pifcamp-2021/ArduinoNano33BLE/MidiBle-tilt/MidiBle-tilt.ino

370 lines
8.3 KiB
C++

#include <Arduino_LSM9DS1.h>
#include "SensorFusion.h" //SF
#include <BLEMIDI_Transport.h>
//#include <hardware/BLEMIDI_ESP32_NimBLE.h>
//#include <hardware/BLEMIDI_ESP32.h>
//#include <hardware/BLEMIDI_nRF52.h>
#include <hardware/BLEMIDI_ArduinoBLE.h>
BLEMIDI_CREATE_DEFAULT_INSTANCE()
unsigned long tm = millis();
unsigned long t0 = millis();
bool isConnected = false;
// midi
// offsets CC:
// 0-63: left hand
// 64-127: right hand
enum side {LEFT, RIGHT=64};
int hand = LEFT;
int midichannel = 1;
// accelerometer
float accx, accy, accz;
float maccx, maccy, maccz; // midi mapped
float accmag; // magnitude
// gyroscope
float gyrox, gyroy, gyroz;
float mgyrox, mgyroy, mgyroz;
// magnetometer
float magx, magy, magz;
float mmagx, mmagy, mmagz;
// sensor fusion
float mroll, mpitch, myaw;
float maxx, maxy, maxz;
//SF -
SF fusion;
float gx, gy, gz, ax, ay, az, mx, my, mz;
float pitch, roll, yaw;
float deltat;
float gxoff = 0;
float gyoff = 0;
float gzoff = 0;
float fmap(float x, float in_min, float in_max, float out_min, float out_max)
{
return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
}
byte highbits(float f) {
return int(f) % 128;
}
byte lowbits(float f) {
return int(f * 128) % 128;
};
unsigned long loops = 0;
unsigned long loopmillis = 0;
unsigned long midis = 0;
unsigned long midimillis = 0;
// -----------------------------------------------------------------------------
// When BLE connected, LED will turn on (indication that connection was successful)
// When receiving a NoteOn, LED will go out, on NoteOff, light comes back on.
// This is an easy and conveniant way to show that the connection is alive and working.
// -----------------------------------------------------------------------------
void setup()
{
Serial.begin(115200);
// while (!Serial) {
; // wait for serial port to connect. Needed for native USB
// }
loopmillis = millis();
midimillis = millis();
Serial.println("MIDI-BLE TEST 3");
Serial.println("2022-06-16");
MIDI.begin();
pinMode(LED_BUILTIN, OUTPUT);
digitalWrite(LED_BUILTIN, LOW);
BLEMIDI.setHandleConnected([]() {
isConnected = true;
digitalWrite(LED_BUILTIN, HIGH);
Serial.println("MIDI-BLE CONNECTED");
});
BLEMIDI.setHandleDisconnected([]() {
isConnected = false;
digitalWrite(LED_BUILTIN, LOW);
Serial.println("MIDI-BLE DISCONNECTED");
});
MIDI.setHandleNoteOn([](byte channel, byte note, byte velocity) {
digitalWrite(LED_BUILTIN, LOW);
});
MIDI.setHandleNoteOff([](byte channel, byte note, byte velocity) {
digitalWrite(LED_BUILTIN, HIGH);
});
// gyro calibration
Serial.print("Loading calibration: ");
if (loadCalibration()) {
gxoff=getGyroXCal();
gyoff=getGyroYCal();
gyoff=getGyroZCal();
Serial.println("success :)");
} else {
Serial.println("failed :(");
}
printCalibration();
// motion sensor
if (!IMU.begin()) {
Serial.println("Failed to initialize IMU!");
while (1);
}
Serial.print("Accelerometer sample rate = ");
Serial.print(IMU.accelerationSampleRate());
Serial.println(" Hz");
Serial.println();
Serial.println("Acceleration in G's");
Serial.println("X\tY\tZ");
Serial.print("Gyroscope sample rate = ");
Serial.print(IMU.gyroscopeSampleRate());
Serial.println(" Hz");
Serial.println();
Serial.println("Gyroscope in degrees/second");
Serial.println("X\tY\tZ");
Serial.print("Magnetic field sample rate = ");
Serial.print(IMU.magneticFieldSampleRate());
Serial.println(" uT");
Serial.println();
Serial.println("Magnetic Field in uT");
Serial.println("X\tY\tZ");
Serial.print("Setup took (ms): ");
Serial.println(millis()-loopmillis);
loopmillis = millis();
midimillis = millis();
}
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void loop()
{
// now you should read the gyroscope, accelerometer (and magnetometer if you have it also)
// NOTE: the gyroscope data have to be in radians
// if you have them in degree convert them with: DEG_TO_RAD example: gx * DEG_TO_RAD
if (IMU.magneticFieldAvailable()) {
IMU.readMagneticField(mx, my, mz);
}
if (IMU.accelerationAvailable()&&IMU.gyroscopeAvailable()) {
tm = millis();
loops++;
if (!(loops%1000)) {
Serial.print("1000 loops took (ms): ");
Serial.println(tm-loopmillis);
loopmillis=tm;
}
MIDI.read();
IMU.readAcceleration(ax, ay, az);
/*
ax *= 9.81;
ay *= 9.81;
az *= 9.81;
*/
IMU.readGyroscope(gx, gy, gz);
gx -= gxoff;
gy -= gxoff;
gz -= gxoff;
gx *= DEG_TO_RAD;
gy *= DEG_TO_RAD;
gz *= DEG_TO_RAD;
deltat = fusion.deltatUpdate(); //this have to be done before calling the fusion update
//choose only one of these two:
//fusion.MahonyUpdate(gx, gy, gz, ax, ay, az, deltat); //mahony is suggested if there isn't the mag and the mcu is slow
fusion.MadgwickUpdate(gx, gy, gz, ax, ay, az, -mx, my, mz, deltat); //else use the magwick, it is slower but more accurate
if (isConnected && (tm - t0) > 6)
{
t0 = tm;
switch (midis) {
case 0:
maccx = fmap(ax,-4.0,4.0, 0.0,127.0);
MIDI.sendControlChange(0 + hand, maccx, midichannel);
break;
case 1:
maccy = fmap(ay,-4.0,4.0, 0.0,127.0);
MIDI.sendControlChange(1 + hand, maccy, midichannel);
break;
case 2:
maccz = fmap(az,-4.0,4.0, 0.0,127.0);
MIDI.sendControlChange(2 + hand, maccz, midichannel);
break;
case 3:
mgyrox = map(gx, -2000*DEG_TO_RAD, 2000*DEG_TO_RAD, 0.0, 127.0);
MIDI.sendControlChange(3 + hand, mgyrox, midichannel);
break;
case 4:
mgyroy = map(gy, -2000*DEG_TO_RAD, 2000*DEG_TO_RAD, 0.0, 127.0);
MIDI.sendControlChange(4 + hand, mgyroy, midichannel);
break;
case 5:
mgyroz = map(gz, -2000*DEG_TO_RAD, 2000*DEG_TO_RAD, 0.0, 127.0);
MIDI.sendControlChange(5 + hand, mgyroz, midichannel);
break;
case 6:
accmag = sqrt(ax*ax+ay*ay+az*az);
// accmag = map(accmag, 0, 1000, 0,127);
MIDI.sendControlChange(6 + hand, accmag * 100, midichannel);
break;
case 7:
mmagx = fmap(mx, 0,60, 0,127);
MIDI.sendControlChange(7 + hand, mmagx, midichannel);
break;
case 8:
mmagy = fmap(my, 0,60, 0,127);
MIDI.sendControlChange(8 + hand, mmagy, midichannel);
break;
case 9:
mmagz = fmap(mz, 0,60, 0,127);
MIDI.sendControlChange(9 + hand, mmagz, midichannel);
break;
case 10:
roll = fusion.getRoll(); //you could also use getRollRadians() ecc
mroll = fmap(roll,-180,180,0,127);
MIDI.sendControlChange(10 + hand, mroll, midichannel);
break;
case 11:
pitch = fusion.getPitch();
mpitch = fmap(pitch,-90,90,0,127);
MIDI.sendControlChange(11 + hand, mpitch, midichannel);
break;
case 12:
MIDI.sendControlChange(12 + hand, myaw, midichannel);
yaw = fusion.getYaw();
myaw = fmap(yaw,0,360,0,127);
break;
case 13:
roll = fusion.getRoll(); //you could also use getRollRadians() ecc
mroll = fmap(roll,-180,180,0,127);
MIDI.sendControlChange(13 + hand, lowbits(mroll), midichannel);
break;
case 14:
pitch = fusion.getPitch();
mpitch = fmap(pitch,-90,90,0,127);
MIDI.sendControlChange(14 + hand, lowbits(mpitch), midichannel);
break;
case 15:
MIDI.sendControlChange(15 + hand, lowbits(myaw), midichannel);
yaw = fusion.getYaw();
myaw = fmap(yaw,0,360,0,127);
break;
}
//mgyrox = gyrox/2000 * 64 + 64;
//mgyroy = gyroy/2000 * 64 + 64;
//mgyroz = gyroz/2000 * 64 + 64;
// mz = max(10, abs(z) * 1000);
// maxx = max(magx, maxx);
// maxy = max(magy, maxy);
// maxz = max(magz, maxz);
// Serial.print(mx);
// Serial.print('\t');
// Serial.print(my);
// Serial.print(y);
// Serial.print('\t');
// Serial.println(z);
// Serial.println();
// MIDI.sendNoteOn (my, mx, 1); // note 60, velocity 100 on channel 1
// Serial.print(mmagx);
// Serial.print('\t');
// Serial.print(mmagy);
// Serial.print('\t');
// Serial.println(mmagz);
// Serial.print('\t');
// Serial.println(accmag * 100);
// Serial.println("ping");
// delay(mz);
// MIDI.sendNoteOff(my, mx, 1);
midis=(midis+1)%16;
if (midis==0) {
Serial.print("MIDI sending took (ms): ");
Serial.println(tm-midimillis);
midimillis=tm;
}
}
}
}