Next set of split_common changes (#4974)
* Update split_common to use standard i2c drivers * Eliminate RGB_DIRTY/BACKLIT_DIRTY * Fix avr i2c_master error handling * Fix i2c_slave addressing * Remove unneeded timeout on i2c_stop() * Fix RGB I2C transfers * Remove incorrect commentmaster
parent
25bb059e4e
commit
37932c293c
|
@ -308,16 +308,16 @@ ifeq ($(strip $(SPLIT_KEYBOARD)), yes)
|
|||
OPT_DEFS += -DSPLIT_KEYBOARD
|
||||
|
||||
# Include files used by all split keyboards
|
||||
QUANTUM_SRC += $(QUANTUM_DIR)/split_common/split_flags.c \
|
||||
$(QUANTUM_DIR)/split_common/split_util.c
|
||||
QUANTUM_SRC += $(QUANTUM_DIR)/split_common/split_util.c
|
||||
|
||||
# Determine which (if any) transport files are required
|
||||
ifneq ($(strip $(SPLIT_TRANSPORT)), custom)
|
||||
QUANTUM_SRC += $(QUANTUM_DIR)/split_common/transport.c
|
||||
# Functions added via QUANTUM_LIB_SRC are only included in the final binary if they're called.
|
||||
# Unused functions are pruned away, which is why we can add both drivers here without bloat.
|
||||
QUANTUM_LIB_SRC += $(QUANTUM_DIR)/split_common/i2c.c \
|
||||
$(QUANTUM_DIR)/split_common/serial.c
|
||||
# Unused functions are pruned away, which is why we can add multiple drivers here without bloat.
|
||||
QUANTUM_LIB_SRC += $(QUANTUM_DIR)/split_common/serial.c \
|
||||
i2c_master.c \
|
||||
i2c_slave.c
|
||||
endif
|
||||
COMMON_VPATH += $(QUANTUM_PATH)/split_common
|
||||
endif
|
||||
|
|
|
@ -12,7 +12,7 @@ The I2C Master drivers used in QMK have a set of common functions to allow porta
|
|||
|`uint8_t i2c_receive(uint8_t address, uint8_t* data, uint16_t length, uint16_t timeout);` |Receive data over I2C. Address is the 7-bit slave address without the direction. Saves number of bytes specified by `length` in `data` array. Returns status of transaction. |
|
||||
|`uint8_t i2c_writeReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length, uint16_t timeout);` |Same as the `i2c_transmit` function but `regaddr` sets where in the slave the data will be written. |
|
||||
|`uint8_t i2c_readReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length, uint16_t timeout);` |Same as the `i2c_receive` function but `regaddr` sets from where in the slave the data will be read. |
|
||||
|`uint8_t i2c_stop(uint16_t timeout);` |Stops the I2C driver. |
|
||||
|`uint8_t i2c_stop(void);` |Ends an I2C transaction. |
|
||||
|
||||
### Function Return
|
||||
|
||||
|
|
|
@ -101,8 +101,7 @@ uint8_t i2c_readReg(uint8_t devaddr, uint8_t* regaddr, uint8_t* data, uint16_t l
|
|||
return i2cMasterTransmitTimeout(&I2C_DRIVER, (i2c_address >> 1), regaddr, 1, data, length, MS2ST(timeout));
|
||||
}
|
||||
|
||||
// This is usually not needed. It releases the driver to allow pins to become GPIO again.
|
||||
uint8_t i2c_stop(uint16_t timeout)
|
||||
uint8_t i2c_stop(void)
|
||||
{
|
||||
i2cStop(&I2C_DRIVER);
|
||||
return 0;
|
||||
|
|
|
@ -47,4 +47,4 @@ uint8_t i2c_receive(uint8_t address, uint8_t* data, uint16_t length, uint16_t ti
|
|||
uint8_t i2c_transmit_receive(uint8_t address, uint8_t * tx_body, uint16_t tx_length, uint8_t * rx_body, uint16_t rx_length);
|
||||
uint8_t i2c_writeReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length, uint16_t timeout);
|
||||
uint8_t i2c_readReg(uint8_t devaddr, uint8_t* regaddr, uint8_t* data, uint16_t length, uint16_t timeout);
|
||||
uint8_t i2c_stop(uint16_t timeout);
|
||||
uint8_t i2c_stop(void);
|
||||
|
|
|
@ -7,43 +7,44 @@
|
|||
|
||||
#include "i2c_master.h"
|
||||
#include "timer.h"
|
||||
#include "wait.h"
|
||||
|
||||
#ifndef F_SCL
|
||||
#define F_SCL 400000UL // SCL frequency
|
||||
# define F_SCL 400000UL // SCL frequency
|
||||
#endif
|
||||
#define Prescaler 1
|
||||
#define TWBR_val ((((F_CPU / F_SCL) / Prescaler) - 16 ) / 2)
|
||||
#define TWBR_val ((((F_CPU / F_SCL) / Prescaler) - 16) / 2)
|
||||
|
||||
void i2c_init(void)
|
||||
{
|
||||
TWSR = 0; /* no prescaler */
|
||||
void i2c_init(void) {
|
||||
TWSR = 0; /* no prescaler */
|
||||
TWBR = (uint8_t)TWBR_val;
|
||||
}
|
||||
|
||||
i2c_status_t i2c_start(uint8_t address, uint16_t timeout)
|
||||
{
|
||||
i2c_status_t i2c_start(uint8_t address, uint16_t timeout) {
|
||||
// reset TWI control register
|
||||
TWCR = 0;
|
||||
// transmit START condition
|
||||
TWCR = (1<<TWINT) | (1<<TWSTA) | (1<<TWEN);
|
||||
TWCR = (1 << TWINT) | (1 << TWSTA) | (1 << TWEN);
|
||||
|
||||
uint16_t timeout_timer = timer_read();
|
||||
while( !(TWCR & (1<<TWINT)) ) {
|
||||
while (!(TWCR & (1 << TWINT))) {
|
||||
if ((timeout != I2C_TIMEOUT_INFINITE) && ((timer_read() - timeout_timer) >= timeout)) {
|
||||
return I2C_STATUS_TIMEOUT;
|
||||
}
|
||||
}
|
||||
|
||||
// check if the start condition was successfully transmitted
|
||||
if(((TW_STATUS & 0xF8) != TW_START) && ((TW_STATUS & 0xF8) != TW_REP_START)){ return I2C_STATUS_ERROR; }
|
||||
if (((TW_STATUS & 0xF8) != TW_START) && ((TW_STATUS & 0xF8) != TW_REP_START)) {
|
||||
return I2C_STATUS_ERROR;
|
||||
}
|
||||
|
||||
// load slave address into data register
|
||||
TWDR = address;
|
||||
// start transmission of address
|
||||
TWCR = (1<<TWINT) | (1<<TWEN);
|
||||
TWCR = (1 << TWINT) | (1 << TWEN);
|
||||
|
||||
timeout_timer = timer_read();
|
||||
while( !(TWCR & (1<<TWINT)) ) {
|
||||
while (!(TWCR & (1 << TWINT))) {
|
||||
if ((timeout != I2C_TIMEOUT_INFINITE) && ((timer_read() - timeout_timer) >= timeout)) {
|
||||
return I2C_STATUS_TIMEOUT;
|
||||
}
|
||||
|
@ -51,38 +52,39 @@ i2c_status_t i2c_start(uint8_t address, uint16_t timeout)
|
|||
|
||||
// check if the device has acknowledged the READ / WRITE mode
|
||||
uint8_t twst = TW_STATUS & 0xF8;
|
||||
if ( (twst != TW_MT_SLA_ACK) && (twst != TW_MR_SLA_ACK) ) return I2C_STATUS_ERROR;
|
||||
if ((twst != TW_MT_SLA_ACK) && (twst != TW_MR_SLA_ACK)) {
|
||||
return I2C_STATUS_ERROR;
|
||||
}
|
||||
|
||||
return I2C_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
i2c_status_t i2c_write(uint8_t data, uint16_t timeout)
|
||||
{
|
||||
i2c_status_t i2c_write(uint8_t data, uint16_t timeout) {
|
||||
// load data into data register
|
||||
TWDR = data;
|
||||
// start transmission of data
|
||||
TWCR = (1<<TWINT) | (1<<TWEN);
|
||||
TWCR = (1 << TWINT) | (1 << TWEN);
|
||||
|
||||
uint16_t timeout_timer = timer_read();
|
||||
while( !(TWCR & (1<<TWINT)) ) {
|
||||
while (!(TWCR & (1 << TWINT))) {
|
||||
if ((timeout != I2C_TIMEOUT_INFINITE) && ((timer_read() - timeout_timer) >= timeout)) {
|
||||
return I2C_STATUS_TIMEOUT;
|
||||
}
|
||||
}
|
||||
|
||||
if( (TW_STATUS & 0xF8) != TW_MT_DATA_ACK ){ return I2C_STATUS_ERROR; }
|
||||
if ((TW_STATUS & 0xF8) != TW_MT_DATA_ACK) {
|
||||
return I2C_STATUS_ERROR;
|
||||
}
|
||||
|
||||
return I2C_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
int16_t i2c_read_ack(uint16_t timeout)
|
||||
{
|
||||
|
||||
int16_t i2c_read_ack(uint16_t timeout) {
|
||||
// start TWI module and acknowledge data after reception
|
||||
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWEA);
|
||||
TWCR = (1 << TWINT) | (1 << TWEN) | (1 << TWEA);
|
||||
|
||||
uint16_t timeout_timer = timer_read();
|
||||
while( !(TWCR & (1<<TWINT)) ) {
|
||||
while (!(TWCR & (1 << TWINT))) {
|
||||
if ((timeout != I2C_TIMEOUT_INFINITE) && ((timer_read() - timeout_timer) >= timeout)) {
|
||||
return I2C_STATUS_TIMEOUT;
|
||||
}
|
||||
|
@ -92,14 +94,12 @@ int16_t i2c_read_ack(uint16_t timeout)
|
|||
return TWDR;
|
||||
}
|
||||
|
||||
int16_t i2c_read_nack(uint16_t timeout)
|
||||
{
|
||||
|
||||
int16_t i2c_read_nack(uint16_t timeout) {
|
||||
// start receiving without acknowledging reception
|
||||
TWCR = (1<<TWINT) | (1<<TWEN);
|
||||
TWCR = (1 << TWINT) | (1 << TWEN);
|
||||
|
||||
uint16_t timeout_timer = timer_read();
|
||||
while( !(TWCR & (1<<TWINT)) ) {
|
||||
while (!(TWCR & (1 << TWINT))) {
|
||||
if ((timeout != I2C_TIMEOUT_INFINITE) && ((timer_read() - timeout_timer) >= timeout)) {
|
||||
return I2C_STATUS_TIMEOUT;
|
||||
}
|
||||
|
@ -109,115 +109,89 @@ int16_t i2c_read_nack(uint16_t timeout)
|
|||
return TWDR;
|
||||
}
|
||||
|
||||
i2c_status_t i2c_transmit(uint8_t address, uint8_t* data, uint16_t length, uint16_t timeout)
|
||||
{
|
||||
i2c_status_t i2c_transmit(uint8_t address, uint8_t* data, uint16_t length, uint16_t timeout) {
|
||||
i2c_status_t status = i2c_start(address | I2C_WRITE, timeout);
|
||||
if (status) return status;
|
||||
|
||||
for (uint16_t i = 0; i < length; i++) {
|
||||
for (uint16_t i = 0; i < length && status >= 0; i++) {
|
||||
status = i2c_write(data[i], timeout);
|
||||
if (status) return status;
|
||||
}
|
||||
|
||||
status = i2c_stop(timeout);
|
||||
if (status) return status;
|
||||
i2c_stop();
|
||||
|
||||
return I2C_STATUS_SUCCESS;
|
||||
return status;
|
||||
}
|
||||
|
||||
i2c_status_t i2c_receive(uint8_t address, uint8_t* data, uint16_t length, uint16_t timeout)
|
||||
{
|
||||
i2c_status_t i2c_receive(uint8_t address, uint8_t* data, uint16_t length, uint16_t timeout) {
|
||||
i2c_status_t status = i2c_start(address | I2C_READ, timeout);
|
||||
if (status) return status;
|
||||
|
||||
for (uint16_t i = 0; i < (length-1); i++) {
|
||||
for (uint16_t i = 0; i < (length - 1) && status >= 0; i++) {
|
||||
status = i2c_read_ack(timeout);
|
||||
if (status >= 0) {
|
||||
data[i] = status;
|
||||
} else {
|
||||
return status;
|
||||
}
|
||||
}
|
||||
|
||||
status = i2c_read_nack(timeout);
|
||||
if (status >= 0 ) {
|
||||
data[(length-1)] = status;
|
||||
} else {
|
||||
return status;
|
||||
if (status >= 0) {
|
||||
status = i2c_read_nack(timeout);
|
||||
if (status >= 0) {
|
||||
data[(length - 1)] = status;
|
||||
}
|
||||
}
|
||||
|
||||
status = i2c_stop(timeout);
|
||||
if (status) return status;
|
||||
i2c_stop();
|
||||
|
||||
return I2C_STATUS_SUCCESS;
|
||||
return status;
|
||||
}
|
||||
|
||||
i2c_status_t i2c_writeReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length, uint16_t timeout)
|
||||
{
|
||||
i2c_status_t i2c_writeReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length, uint16_t timeout) {
|
||||
i2c_status_t status = i2c_start(devaddr | 0x00, timeout);
|
||||
if (status) return status;
|
||||
if (status >= 0) {
|
||||
status = i2c_write(regaddr, timeout);
|
||||
|
||||
status = i2c_write(regaddr, timeout);
|
||||
if (status) return status;
|
||||
|
||||
for (uint16_t i = 0; i < length; i++) {
|
||||
status = i2c_write(data[i], timeout);
|
||||
if (status) return status;
|
||||
for (uint16_t i = 0; i < length && status >= 0; i++) {
|
||||
status = i2c_write(data[i], timeout);
|
||||
}
|
||||
}
|
||||
|
||||
status = i2c_stop(timeout);
|
||||
if (status) return status;
|
||||
i2c_stop();
|
||||
|
||||
return I2C_STATUS_SUCCESS;
|
||||
return status;
|
||||
}
|
||||
|
||||
i2c_status_t i2c_readReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length, uint16_t timeout)
|
||||
{
|
||||
i2c_status_t i2c_readReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length, uint16_t timeout) {
|
||||
i2c_status_t status = i2c_start(devaddr, timeout);
|
||||
if (status) return status;
|
||||
if (status < 0) {
|
||||
goto error;
|
||||
}
|
||||
|
||||
status = i2c_write(regaddr, timeout);
|
||||
if (status) return status;
|
||||
|
||||
status = i2c_stop(timeout);
|
||||
if (status) return status;
|
||||
if (status < 0) {
|
||||
goto error;
|
||||
}
|
||||
|
||||
status = i2c_start(devaddr | 0x01, timeout);
|
||||
if (status) return status;
|
||||
|
||||
for (uint16_t i = 0; i < (length-1); i++) {
|
||||
for (uint16_t i = 0; i < (length - 1) && status >= 0; i++) {
|
||||
status = i2c_read_ack(timeout);
|
||||
if (status >= 0) {
|
||||
data[i] = status;
|
||||
} else {
|
||||
return status;
|
||||
}
|
||||
}
|
||||
|
||||
status = i2c_read_nack(timeout);
|
||||
if (status >= 0 ) {
|
||||
data[(length-1)] = status;
|
||||
} else {
|
||||
return status;
|
||||
if (status >= 0) {
|
||||
status = i2c_read_nack(timeout);
|
||||
if (status >= 0) {
|
||||
data[(length - 1)] = status;
|
||||
}
|
||||
}
|
||||
|
||||
status = i2c_stop(timeout);
|
||||
if (status) return status;
|
||||
error:
|
||||
i2c_stop();
|
||||
|
||||
return I2C_STATUS_SUCCESS;
|
||||
return status;
|
||||
}
|
||||
|
||||
i2c_status_t i2c_stop(uint16_t timeout)
|
||||
{
|
||||
void i2c_stop(void) {
|
||||
// transmit STOP condition
|
||||
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTO);
|
||||
|
||||
uint16_t timeout_timer = timer_read();
|
||||
while(TWCR & (1<<TWSTO)) {
|
||||
if ((timeout != I2C_TIMEOUT_INFINITE) && ((timer_read() - timeout_timer) >= timeout)) {
|
||||
return I2C_STATUS_TIMEOUT;
|
||||
}
|
||||
}
|
||||
|
||||
return I2C_STATUS_SUCCESS;
|
||||
TWCR = (1 << TWINT) | (1 << TWEN) | (1 << TWSTO);
|
||||
}
|
||||
|
|
|
@ -26,6 +26,6 @@ i2c_status_t i2c_transmit(uint8_t address, uint8_t* data, uint16_t length, uint1
|
|||
i2c_status_t i2c_receive(uint8_t address, uint8_t* data, uint16_t length, uint16_t timeout);
|
||||
i2c_status_t i2c_writeReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length, uint16_t timeout);
|
||||
i2c_status_t i2c_readReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length, uint16_t timeout);
|
||||
i2c_status_t i2c_stop(uint16_t timeout);
|
||||
void i2c_stop(void);
|
||||
|
||||
#endif // I2C_MASTER_H
|
|
@ -16,7 +16,7 @@ static volatile bool slave_has_register_set = false;
|
|||
|
||||
void i2c_slave_init(uint8_t address){
|
||||
// load address into TWI address register
|
||||
TWAR = (address << 1);
|
||||
TWAR = address;
|
||||
// set the TWCR to enable address matching and enable TWI, clear TWINT, enable TWI interrupt
|
||||
TWCR = (1 << TWIE) | (1 << TWEA) | (1 << TWINT) | (1 << TWEN);
|
||||
}
|
||||
|
|
|
@ -109,7 +109,7 @@ uint8_t i2c_readReg(uint8_t devaddr, uint8_t* regaddr, uint8_t* data, uint16_t l
|
|||
}
|
||||
|
||||
// This is usually not needed. It releases the driver to allow pins to become GPIO again.
|
||||
uint8_t i2c_stop(uint16_t timeout)
|
||||
uint8_t i2c_stop(void)
|
||||
{
|
||||
i2cStop(&I2C_DRIVER);
|
||||
return 0;
|
||||
|
|
|
@ -455,10 +455,10 @@ i2c_status_t i2c_transaction(uint8_t address, uint32_t mask, uint8_t col_offset)
|
|||
matrix[MATRIX_ROWS - 1] |= ((uint32_t)err << (MATRIX_COLS_SCANNED + col_offset)); //add new bits at the end
|
||||
|
||||
} else {
|
||||
i2c_stop(10);
|
||||
i2c_stop();
|
||||
return 1;
|
||||
}
|
||||
|
||||
i2c_stop(10);
|
||||
i2c_stop();
|
||||
return 0;
|
||||
}
|
|
@ -128,7 +128,7 @@ uint8_t init_mcp23018(void) {
|
|||
mcp23018_status = i2c_write(IODIRA, ERGODOX_EZ_I2C_TIMEOUT); if (mcp23018_status) goto out;
|
||||
mcp23018_status = i2c_write(0b00000000, ERGODOX_EZ_I2C_TIMEOUT); if (mcp23018_status) goto out;
|
||||
mcp23018_status = i2c_write(0b00111111, ERGODOX_EZ_I2C_TIMEOUT); if (mcp23018_status) goto out;
|
||||
i2c_stop(ERGODOX_EZ_I2C_TIMEOUT);
|
||||
i2c_stop();
|
||||
|
||||
// set pull-up
|
||||
// - unused : on : 1
|
||||
|
@ -140,7 +140,7 @@ uint8_t init_mcp23018(void) {
|
|||
mcp23018_status = i2c_write(0b00111111, ERGODOX_EZ_I2C_TIMEOUT); if (mcp23018_status) goto out;
|
||||
|
||||
out:
|
||||
i2c_stop(ERGODOX_EZ_I2C_TIMEOUT);
|
||||
i2c_stop();
|
||||
|
||||
#ifdef LEFT_LEDS
|
||||
if (!mcp23018_status) mcp23018_status = ergodox_left_leds_update();
|
||||
|
@ -179,7 +179,7 @@ uint8_t ergodox_left_leds_update(void) {
|
|||
if (mcp23018_status) goto out;
|
||||
|
||||
out:
|
||||
i2c_stop(ERGODOX_EZ_I2C_TIMEOUT);
|
||||
i2c_stop();
|
||||
return mcp23018_status;
|
||||
}
|
||||
#endif
|
||||
|
|
|
@ -309,7 +309,7 @@ static matrix_row_t read_cols(uint8_t row)
|
|||
data = ~((uint8_t)mcp23018_status);
|
||||
mcp23018_status = I2C_STATUS_SUCCESS;
|
||||
out:
|
||||
i2c_stop(ERGODOX_EZ_I2C_TIMEOUT);
|
||||
i2c_stop();
|
||||
return data;
|
||||
}
|
||||
} else {
|
||||
|
@ -362,7 +362,7 @@ static void select_row(uint8_t row)
|
|||
mcp23018_status = i2c_write(GPIOA, ERGODOX_EZ_I2C_TIMEOUT); if (mcp23018_status) goto out;
|
||||
mcp23018_status = i2c_write(0xFF & ~(1<<row), ERGODOX_EZ_I2C_TIMEOUT); if (mcp23018_status) goto out;
|
||||
out:
|
||||
i2c_stop(ERGODOX_EZ_I2C_TIMEOUT);
|
||||
i2c_stop();
|
||||
}
|
||||
} else {
|
||||
// select on teensy
|
||||
|
|
|
@ -47,7 +47,7 @@ uint8_t init_mcp23018(void) {
|
|||
mcp23018_status = i2c_write(IODIRA, ERGODOX_EZ_I2C_TIMEOUT); if (mcp23018_status) goto out;
|
||||
mcp23018_status = i2c_write(0b10000000, ERGODOX_EZ_I2C_TIMEOUT); if (mcp23018_status) goto out;
|
||||
mcp23018_status = i2c_write(0b11111111, ERGODOX_EZ_I2C_TIMEOUT); if (mcp23018_status) goto out;
|
||||
i2c_stop(ERGODOX_EZ_I2C_TIMEOUT);
|
||||
i2c_stop();
|
||||
|
||||
// set pull-up
|
||||
// - unused : on : 1
|
||||
|
@ -59,7 +59,7 @@ uint8_t init_mcp23018(void) {
|
|||
mcp23018_status = i2c_write(0b11111111, ERGODOX_EZ_I2C_TIMEOUT); if (mcp23018_status) goto out;
|
||||
|
||||
out:
|
||||
i2c_stop(ERGODOX_EZ_I2C_TIMEOUT);
|
||||
i2c_stop();
|
||||
// SREG=sreg_prev;
|
||||
//uprintf("Init %x\n", mcp23018_status);
|
||||
return mcp23018_status;
|
||||
|
|
|
@ -72,14 +72,14 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|||
//Trackball pin defs
|
||||
#define TRKUP (1<<4)
|
||||
#define TRKDN (1<<5)
|
||||
#define TRKLT (1<<6)
|
||||
#define TRKLT (1<<6)
|
||||
#define TRKRT (1<<7)
|
||||
#define TRKBTN (1<<6)
|
||||
|
||||
|
||||
// Multiple for mouse moves
|
||||
#ifndef TRKSTEP
|
||||
#define TRKSTEP 20
|
||||
#define TRKSTEP 20
|
||||
#endif
|
||||
|
||||
// multiple for mouse scroll
|
||||
|
@ -98,13 +98,13 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|||
|
||||
// Trackball interrupts accumulate over here. Processed on scan
|
||||
// Stores prev state of mouse, high bits store direction
|
||||
uint8_t trkState = 0;
|
||||
uint8_t trkBtnState = 0;
|
||||
uint8_t trkState = 0;
|
||||
uint8_t trkBtnState = 0;
|
||||
|
||||
volatile uint8_t tbUpCnt = 0;
|
||||
volatile uint8_t tbDnCnt = 0;
|
||||
volatile uint8_t tbLtCnt = 0;
|
||||
volatile uint8_t tbRtCnt = 0;
|
||||
volatile uint8_t tbUpCnt = 0;
|
||||
volatile uint8_t tbDnCnt = 0;
|
||||
volatile uint8_t tbLtCnt = 0;
|
||||
volatile uint8_t tbRtCnt = 0;
|
||||
|
||||
/* matrix state(1:on, 0:off) */
|
||||
static matrix_row_t matrix[MATRIX_ROWS];
|
||||
|
@ -240,14 +240,14 @@ uint8_t matrix_scan(void)
|
|||
// First we handle the mouse inputs
|
||||
#ifdef BALLER
|
||||
uint8_t pBtn = PINE & TRKBTN;
|
||||
|
||||
|
||||
#ifdef DEBUG_BALLER
|
||||
// Compare to previous, mod report
|
||||
// Compare to previous, mod report
|
||||
if (tbUpCnt + tbDnCnt + tbLtCnt + tbRtCnt != 0)
|
||||
xprintf("U: %d D: %d L: %d R: %d B: %d\n", tbUpCnt, tbDnCnt, tbLtCnt, tbRtCnt, (trkBtnState >> 6));
|
||||
#endif
|
||||
|
||||
// Modify the report
|
||||
// Modify the report
|
||||
report_mouse_t pRprt = pointing_device_get_report();
|
||||
|
||||
// Scroll by default, move on layer
|
||||
|
@ -264,7 +264,7 @@ uint8_t matrix_scan(void)
|
|||
}
|
||||
|
||||
#ifdef DEBUG_BALLER
|
||||
if (pRprt.x != 0 || pRprt.y != 0)
|
||||
if (pRprt.x != 0 || pRprt.y != 0)
|
||||
xprintf("X: %d Y: %d\n", pRprt.x, pRprt.y);
|
||||
#endif
|
||||
|
||||
|
@ -272,7 +272,7 @@ uint8_t matrix_scan(void)
|
|||
if ((pBtn != trkBtnState) && ((pBtn >> 6) == 1)) pRprt.buttons &= ~MOUSE_BTN1;
|
||||
|
||||
// Save state, push update
|
||||
if (pRprt.x != 0 || pRprt.y != 0 || pRprt.h != 0 || pRprt.v != 0 || (trkBtnState != pBtn))
|
||||
if (pRprt.x != 0 || pRprt.y != 0 || pRprt.h != 0 || pRprt.v != 0 || (trkBtnState != pBtn))
|
||||
pointing_device_set_report(pRprt);
|
||||
|
||||
trkBtnState = pBtn;
|
||||
|
@ -325,8 +325,8 @@ uint8_t matrix_scan(void)
|
|||
enableInterrupts();
|
||||
|
||||
#ifdef DEBUG_MATRIX
|
||||
for (uint8_t c = 0; c < MATRIX_COLS; c++)
|
||||
for (uint8_t r = 0; r < MATRIX_ROWS; r++)
|
||||
for (uint8_t c = 0; c < MATRIX_COLS; c++)
|
||||
for (uint8_t r = 0; r < MATRIX_ROWS; r++)
|
||||
if (matrix_is_on(r, c)) xprintf("r:%d c:%d \n", r, c);
|
||||
#endif
|
||||
|
||||
|
@ -394,7 +394,7 @@ static matrix_row_t read_cols(uint8_t row)
|
|||
data = ~((uint8_t)mcp23018_status);
|
||||
mcp23018_status = I2C_STATUS_SUCCESS;
|
||||
out:
|
||||
i2c_stop(ERGODOX_EZ_I2C_TIMEOUT);
|
||||
i2c_stop();
|
||||
|
||||
#ifdef DEBUG_MATRIX
|
||||
if (data != 0x00) xprintf("I2C: %d\n", data);
|
||||
|
@ -439,12 +439,12 @@ static void select_row(uint8_t row)
|
|||
if (row < 7) {
|
||||
// select on mcp23018
|
||||
if (mcp23018_status) { // do nothing on error
|
||||
} else { // set active row low : 0 // set other rows hi-Z : 1
|
||||
} else { // set active row low : 0 // set other rows hi-Z : 1
|
||||
mcp23018_status = i2c_start(I2C_ADDR_WRITE, ERGODOX_EZ_I2C_TIMEOUT); if (mcp23018_status) goto out;
|
||||
mcp23018_status = i2c_write(GPIOA, ERGODOX_EZ_I2C_TIMEOUT); if (mcp23018_status) goto out;
|
||||
mcp23018_status = i2c_write(0xFF & ~(1<<row), ERGODOX_EZ_I2C_TIMEOUT); if (mcp23018_status) goto out;
|
||||
out:
|
||||
i2c_stop(ERGODOX_EZ_I2C_TIMEOUT);
|
||||
i2c_stop();
|
||||
}
|
||||
} else {
|
||||
// Output low(DDR:1, PORT:0) to select
|
||||
|
|
|
@ -29,10 +29,6 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|||
#include "backlight.h"
|
||||
#include "quantum.h"
|
||||
|
||||
#ifdef SPLIT_KEYBOARD
|
||||
#include "split_flags.h"
|
||||
#endif
|
||||
|
||||
#ifdef MIDI_ENABLE
|
||||
#include "process_midi.h"
|
||||
#endif
|
||||
|
@ -138,39 +134,21 @@ action_t action_for_key(uint8_t layer, keypos_t key)
|
|||
#ifdef BACKLIGHT_ENABLE
|
||||
case BL_ON:
|
||||
action.code = ACTION_BACKLIGHT_ON();
|
||||
#ifdef SPLIT_KEYBOARD
|
||||
BACKLIT_DIRTY = true;
|
||||
#endif
|
||||
break;
|
||||
case BL_OFF:
|
||||
action.code = ACTION_BACKLIGHT_OFF();
|
||||
#ifdef SPLIT_KEYBOARD
|
||||
BACKLIT_DIRTY = true;
|
||||
#endif
|
||||
break;
|
||||
case BL_DEC:
|
||||
action.code = ACTION_BACKLIGHT_DECREASE();
|
||||
#ifdef SPLIT_KEYBOARD
|
||||
BACKLIT_DIRTY = true;
|
||||
#endif
|
||||
break;
|
||||
case BL_INC:
|
||||
action.code = ACTION_BACKLIGHT_INCREASE();
|
||||
#ifdef SPLIT_KEYBOARD
|
||||
BACKLIT_DIRTY = true;
|
||||
#endif
|
||||
break;
|
||||
case BL_TOGG:
|
||||
action.code = ACTION_BACKLIGHT_TOGGLE();
|
||||
#ifdef SPLIT_KEYBOARD
|
||||
BACKLIT_DIRTY = true;
|
||||
#endif
|
||||
break;
|
||||
case BL_STEP:
|
||||
action.code = ACTION_BACKLIGHT_STEP();
|
||||
#ifdef SPLIT_KEYBOARD
|
||||
BACKLIT_DIRTY = true;
|
||||
#endif
|
||||
break;
|
||||
#endif
|
||||
#ifdef SWAP_HANDS_ENABLE
|
||||
|
|
|
@ -360,9 +360,6 @@ bool process_record_quantum(keyrecord_t *record) {
|
|||
if (!record->event.pressed) {
|
||||
#endif
|
||||
rgblight_toggle();
|
||||
#ifdef SPLIT_KEYBOARD
|
||||
RGB_DIRTY = true;
|
||||
#endif
|
||||
}
|
||||
return false;
|
||||
case RGB_MODE_FORWARD:
|
||||
|
@ -374,9 +371,6 @@ bool process_record_quantum(keyrecord_t *record) {
|
|||
else {
|
||||
rgblight_step();
|
||||
}
|
||||
#ifdef SPLIT_KEYBOARD
|
||||
RGB_DIRTY = true;
|
||||
#endif
|
||||
}
|
||||
return false;
|
||||
case RGB_MODE_REVERSE:
|
||||
|
@ -388,9 +382,6 @@ bool process_record_quantum(keyrecord_t *record) {
|
|||
else {
|
||||
rgblight_step_reverse();
|
||||
}
|
||||
#ifdef SPLIT_KEYBOARD
|
||||
RGB_DIRTY = true;
|
||||
#endif
|
||||
}
|
||||
return false;
|
||||
case RGB_HUI:
|
||||
|
@ -401,9 +392,6 @@ bool process_record_quantum(keyrecord_t *record) {
|
|||
if (!record->event.pressed) {
|
||||
#endif
|
||||
rgblight_increase_hue();
|
||||
#ifdef SPLIT_KEYBOARD
|
||||
RGB_DIRTY = true;
|
||||
#endif
|
||||
}
|
||||
return false;
|
||||
case RGB_HUD:
|
||||
|
@ -414,9 +402,6 @@ bool process_record_quantum(keyrecord_t *record) {
|
|||
if (!record->event.pressed) {
|
||||
#endif
|
||||
rgblight_decrease_hue();
|
||||
#ifdef SPLIT_KEYBOARD
|
||||
RGB_DIRTY = true;
|
||||
#endif
|
||||
}
|
||||
return false;
|
||||
case RGB_SAI:
|
||||
|
@ -427,9 +412,6 @@ bool process_record_quantum(keyrecord_t *record) {
|
|||
if (!record->event.pressed) {
|
||||
#endif
|
||||
rgblight_increase_sat();
|
||||
#ifdef SPLIT_KEYBOARD
|
||||
RGB_DIRTY = true;
|
||||
#endif
|
||||
}
|
||||
return false;
|
||||
case RGB_SAD:
|
||||
|
@ -440,9 +422,6 @@ bool process_record_quantum(keyrecord_t *record) {
|
|||
if (!record->event.pressed) {
|
||||
#endif
|
||||
rgblight_decrease_sat();
|
||||
#ifdef SPLIT_KEYBOARD
|
||||
RGB_DIRTY = true;
|
||||
#endif
|
||||
}
|
||||
return false;
|
||||
case RGB_VAI:
|
||||
|
@ -453,9 +432,6 @@ bool process_record_quantum(keyrecord_t *record) {
|
|||
if (!record->event.pressed) {
|
||||
#endif
|
||||
rgblight_increase_val();
|
||||
#ifdef SPLIT_KEYBOARD
|
||||
RGB_DIRTY = true;
|
||||
#endif
|
||||
}
|
||||
return false;
|
||||
case RGB_VAD:
|
||||
|
@ -466,9 +442,6 @@ bool process_record_quantum(keyrecord_t *record) {
|
|||
if (!record->event.pressed) {
|
||||
#endif
|
||||
rgblight_decrease_val();
|
||||
#ifdef SPLIT_KEYBOARD
|
||||
RGB_DIRTY = true;
|
||||
#endif
|
||||
}
|
||||
return false;
|
||||
case RGB_SPI:
|
||||
|
@ -484,9 +457,6 @@ bool process_record_quantum(keyrecord_t *record) {
|
|||
case RGB_MODE_PLAIN:
|
||||
if (record->event.pressed) {
|
||||
rgblight_mode(RGBLIGHT_MODE_STATIC_LIGHT);
|
||||
#ifdef SPLIT_KEYBOARD
|
||||
RGB_DIRTY = true;
|
||||
#endif
|
||||
}
|
||||
return false;
|
||||
case RGB_MODE_BREATHE:
|
||||
|
|
|
@ -44,10 +44,6 @@
|
|||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef SPLIT_KEYBOARD
|
||||
#include "split_flags.h"
|
||||
#endif
|
||||
|
||||
#ifdef RGB_MATRIX_ENABLE
|
||||
#include "rgb_matrix.h"
|
||||
#endif
|
||||
|
|
|
@ -1,184 +0,0 @@
|
|||
#include <util/twi.h>
|
||||
#include <avr/io.h>
|
||||
#include <stdlib.h>
|
||||
#include <avr/interrupt.h>
|
||||
#include <util/twi.h>
|
||||
#include <stdbool.h>
|
||||
#include "i2c.h"
|
||||
#include "split_flags.h"
|
||||
|
||||
// Limits the amount of we wait for any one i2c transaction.
|
||||
// Since were running SCL line 100kHz (=> 10μs/bit), and each transactions is
|
||||
// 9 bits, a single transaction will take around 90μs to complete.
|
||||
//
|
||||
// (F_CPU/SCL_CLOCK) => # of μC cycles to transfer a bit
|
||||
// poll loop takes at least 8 clock cycles to execute
|
||||
#define I2C_LOOP_TIMEOUT (9+1)*(F_CPU/SCL_CLOCK)/8
|
||||
|
||||
#define BUFFER_POS_INC() (slave_buffer_pos = (slave_buffer_pos+1)%SLAVE_BUFFER_SIZE)
|
||||
|
||||
volatile uint8_t i2c_slave_buffer[SLAVE_BUFFER_SIZE];
|
||||
|
||||
static volatile uint8_t slave_buffer_pos;
|
||||
static volatile bool slave_has_register_set = false;
|
||||
|
||||
// Wait for an i2c operation to finish
|
||||
inline static
|
||||
void i2c_delay(void) {
|
||||
uint16_t lim = 0;
|
||||
while(!(TWCR & (1<<TWINT)) && lim < I2C_LOOP_TIMEOUT)
|
||||
lim++;
|
||||
|
||||
// easier way, but will wait slightly longer
|
||||
// _delay_us(100);
|
||||
}
|
||||
|
||||
// Setup twi to run at 100kHz
|
||||
void i2c_master_init(void) {
|
||||
// no prescaler
|
||||
TWSR = 0;
|
||||
// Set TWI clock frequency to SCL_CLOCK. Need TWBR>10.
|
||||
// Check datasheets for more info.
|
||||
TWBR = ((F_CPU/SCL_CLOCK)-16)/2;
|
||||
}
|
||||
|
||||
// Start a transaction with the given i2c slave address. The direction of the
|
||||
// transfer is set with I2C_READ and I2C_WRITE.
|
||||
// returns: 0 => success
|
||||
// 1 => error
|
||||
uint8_t i2c_master_start(uint8_t address) {
|
||||
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTA);
|
||||
|
||||
i2c_delay();
|
||||
|
||||
// check that we started successfully
|
||||
if ( (TW_STATUS != TW_START) && (TW_STATUS != TW_REP_START))
|
||||
return 1;
|
||||
|
||||
TWDR = address;
|
||||
TWCR = (1<<TWINT) | (1<<TWEN);
|
||||
|
||||
i2c_delay();
|
||||
|
||||
if ( (TW_STATUS != TW_MT_SLA_ACK) && (TW_STATUS != TW_MR_SLA_ACK) )
|
||||
return 1; // slave did not acknowledge
|
||||
else
|
||||
return 0; // success
|
||||
}
|
||||
|
||||
|
||||
// Finish the i2c transaction.
|
||||
void i2c_master_stop(void) {
|
||||
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTO);
|
||||
|
||||
uint16_t lim = 0;
|
||||
while(!(TWCR & (1<<TWSTO)) && lim < I2C_LOOP_TIMEOUT)
|
||||
lim++;
|
||||
}
|
||||
|
||||
// Write one byte to the i2c slave.
|
||||
// returns 0 => slave ACK
|
||||
// 1 => slave NACK
|
||||
uint8_t i2c_master_write(uint8_t data) {
|
||||
TWDR = data;
|
||||
TWCR = (1<<TWINT) | (1<<TWEN);
|
||||
|
||||
i2c_delay();
|
||||
|
||||
// check if the slave acknowledged us
|
||||
return (TW_STATUS == TW_MT_DATA_ACK) ? 0 : 1;
|
||||
}
|
||||
|
||||
uint8_t i2c_master_write_data(void *const TXdata, uint8_t dataLen) {
|
||||
|
||||
uint8_t *data = (uint8_t *)TXdata;
|
||||
int err = 0;
|
||||
|
||||
for (int i = 0; i < dataLen; i++) {
|
||||
err = i2c_master_write(data[i]);
|
||||
|
||||
if ( err )
|
||||
return err;
|
||||
}
|
||||
|
||||
return err;
|
||||
|
||||
}
|
||||
|
||||
// Read one byte from the i2c slave. If ack=1 the slave is acknowledged,
|
||||
// if ack=0 the acknowledge bit is not set.
|
||||
// returns: byte read from i2c device
|
||||
uint8_t i2c_master_read(int ack) {
|
||||
TWCR = (1<<TWINT) | (1<<TWEN) | (ack<<TWEA);
|
||||
|
||||
i2c_delay();
|
||||
return TWDR;
|
||||
}
|
||||
|
||||
void i2c_reset_state(void) {
|
||||
TWCR = 0;
|
||||
}
|
||||
|
||||
void i2c_slave_init(uint8_t address) {
|
||||
TWAR = address << 0; // slave i2c address
|
||||
// TWEN - twi enable
|
||||
// TWEA - enable address acknowledgement
|
||||
// TWINT - twi interrupt flag
|
||||
// TWIE - enable the twi interrupt
|
||||
TWCR = (1<<TWIE) | (1<<TWEA) | (1<<TWINT) | (1<<TWEN);
|
||||
}
|
||||
|
||||
ISR(TWI_vect);
|
||||
|
||||
ISR(TWI_vect) {
|
||||
uint8_t ack = 1;
|
||||
switch(TW_STATUS) {
|
||||
case TW_SR_SLA_ACK:
|
||||
// this device has been addressed as a slave receiver
|
||||
slave_has_register_set = false;
|
||||
break;
|
||||
|
||||
case TW_SR_DATA_ACK:
|
||||
// this device has received data as a slave receiver
|
||||
// The first byte that we receive in this transaction sets the location
|
||||
// of the read/write location of the slaves memory that it exposes over
|
||||
// i2c. After that, bytes will be written at slave_buffer_pos, incrementing
|
||||
// slave_buffer_pos after each write.
|
||||
if(!slave_has_register_set) {
|
||||
slave_buffer_pos = TWDR;
|
||||
// don't acknowledge the master if this memory loctaion is out of bounds
|
||||
if ( slave_buffer_pos >= SLAVE_BUFFER_SIZE ) {
|
||||
ack = 0;
|
||||
slave_buffer_pos = 0;
|
||||
}
|
||||
|
||||
slave_has_register_set = true;
|
||||
} else {
|
||||
i2c_slave_buffer[slave_buffer_pos] = TWDR;
|
||||
|
||||
if ( slave_buffer_pos == I2C_BACKLIT_START) {
|
||||
BACKLIT_DIRTY = true;
|
||||
} else if ( slave_buffer_pos == (I2C_RGB_START+3)) {
|
||||
RGB_DIRTY = true;
|
||||
}
|
||||
|
||||
BUFFER_POS_INC();
|
||||
}
|
||||
break;
|
||||
|
||||
case TW_ST_SLA_ACK:
|
||||
case TW_ST_DATA_ACK:
|
||||
// master has addressed this device as a slave transmitter and is
|
||||
// requesting data.
|
||||
TWDR = i2c_slave_buffer[slave_buffer_pos];
|
||||
BUFFER_POS_INC();
|
||||
break;
|
||||
|
||||
case TW_BUS_ERROR: // something went wrong, reset twi state
|
||||
TWCR = 0;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
// Reset everything, so we are ready for the next TWI interrupt
|
||||
TWCR |= (1<<TWIE) | (1<<TWINT) | (ack<<TWEA) | (1<<TWEN);
|
||||
}
|
|
@ -1,59 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#ifndef F_CPU
|
||||
#define F_CPU 16000000UL
|
||||
#endif
|
||||
|
||||
#define I2C_READ 1
|
||||
#define I2C_WRITE 0
|
||||
|
||||
#define I2C_ACK 1
|
||||
#define I2C_NACK 0
|
||||
|
||||
// Address location defines (Keymap should be last, as it's size is dynamic)
|
||||
#define I2C_BACKLIT_START 0x00
|
||||
// Need 4 bytes for RGB (32 bit)
|
||||
#define I2C_RGB_START 0x01
|
||||
#define I2C_KEYMAP_START 0x06
|
||||
|
||||
// Slave buffer (8bit per)
|
||||
// Rows per hand + backlit space + rgb space
|
||||
// TODO : Make this dynamically sized
|
||||
#define SLAVE_BUFFER_SIZE 0x20
|
||||
|
||||
// i2c SCL clock frequency
|
||||
#ifndef SCL_CLOCK
|
||||
#define SCL_CLOCK 100000L
|
||||
#endif
|
||||
|
||||
// Support 8bits right now (8 cols) will need to edit to take higher (code exists in delta split?)
|
||||
extern volatile uint8_t i2c_slave_buffer[SLAVE_BUFFER_SIZE];
|
||||
|
||||
void i2c_master_init(void);
|
||||
uint8_t i2c_master_start(uint8_t address);
|
||||
void i2c_master_stop(void);
|
||||
uint8_t i2c_master_write(uint8_t data);
|
||||
uint8_t i2c_master_write_data(void *const TXdata, uint8_t dataLen);
|
||||
uint8_t i2c_master_read(int);
|
||||
void i2c_reset_state(void);
|
||||
void i2c_slave_init(uint8_t address);
|
||||
|
||||
|
||||
static inline unsigned char i2c_start_read(unsigned char addr) {
|
||||
return i2c_master_start((addr << 1) | I2C_READ);
|
||||
}
|
||||
|
||||
static inline unsigned char i2c_start_write(unsigned char addr) {
|
||||
return i2c_master_start((addr << 1) | I2C_WRITE);
|
||||
}
|
||||
|
||||
// from SSD1306 scrips
|
||||
extern unsigned char i2c_rep_start(unsigned char addr);
|
||||
extern void i2c_start_wait(unsigned char addr);
|
||||
extern unsigned char i2c_readAck(void);
|
||||
extern unsigned char i2c_readNak(void);
|
||||
extern unsigned char i2c_read(unsigned char ack);
|
||||
|
||||
#define i2c_read(ack) (ack) ? i2c_readAck() : i2c_readNak();
|
|
@ -25,7 +25,6 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|||
#include "matrix.h"
|
||||
#include "split_util.h"
|
||||
#include "config.h"
|
||||
#include "split_flags.h"
|
||||
#include "quantum.h"
|
||||
#include "debounce.h"
|
||||
#include "transport.h"
|
||||
|
|
|
@ -1,5 +0,0 @@
|
|||
#include "split_flags.h"
|
||||
|
||||
volatile bool RGB_DIRTY = false;
|
||||
|
||||
volatile bool BACKLIT_DIRTY = false;
|
|
@ -1,15 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
#include <stdbool.h>
|
||||
#include <stdint.h>
|
||||
|
||||
/**
|
||||
* Global Flags
|
||||
**/
|
||||
|
||||
//RGB Stuff
|
||||
extern volatile bool RGB_DIRTY;
|
||||
|
||||
|
||||
//Backlight Stuff
|
||||
extern volatile bool BACKLIT_DIRTY;
|
|
@ -3,7 +3,6 @@
|
|||
#include "keyboard.h"
|
||||
#include "config.h"
|
||||
#include "timer.h"
|
||||
#include "split_flags.h"
|
||||
#include "transport.h"
|
||||
#include "quantum.h"
|
||||
|
||||
|
@ -60,10 +59,6 @@ static void keyboard_master_setup(void) {
|
|||
#endif
|
||||
#endif
|
||||
transport_master_init();
|
||||
|
||||
// For master the Backlight info needs to be sent on startup
|
||||
// Otherwise the salve won't start with the proper info until an update
|
||||
BACKLIT_DIRTY = true;
|
||||
}
|
||||
|
||||
static void keyboard_slave_setup(void)
|
||||
|
|
|
@ -3,146 +3,83 @@
|
|||
#include "matrix.h"
|
||||
#include "quantum.h"
|
||||
|
||||
#define ROWS_PER_HAND (MATRIX_ROWS/2)
|
||||
#define ROWS_PER_HAND (MATRIX_ROWS / 2)
|
||||
|
||||
#ifdef RGBLIGHT_ENABLE
|
||||
# include "rgblight.h"
|
||||
# include "rgblight.h"
|
||||
#endif
|
||||
|
||||
#ifdef BACKLIGHT_ENABLE
|
||||
# include "backlight.h"
|
||||
extern backlight_config_t backlight_config;
|
||||
# include "backlight.h"
|
||||
extern backlight_config_t backlight_config;
|
||||
#endif
|
||||
|
||||
#if defined(USE_I2C) || defined(EH)
|
||||
|
||||
#include "i2c.h"
|
||||
# include "i2c_master.h"
|
||||
# include "i2c_slave.h"
|
||||
|
||||
#ifndef SLAVE_I2C_ADDRESS
|
||||
# define SLAVE_I2C_ADDRESS 0x32
|
||||
#endif
|
||||
# define I2C_BACKLIT_START 0x00
|
||||
// Need 4 bytes for RGB (32 bit)
|
||||
# define I2C_RGB_START 0x01
|
||||
# define I2C_KEYMAP_START 0x05
|
||||
|
||||
#if (MATRIX_COLS > 8)
|
||||
# error "Currently only supports 8 COLS"
|
||||
#endif
|
||||
# define TIMEOUT 100
|
||||
|
||||
# ifndef SLAVE_I2C_ADDRESS
|
||||
# define SLAVE_I2C_ADDRESS 0x32
|
||||
# endif
|
||||
|
||||
// Get rows from other half over i2c
|
||||
bool transport_master(matrix_row_t matrix[]) {
|
||||
int err = 0;
|
||||
i2c_readReg(SLAVE_I2C_ADDRESS, I2C_KEYMAP_START, (void *)matrix, ROWS_PER_HAND * sizeof(matrix_row_t), TIMEOUT);
|
||||
|
||||
// write backlight info
|
||||
#ifdef BACKLIGHT_ENABLE
|
||||
if (BACKLIT_DIRTY) {
|
||||
err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE);
|
||||
if (err) { goto i2c_error; }
|
||||
|
||||
// Backlight location
|
||||
err = i2c_master_write(I2C_BACKLIT_START);
|
||||
if (err) { goto i2c_error; }
|
||||
|
||||
// Write backlight
|
||||
i2c_master_write(get_backlight_level());
|
||||
|
||||
BACKLIT_DIRTY = false;
|
||||
# ifdef BACKLIGHT_ENABLE
|
||||
static uint8_t prev_level = ~0;
|
||||
uint8_t level = get_backlight_level();
|
||||
if (level != prev_level) {
|
||||
i2c_writeReg(SLAVE_I2C_ADDRESS, I2C_BACKLIT_START, (void *)&level, sizeof(level), TIMEOUT);
|
||||
prev_level = level;
|
||||
}
|
||||
#endif
|
||||
# endif
|
||||
|
||||
err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE);
|
||||
if (err) { goto i2c_error; }
|
||||
|
||||
// start of matrix stored at I2C_KEYMAP_START
|
||||
err = i2c_master_write(I2C_KEYMAP_START);
|
||||
if (err) { goto i2c_error; }
|
||||
|
||||
// Start read
|
||||
err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_READ);
|
||||
if (err) { goto i2c_error; }
|
||||
|
||||
if (!err) {
|
||||
int i;
|
||||
for (i = 0; i < ROWS_PER_HAND-1; ++i) {
|
||||
matrix[i] = i2c_master_read(I2C_ACK);
|
||||
}
|
||||
matrix[i] = i2c_master_read(I2C_NACK);
|
||||
i2c_master_stop();
|
||||
} else {
|
||||
i2c_error: // the cable is disconnceted, or something else went wrong
|
||||
i2c_reset_state();
|
||||
return false;
|
||||
# ifdef RGBLIGHT_ENABLE
|
||||
static uint32_t prev_rgb = ~0;
|
||||
uint32_t rgb = eeconfig_read_rgblight();
|
||||
if (rgb != prev_rgb) {
|
||||
i2c_writeReg(SLAVE_I2C_ADDRESS, I2C_RGB_START, (void *)&rgb, sizeof(rgb), TIMEOUT);
|
||||
prev_rgb = rgb;
|
||||
}
|
||||
|
||||
#ifdef RGBLIGHT_ENABLE
|
||||
if (RGB_DIRTY) {
|
||||
err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE);
|
||||
if (err) { goto i2c_error; }
|
||||
|
||||
// RGB Location
|
||||
err = i2c_master_write(I2C_RGB_START);
|
||||
if (err) { goto i2c_error; }
|
||||
|
||||
uint32_t dword = eeconfig_read_rgblight();
|
||||
|
||||
// Write RGB
|
||||
err = i2c_master_write_data(&dword, 4);
|
||||
if (err) { goto i2c_error; }
|
||||
|
||||
RGB_DIRTY = false;
|
||||
i2c_master_stop();
|
||||
}
|
||||
#endif
|
||||
# endif
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void transport_slave(matrix_row_t matrix[]) {
|
||||
|
||||
for (int i = 0; i < ROWS_PER_HAND; ++i)
|
||||
{
|
||||
i2c_slave_buffer[I2C_KEYMAP_START + i] = matrix[i];
|
||||
for (int i = 0; i < ROWS_PER_HAND * sizeof(matrix_row_t); ++i) {
|
||||
i2c_slave_reg[I2C_KEYMAP_START + i] = matrix[i];
|
||||
}
|
||||
// Read Backlight Info
|
||||
#ifdef BACKLIGHT_ENABLE
|
||||
if (BACKLIT_DIRTY)
|
||||
{
|
||||
backlight_set(i2c_slave_buffer[I2C_BACKLIT_START]);
|
||||
BACKLIT_DIRTY = false;
|
||||
}
|
||||
#endif
|
||||
#ifdef RGBLIGHT_ENABLE
|
||||
if (RGB_DIRTY)
|
||||
{
|
||||
// Disable interupts (RGB data is big)
|
||||
cli();
|
||||
// Create new DWORD for RGB data
|
||||
uint32_t dword;
|
||||
|
||||
// Fill the new DWORD with the data that was sent over
|
||||
uint8_t * dword_dat = (uint8_t *)(&dword);
|
||||
for (int i = 0; i < 4; i++)
|
||||
{
|
||||
dword_dat[i] = i2c_slave_buffer[I2C_RGB_START + i];
|
||||
}
|
||||
// Read Backlight Info
|
||||
# ifdef BACKLIGHT_ENABLE
|
||||
backlight_set(i2c_slave_reg[I2C_BACKLIT_START]);
|
||||
# endif
|
||||
|
||||
// Update the RGB now with the new data and set RGB_DIRTY to false
|
||||
rgblight_update_dword(dword);
|
||||
RGB_DIRTY = false;
|
||||
// Re-enable interupts now that RGB is set
|
||||
sei();
|
||||
}
|
||||
#endif
|
||||
# ifdef RGBLIGHT_ENABLE
|
||||
uint32_t rgb = *(uint32_t *)(i2c_slave_reg + I2C_RGB_START);
|
||||
// Update the RGB with the new data
|
||||
rgblight_update_dword(rgb);
|
||||
# endif
|
||||
}
|
||||
|
||||
void transport_master_init(void) {
|
||||
i2c_master_init();
|
||||
}
|
||||
void transport_master_init(void) { i2c_init(); }
|
||||
|
||||
void transport_slave_init(void) {
|
||||
i2c_slave_init(SLAVE_I2C_ADDRESS);
|
||||
}
|
||||
void transport_slave_init(void) { i2c_slave_init(SLAVE_I2C_ADDRESS); }
|
||||
|
||||
#else // USE_SERIAL
|
||||
#else // USE_SERIAL
|
||||
|
||||
#include "serial.h"
|
||||
# include "serial.h"
|
||||
|
||||
typedef struct _Serial_s2m_buffer_t {
|
||||
// TODO: if MATRIX_COLS > 8 change to uint8_t packed_matrix[] for pack/unpack
|
||||
|
@ -150,40 +87,40 @@ typedef struct _Serial_s2m_buffer_t {
|
|||
} Serial_s2m_buffer_t;
|
||||
|
||||
typedef struct _Serial_m2s_buffer_t {
|
||||
#ifdef BACKLIGHT_ENABLE
|
||||
uint8_t backlight_level;
|
||||
#endif
|
||||
#if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)
|
||||
rgblight_config_t rgblight_config; //not yet use
|
||||
//
|
||||
// When MCUs on both sides drive their respective RGB LED chains,
|
||||
// it is necessary to synchronize, so it is necessary to communicate RGB information.
|
||||
// In that case, define the RGBLIGHT_SPLIT macro.
|
||||
//
|
||||
// Otherwise, if the master side MCU drives both sides RGB LED chains,
|
||||
// there is no need to communicate.
|
||||
#endif
|
||||
# ifdef BACKLIGHT_ENABLE
|
||||
uint8_t backlight_level;
|
||||
# endif
|
||||
# if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)
|
||||
rgblight_config_t rgblight_config; // not yet use
|
||||
//
|
||||
// When MCUs on both sides drive their respective RGB LED chains,
|
||||
// it is necessary to synchronize, so it is necessary to communicate RGB
|
||||
// information. In that case, define the RGBLIGHT_SPLIT macro.
|
||||
//
|
||||
// Otherwise, if the master side MCU drives both sides RGB LED chains,
|
||||
// there is no need to communicate.
|
||||
# endif
|
||||
} Serial_m2s_buffer_t;
|
||||
|
||||
volatile Serial_s2m_buffer_t serial_s2m_buffer = {};
|
||||
volatile Serial_m2s_buffer_t serial_m2s_buffer = {};
|
||||
uint8_t volatile status0 = 0;
|
||||
uint8_t volatile status0 = 0;
|
||||
|
||||
SSTD_t transactions[] = {
|
||||
{ (uint8_t *)&status0,
|
||||
sizeof(serial_m2s_buffer), (uint8_t *)&serial_m2s_buffer,
|
||||
sizeof(serial_s2m_buffer), (uint8_t *)&serial_s2m_buffer
|
||||
}
|
||||
{
|
||||
(uint8_t *)&status0,
|
||||
sizeof(serial_m2s_buffer),
|
||||
(uint8_t *)&serial_m2s_buffer,
|
||||
sizeof(serial_s2m_buffer),
|
||||
(uint8_t *)&serial_s2m_buffer,
|
||||
},
|
||||
};
|
||||
|
||||
void transport_master_init(void)
|
||||
{ soft_serial_initiator_init(transactions, TID_LIMIT(transactions)); }
|
||||
void transport_master_init(void) { soft_serial_initiator_init(transactions, TID_LIMIT(transactions)); }
|
||||
|
||||
void transport_slave_init(void)
|
||||
{ soft_serial_target_init(transactions, TID_LIMIT(transactions)); }
|
||||
void transport_slave_init(void) { soft_serial_target_init(transactions, TID_LIMIT(transactions)); }
|
||||
|
||||
bool transport_master(matrix_row_t matrix[]) {
|
||||
|
||||
if (soft_serial_transaction()) {
|
||||
return false;
|
||||
}
|
||||
|
@ -193,32 +130,29 @@ bool transport_master(matrix_row_t matrix[]) {
|
|||
matrix[i] = serial_s2m_buffer.smatrix[i];
|
||||
}
|
||||
|
||||
#if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)
|
||||
// Code to send RGB over serial goes here (not implemented yet)
|
||||
#endif
|
||||
# if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)
|
||||
// Code to send RGB over serial goes here (not implemented yet)
|
||||
# endif
|
||||
|
||||
#ifdef BACKLIGHT_ENABLE
|
||||
// Write backlight level for slave to read
|
||||
serial_m2s_buffer.backlight_level = backlight_config.enable ? backlight_config.level : 0;
|
||||
#endif
|
||||
# ifdef BACKLIGHT_ENABLE
|
||||
// Write backlight level for slave to read
|
||||
serial_m2s_buffer.backlight_level = backlight_config.enable ? backlight_config.level : 0;
|
||||
# endif
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void transport_slave(matrix_row_t matrix[]) {
|
||||
|
||||
// TODO: if MATRIX_COLS > 8 change to pack()
|
||||
for (int i = 0; i < ROWS_PER_HAND; ++i)
|
||||
{
|
||||
for (int i = 0; i < ROWS_PER_HAND; ++i) {
|
||||
serial_s2m_buffer.smatrix[i] = matrix[i];
|
||||
}
|
||||
#ifdef BACKLIGHT_ENABLE
|
||||
backlight_set(serial_m2s_buffer.backlight_level);
|
||||
#endif
|
||||
#if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)
|
||||
// Add serial implementation for RGB here
|
||||
#endif
|
||||
|
||||
# ifdef BACKLIGHT_ENABLE
|
||||
backlight_set(serial_m2s_buffer.backlight_level);
|
||||
# endif
|
||||
# if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)
|
||||
// Add serial implementation for RGB here
|
||||
# endif
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -11,9 +11,6 @@
|
|||
#include "led.h"
|
||||
#include "host.h"
|
||||
#include "rgblight_reconfig.h"
|
||||
#ifdef SPLIT_KEYBOARD
|
||||
#include "split_flags.h"
|
||||
#endif
|
||||
|
||||
#ifdef PROTOCOL_LUFA
|
||||
#include "lufa.h"
|
||||
|
@ -135,9 +132,6 @@ static void power_down(uint8_t wdto) {
|
|||
is_suspended = true;
|
||||
rgblight_enabled = rgblight_config.enable;
|
||||
rgblight_disable_noeeprom();
|
||||
#ifdef SPLIT_KEYBOARD
|
||||
RGB_DIRTY = true;
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
suspend_power_down_kb();
|
||||
|
@ -216,9 +210,6 @@ void suspend_wakeup_init(void) {
|
|||
wait_ms(10);
|
||||
#endif
|
||||
rgblight_enable_noeeprom();
|
||||
#ifdef SPLIT_KEYBOARD
|
||||
RGB_DIRTY = true;
|
||||
#endif
|
||||
}
|
||||
#ifdef RGBLIGHT_ANIMATIONS
|
||||
rgblight_timer_enable();
|
||||
|
|
Loading…
Reference in New Issue