Added custom center point to rgb matrix
parent
270b39b2eb
commit
5c7b37bbbd
|
@ -144,7 +144,7 @@ const led_config_t g_led_config = { {
|
||||||
} };
|
} };
|
||||||
```
|
```
|
||||||
|
|
||||||
The first part, `// Key Matrix to LED Index`, tells the system what key this LED represents by using the key's electrical matrix row & col. The second part, `// LED Index to Physical Position` represents the LED's physical position on the keyboard. The first value, `x`, is between 0-224 (inclusive), and the second value, `y`, is between 0-64 (inclusive). This range is due to effect that calculate the center or halves for their animations. The easiest way to calculate these positions is imagine your keyboard is a grid, and the top left of the keyboard represents x, y coordinate 0, 0 and the bottom right of your keyboard represents 224, 64. Using this as a basis, you can use the following formula to calculate the physical position:
|
The first part, `// Key Matrix to LED Index`, tells the system what key this LED represents by using the key's electrical matrix row & col. The second part, `// LED Index to Physical Position` represents the LED's physical `{ x, y }` position on the keyboard. The default expected range of values for `{ x, y }` is the inclusive range `{ 0..224, 0..64 }`. This default expected range is due to effects that calculate the center of the keyboard for their animations. The easiest way to calculate these positions is imagine your keyboard is a grid, and the top left of the keyboard represents `{ x, y }` coordinate `{ 0, 0 }` and the bottom right of your keyboard represents `{ 224, 64 }`. Using this as a basis, you can use the following formula to calculate the physical position:
|
||||||
|
|
||||||
```C
|
```C
|
||||||
x = 224 / (NUMBER_OF_COLS - 1) * COL_POSITION
|
x = 224 / (NUMBER_OF_COLS - 1) * COL_POSITION
|
||||||
|
@ -153,6 +153,8 @@ y = 64 / (NUMBER_OF_ROWS - 1) * ROW_POSITION
|
||||||
|
|
||||||
Where NUMBER_OF_COLS, NUMBER_OF_ROWS, COL_POSITION, & ROW_POSITION are all based on the physical layout of your keyboard, not the electrical layout.
|
Where NUMBER_OF_COLS, NUMBER_OF_ROWS, COL_POSITION, & ROW_POSITION are all based on the physical layout of your keyboard, not the electrical layout.
|
||||||
|
|
||||||
|
As mentioned earlier, the center of the keyboard by default is expected to be `{ 112, 32 }`, but this can be changed if you want to more accurately calculate the LED's physical `{ x, y }` positions. Keyboard designers can implement `#define RGB_MATRIX_CENTER { 112, 32 }` in their config.h file with the new center point of the keyboard, or where they want it to be allowing more possibilities for the `{ x, y }` values. Do note that the maximum value for x or y is 255, and the recommended maximum is 224 as this gives animations runoff room before they reset.
|
||||||
|
|
||||||
`// LED Index to Flag` is a bitmask, whether or not a certain LEDs is of a certain type. It is recommended that LEDs are set to only 1 type.
|
`// LED Index to Flag` is a bitmask, whether or not a certain LEDs is of a certain type. It is recommended that LEDs are set to only 1 type.
|
||||||
|
|
||||||
## Flags
|
## Flags
|
||||||
|
|
|
@ -26,6 +26,12 @@
|
||||||
|
|
||||||
#include "lib/lib8tion/lib8tion.h"
|
#include "lib/lib8tion/lib8tion.h"
|
||||||
|
|
||||||
|
#ifndef RGB_MATRIX_CENTER
|
||||||
|
const point_t k_rgb_matrix_center = { 112, 32 };
|
||||||
|
#else
|
||||||
|
const point_t k_rgb_matrix_center = RGB_MATRIX_CENTER;
|
||||||
|
#endif
|
||||||
|
|
||||||
// ------------------------------------------
|
// ------------------------------------------
|
||||||
// -----Begin rgb effect includes macros-----
|
// -----Begin rgb effect includes macros-----
|
||||||
#define RGB_MATRIX_EFFECT(name)
|
#define RGB_MATRIX_EFFECT(name)
|
||||||
|
|
|
@ -9,8 +9,8 @@ bool CYCLE_OUT_IN(effect_params_t* params) {
|
||||||
uint8_t time = scale16by8(g_rgb_counters.tick, rgb_matrix_config.speed / 4);
|
uint8_t time = scale16by8(g_rgb_counters.tick, rgb_matrix_config.speed / 4);
|
||||||
for (uint8_t i = led_min; i < led_max; i++) {
|
for (uint8_t i = led_min; i < led_max; i++) {
|
||||||
RGB_MATRIX_TEST_LED_FLAGS();
|
RGB_MATRIX_TEST_LED_FLAGS();
|
||||||
int16_t dx = g_led_config.point[i].x - 112;
|
int16_t dx = g_led_config.point[i].x - k_rgb_matrix_center.x;
|
||||||
int16_t dy = g_led_config.point[i].y - 32;
|
int16_t dy = g_led_config.point[i].y - k_rgb_matrix_center.y;
|
||||||
uint8_t dist = sqrt16(dx * dx + dy * dy);
|
uint8_t dist = sqrt16(dx * dx + dy * dy);
|
||||||
hsv.h = 3 * dist / 2 + time;
|
hsv.h = 3 * dist / 2 + time;
|
||||||
RGB rgb = hsv_to_rgb(hsv);
|
RGB rgb = hsv_to_rgb(hsv);
|
||||||
|
|
|
@ -9,8 +9,8 @@ bool CYCLE_OUT_IN_DUAL(effect_params_t* params) {
|
||||||
uint8_t time = scale16by8(g_rgb_counters.tick, rgb_matrix_config.speed / 4);
|
uint8_t time = scale16by8(g_rgb_counters.tick, rgb_matrix_config.speed / 4);
|
||||||
for (uint8_t i = led_min; i < led_max; i++) {
|
for (uint8_t i = led_min; i < led_max; i++) {
|
||||||
RGB_MATRIX_TEST_LED_FLAGS();
|
RGB_MATRIX_TEST_LED_FLAGS();
|
||||||
int16_t dx = 56 - abs8(g_led_config.point[i].x - 112);
|
int16_t dx = (k_rgb_matrix_center.x / 2) - abs8(g_led_config.point[i].x - k_rgb_matrix_center.x);
|
||||||
int16_t dy = g_led_config.point[i].y - 32;
|
int16_t dy = g_led_config.point[i].y - k_rgb_matrix_center.y;
|
||||||
uint8_t dist = sqrt16(dx * dx + dy * dy);
|
uint8_t dist = sqrt16(dx * dx + dy * dy);
|
||||||
hsv.h = 3 * dist + time;
|
hsv.h = 3 * dist + time;
|
||||||
RGB rgb = hsv_to_rgb(hsv);
|
RGB rgb = hsv_to_rgb(hsv);
|
||||||
|
|
|
@ -11,7 +11,7 @@ bool DUAL_BEACON(effect_params_t* params) {
|
||||||
int8_t sin_value = sin8(time) - 128;
|
int8_t sin_value = sin8(time) - 128;
|
||||||
for (uint8_t i = led_min; i < led_max; i++) {
|
for (uint8_t i = led_min; i < led_max; i++) {
|
||||||
RGB_MATRIX_TEST_LED_FLAGS();
|
RGB_MATRIX_TEST_LED_FLAGS();
|
||||||
hsv.h = ((g_led_config.point[i].y - 32) * cos_value + (g_led_config.point[i].x - 112) * sin_value) / 128 + rgb_matrix_config.hue;
|
hsv.h = ((g_led_config.point[i].y - k_rgb_matrix_center.y) * cos_value + (g_led_config.point[i].x - k_rgb_matrix_center.x) * sin_value) / 128 + rgb_matrix_config.hue;
|
||||||
RGB rgb = hsv_to_rgb(hsv);
|
RGB rgb = hsv_to_rgb(hsv);
|
||||||
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
|
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
|
||||||
}
|
}
|
||||||
|
|
|
@ -11,7 +11,7 @@ bool RAINBOW_BEACON(effect_params_t* params) {
|
||||||
int16_t sin_value = 2 * (sin8(time) - 128);
|
int16_t sin_value = 2 * (sin8(time) - 128);
|
||||||
for (uint8_t i = led_min; i < led_max; i++) {
|
for (uint8_t i = led_min; i < led_max; i++) {
|
||||||
RGB_MATRIX_TEST_LED_FLAGS();
|
RGB_MATRIX_TEST_LED_FLAGS();
|
||||||
hsv.h = ((g_led_config.point[i].y - 32) * cos_value + (g_led_config.point[i].x - 112) * sin_value) / 128 + rgb_matrix_config.hue;
|
hsv.h = ((g_led_config.point[i].y - k_rgb_matrix_center.y) * cos_value + (g_led_config.point[i].x - k_rgb_matrix_center.x) * sin_value) / 128 + rgb_matrix_config.hue;
|
||||||
RGB rgb = hsv_to_rgb(hsv);
|
RGB rgb = hsv_to_rgb(hsv);
|
||||||
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
|
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
|
||||||
}
|
}
|
||||||
|
|
|
@ -11,7 +11,7 @@ bool PINWHEELS(effect_params_t* params) {
|
||||||
int16_t sin_value = 3 * (sin8(time) - 128);
|
int16_t sin_value = 3 * (sin8(time) - 128);
|
||||||
for (uint8_t i = led_min; i < led_max; i++) {
|
for (uint8_t i = led_min; i < led_max; i++) {
|
||||||
RGB_MATRIX_TEST_LED_FLAGS();
|
RGB_MATRIX_TEST_LED_FLAGS();
|
||||||
hsv.h = ((g_led_config.point[i].y - 32) * cos_value + (56 - abs8(g_led_config.point[i].x - 112)) * sin_value) / 128 + rgb_matrix_config.hue;
|
hsv.h = ((g_led_config.point[i].y - k_rgb_matrix_center.y) * cos_value + (56 - abs8(g_led_config.point[i].x - k_rgb_matrix_center.x)) * sin_value) / 128 + rgb_matrix_config.hue;
|
||||||
RGB rgb = hsv_to_rgb(hsv);
|
RGB rgb = hsv_to_rgb(hsv);
|
||||||
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
|
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in New Issue