C_ADDRESS 0x32
|
||||
|
||||
extern volatile bool isLeftHand;
|
||||
|
||||
// slave version of matix scan, defined in matrix.c
|
||||
void matrix_slave_scan(void);
|
||||
|
||||
void split_keyboard_setup(void);
|
||||
bool has_usb(void);
|
||||
void keyboard_slave_loop(void);
|
||||
|
||||
void matrix_master_OLED_init (void);
|
||||
|
||||
#endif
|
Loading…
Reference in New Issue