Merge remote-tracking branch 'origin/master' into develop

master
QMK Bot 2024-03-08 11:24:40 +00:00
commit 86f7531173
1 changed files with 74 additions and 0 deletions

View File

@ -117,3 +117,77 @@ Using the [standard `compile_commands.json` database](https://clang.llvm.org/doc
1. Start typing `clangd: Restart Language Server` and select it when it appears.
Now you're ready to code QMK Firmware in VS Code!
# Debugging ARM MCUs with Visual Studio Code
**...and a Black Magic Probe.**
Visual Studio Code has the ability to debug applications, but requires some configuration in order to get it to be able to do so for ARM targets.
This documentation describes a known-working configuration for setting up the use of a Black Magic Probe to debug using VS Code.
It is assumed that you've correctly set up the electrical connectivity of the Black Magic Probe with your MCU. Wiring up `NRST`, `SWDIO`, `SWCLK`, and `GND` should be enough.
Install the following plugin into VS Code:
* [Cortex-Debug](https://marketplace.visualstudio.com/items?itemName=marus25.cortex-debug) -
This adds debugger support for ARM Cortex targets to VS Code.
A debugging target for the MCU for your board needs to be defined, and can be done so by adding the following to a `.vscode/launch.json` file:
```json
{
// Use IntelliSense to learn about possible attributes.
// Hover to view descriptions of existing attributes.
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
"version": "0.2.0",
"configurations": [
{
"name": "Black Magic Probe (OneKey Proton-C)",
"type": "cortex-debug",
"request": "launch",
"cwd": "${workspaceRoot}",
"executable": "${workspaceRoot}/.build/handwired_onekey_proton_c_default.elf",
"servertype": "bmp",
"BMPGDBSerialPort": "COM4",
"svdFile": "Q:\\svd\\STM32F303.svd",
"device": "STM32F303",
"v1": false,
"windows": {
"armToolchainPath": "C:\\QMK_MSYS\\mingw64\\bin"
}
}
]
}
```
You'll need to perform some modifications to the file above in order to target your specific device:
* `"name"`: Can be anything, but if you're debugging multiple targets you'll want something descriptive here.
* `"cwd"`: The path to the QMK Firmware repository root directory -- _if using the `.vscode` directory existing in the `qmk_firmware` git repository, the default above should be correct_
* `"executable"`: The path to the `elf` file generated as part of the build for your keyboard -- _exists in `<qmk_firmware>/.build`_
* `"BMPGDBSerialPort"`: The `COM` port under Windows, or the `/dev/...` path for Linux/macOS. Two serial port devices will be created -- the Black Magic Probe debug port is *usually* the first. If it doesn't work, try the second.
* `"svdFile"`: _[Optional]_ The path to the SVD file that defines the register layout for the MCU -- the appropriate file can be downloaded from the [cmsis-svd repository](https://github.com/posborne/cmsis-svd/tree/master/data/STMicro)
* `"device"`: The name of the MCU, which matches the `<name>` tag at the top of the downloaded `svd` file.
* `"armToolchainPath"`: _[Optional]_ The path to the ARM toolchain installation location on Windows -- under normal circumstances Linux/macOS will auto-detect this correctly and will not need to be specified.
!> Windows builds of QMK Firmware are generally compiled using QMK MSYS, and the path to gdb's location (`C:\\QMK_MSYS\\mingw64\\bin`) needs to be specified under `armToolchainPath` for it to be detected. You may also need to change the GDB path to point at `C:\\QMK_MSYS\\mingw64\\bin\\gdb-multiarch.exe` in the VSCode Cortex-Debug user settings: ![VSCode Settings](https://i.imgur.com/EGrPM1L.png)
Optionally, the following modifications should also be made to the keyboard's `rules.mk` file to disable optimisations -- not strictly required but will ensure breakpoints and variable viewing works correctly:
```makefile
# Disable optimisations for debugging purposes
LTO_ENABLE = no
OPT = g
DEBUG = 3
```
At this point, you should build and flash your firmware through normal methods (`qmk compile ...` and `qmk flash ...`).
Once completed, you can:
* Switch to the debug view in VS Code (in the sidebar, the Play button with a bug next to it)
* Select the newly-created debug target in the dropdown at the top of the sidebar
* Click the green play button next to the dropdown
VS Code's debugger will then start executing the compiled firmware on the MCU.
At this stage, you should have full debugging set up, with breakpoints and variable listings working!