Lots of improvements, added 14bit precision, added interleaved sending for more sensor updates.

master
Luka Frelih 2022-07-27 17:56:07 +02:00
parent c7c5e4fa96
commit 1ef26458d1
3 changed files with 467 additions and 53 deletions

Binary file not shown.

View File

@ -0,0 +1,277 @@
/**! @brief Class for managing storing "Adafruit" sensor calibration
in internal Flash memory with KVStore
for Arduino Nano 33 BLE
* **/
//https://os.mbed.com/docs/mbed-os/v6.12/apis/kvstore.html
//KVStore. TDBStore - Default implementation of the KVStore API. It provides static wear-leveling and quick access for when you have a small number of KV pairs.
//https://os.mbed.com/docs/mbed-os/v6.12/apis/data-architecture.html
#include "KVStore.h"
#include "kvstore_global_api.h"
/**! XYZ vector of offsets for zero-g, in m/s^2 */
float accel_zerog[3] = {0, 0, 0};
/**! XYZ vector of offsets for zero-rate, in rad/s */
float gyro_zerorate[3] = {0, 0, 0};
/**! XYZ vector of offsets for hard iron calibration (in uT) */
float mag_hardiron[3] = {0, 0, 0};
/**! The 3x3 matrix for soft-iron calibration (unitless) */
float mag_softiron[9] = {1, 0, 0, 0, 1, 0, 0, 0, 1};
/**! The magnetic field magnitude in uTesla */
float mag_field = 50;
const char* const ASC_KV_Key0 = "store_flag";
const char* const ASC_KV_Key1 = "store_offsets";
void setGyroCalibration(float x, float y, float z) {
gyro_zerorate[0]=x;
gyro_zerorate[1]=y;
gyro_zerorate[2]=z;
}
float getGyroXCal() {
return gyro_zerorate[0];
}
float getGyroYCal() {
return gyro_zerorate[1];
}
float getGyroZCal() {
return gyro_zerorate[2];
}
bool saveCalibration(void) {
Serial.println("Save Cal");
kv_reset("/kv/");
uint8_t flag=42;
kv_set(ASC_KV_Key0,&flag,sizeof(flag),0);
float offsets[16];
memcpy(offsets, accel_zerog, 12); // 3 x 4-byte floats
memcpy(offsets + 3, gyro_zerorate, 12); // 3 x 4-byte floats
memcpy(offsets + 6, mag_hardiron, 12); // 3 x 4-byte floats
offsets[9] = mag_field;
offsets[10] = mag_softiron[0];
offsets[11] = mag_softiron[4];
offsets[12] = mag_softiron[8];
offsets[13] = mag_softiron[1];
offsets[14] = mag_softiron[2];
offsets[15] = mag_softiron[5];
kv_set(ASC_KV_Key1, (uint8_t*)&offsets, sizeof(offsets), 0);
return true;
}
bool loadCalibration(void) {
uint8_t flag;
kv_get(ASC_KV_Key0,&flag,sizeof(flag),0);
if (flag=!42) {
Serial.print("FLAG NOT SET, CALIBRATION NOT FOUND");
return false;
}
float offsets[16];
kv_get(ASC_KV_Key1,(byte*)&offsets,sizeof(offsets),0);
accel_zerog[0] = offsets[0];
accel_zerog[1] = offsets[1];
accel_zerog[2] = offsets[2];
gyro_zerorate[0] = offsets[3];
gyro_zerorate[1] = offsets[4];
gyro_zerorate[2] = offsets[5];
mag_hardiron[0] = offsets[6];
mag_hardiron[1] = offsets[7];
mag_hardiron[2] = offsets[8];
mag_field = offsets[9];
mag_softiron[0] = offsets[10];
mag_softiron[1] = offsets[13];
mag_softiron[2] = offsets[14];
mag_softiron[3] = offsets[13];
mag_softiron[4] = offsets[11];
mag_softiron[5] = offsets[15];
mag_softiron[6] = offsets[14];
mag_softiron[7] = offsets[15];
mag_softiron[8] = offsets[12];
return true;
}
bool printCalibration(void) {
Serial.println(F("------------"));
Serial.print("Accelerometer: ");
Serial.print(accel_zerog[0]);
Serial.print(", ");
Serial.print(accel_zerog[1]);
Serial.print(", ");
Serial.print(accel_zerog[2]);
Serial.println();
Serial.print("Gyroscope: ");
Serial.print(gyro_zerorate[0]);
Serial.print(", ");
Serial.print(gyro_zerorate[1]);
Serial.print(", ");
Serial.print(gyro_zerorate[2]);
Serial.println();
Serial.print("Magnetometer Hard Iron: ");
Serial.print(mag_hardiron[0]);
Serial.print(", ");
Serial.print(mag_hardiron[1]);
Serial.print(", ");
Serial.print(mag_hardiron[2]);
Serial.println();
Serial.print("Magnetic Field: ");
Serial.print(mag_field);
Serial.println();
Serial.print("Magnetometer Soft Iron: ");
Serial.print(mag_softiron[0]);
Serial.print(", ");
Serial.print(mag_softiron[1]);
Serial.print(", ");
Serial.print(mag_softiron[2]);
Serial.println();
Serial.print(mag_softiron[3]);
Serial.print(", ");
Serial.print(mag_softiron[4]);
Serial.print(", ");
Serial.print(mag_softiron[5]);
Serial.println();
Serial.print(mag_softiron[6]);
Serial.print(", ");
Serial.print(mag_softiron[7]);
Serial.print(", ");
Serial.print(mag_softiron[8]);
Serial.println();
Serial.println(F("\n------------"));
return true;
}
bool printSavedCalibration(void) {
Serial.println(F("------------"));
uint8_t flag;
kv_get(ASC_KV_Key0,&flag,sizeof(flag),0);
if (flag=!42) {
Serial.print("FLAG NOT SET, CALIBRATION NOT FOUND");
return false;
}
float offsets[16];
kv_get(ASC_KV_Key1,(byte*)&offsets,sizeof(offsets),0);
accel_zerog[0] = offsets[0];
accel_zerog[1] = offsets[1];
accel_zerog[2] = offsets[2];
Serial.print("Accelerometer: ");
Serial.print(accel_zerog[0]);
Serial.print(", ");
Serial.print(accel_zerog[1]);
Serial.print(", ");
Serial.print(accel_zerog[2]);
Serial.println();
gyro_zerorate[0] = offsets[3];
gyro_zerorate[1] = offsets[4];
gyro_zerorate[2] = offsets[5];
Serial.print("Gyroscope: ");
Serial.print(gyro_zerorate[0]);
Serial.print(", ");
Serial.print(gyro_zerorate[1]);
Serial.print(", ");
Serial.print(gyro_zerorate[2]);
Serial.println();
mag_hardiron[0] = offsets[6];
mag_hardiron[1] = offsets[7];
mag_hardiron[2] = offsets[8];
Serial.println("Magnetometer Hard Iron: ");
Serial.print(mag_hardiron[0]);
Serial.print(", ");
Serial.print(mag_hardiron[1]);
Serial.print(", ");
Serial.print(mag_hardiron[2]);
Serial.println();
mag_field = offsets[9];
Serial.print("Magnetic Field: ");
Serial.print(mag_field);
Serial.println();
mag_softiron[0] = offsets[10];
mag_softiron[1] = offsets[13];
mag_softiron[2] = offsets[14];
mag_softiron[3] = offsets[13];
mag_softiron[4] = offsets[11];
mag_softiron[5] = offsets[15];
mag_softiron[6] = offsets[14];
mag_softiron[7] = offsets[15];
mag_softiron[8] = offsets[12];
Serial.print("Magnetometer Soft Iron: ");
Serial.print(mag_softiron[0]);
Serial.print(", ");
Serial.print(mag_softiron[1]);
Serial.print(", ");
Serial.print(mag_softiron[2]);
Serial.println();
Serial.print(mag_softiron[3]);
Serial.print(", ");
Serial.print(mag_softiron[4]);
Serial.print(", ");
Serial.print(mag_softiron[5]);
Serial.println();
Serial.print(mag_softiron[6]);
Serial.print(", ");
Serial.print(mag_softiron[7]);
Serial.print(", ");
Serial.print(mag_softiron[8]);
Serial.println();
/* for (uint16_t a = ee_addr; a < ee_addr + KVStore_CAL_SIZE; a++) {
uint8_t c = KVStore.read(a);
Serial.print("0x");
if (c < 0x10)
Serial.print('0');
Serial.print(c, HEX);
Serial.print(", ");
if ((a - ee_addr) % 16 == 15) {
Serial.println();
}
}
*/
Serial.println(F("\n------------"));
return true;
}

View File

@ -1,7 +1,7 @@
#include <Arduino_LSM9DS1.h>
#include <BLEMIDI_Transport.h>
#include "SensorFusion.h" //SF
#include <BLEMIDI_Transport.h>
//#include <hardware/BLEMIDI_ESP32_NimBLE.h>
//#include <hardware/BLEMIDI_ESP32.h>
//#include <hardware/BLEMIDI_nRF52.h>
@ -9,6 +9,7 @@
BLEMIDI_CREATE_DEFAULT_INSTANCE()
unsigned long tm = millis();
unsigned long t0 = millis();
bool isConnected = false;
@ -43,18 +44,30 @@ float gx, gy, gz, ax, ay, az, mx, my, mz;
float pitch, roll, yaw;
float deltat;
//Gyro Offset....: -605622 -24028 -338386
float goffx = -605622.0 / 1000000.0;
float goffy = -24028.0 / 1000000.0;
float goffz = -338386.0 / 1000000.0;
float gxoff = 0;
float gyoff = 0;
float gzoff = 0;
float fmap(float x, float in_min, float in_max, float out_min, float out_max)
{
return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
}
byte highbits(float f) {
return int(f) % 128;
}
byte lowbits(float f) {
return int(f * 128) % 128;
};
unsigned long loops = 0;
unsigned long loopmillis = 0;
unsigned long midis = 0;
unsigned long midimillis = 0;
// -----------------------------------------------------------------------------
// When BLE connected, LED will turn on (indication that connection was successful)
// When receiving a NoteOn, LED will go out, on NoteOff, light comes back on.
@ -64,8 +77,16 @@ void setup()
{
Serial.begin(115200);
Serial.println("MIDI-BLE TEST 1");
Serial.println("2022-03-02");
// while (!Serial) {
; // wait for serial port to connect. Needed for native USB
// }
loopmillis = millis();
midimillis = millis();
Serial.println("MIDI-BLE TEST 3");
Serial.println("2022-06-16");
MIDI.begin();
@ -93,7 +114,21 @@ void setup()
digitalWrite(LED_BUILTIN, HIGH);
});
// accelerometer
// gyro calibration
Serial.print("Loading calibration: ");
if (loadCalibration()) {
gxoff=getGyroXCal();
gyoff=getGyroYCal();
gyoff=getGyroZCal();
Serial.println("success :)");
} else {
Serial.println("failed :(");
}
printCalibration();
// motion sensor
if (!IMU.begin()) {
Serial.println("Failed to initialize IMU!");
while (1);
@ -119,6 +154,12 @@ void setup()
Serial.println();
Serial.println("Magnetic Field in uT");
Serial.println("X\tY\tZ");
Serial.print("Setup took (ms): ");
Serial.println(millis()-loopmillis);
loopmillis = millis();
midimillis = millis();
}
// -----------------------------------------------------------------------------
@ -126,15 +167,29 @@ void setup()
// -----------------------------------------------------------------------------
void loop()
{
// now you should read the gyroscope, accelerometer (and magnetometer if you have it also)
// NOTE: the gyroscope data have to be in radians
// if you have them in degree convert them with: DEG_TO_RAD example: gx * DEG_TO_RAD
if (IMU.magneticFieldAvailable()) {
IMU.readMagneticField(mx, my, mz);
}
if (IMU.accelerationAvailable()&&IMU.gyroscopeAvailable()) {
tm = millis();
loops++;
if (!(loops%1000)) {
Serial.print("1000 loops took (ms): ");
Serial.println(tm-loopmillis);
loopmillis=tm;
}
MIDI.read();
IMU.readAcceleration(ax, ay, az);
/*
ax *= 9.81;
@ -144,9 +199,9 @@ void loop()
IMU.readGyroscope(gx, gy, gz);
gx -= goffx;
gy -= goffy;
gz -= goffz;
gx -= gxoff;
gy -= gxoff;
gz -= gxoff;
gx *= DEG_TO_RAD;
gy *= DEG_TO_RAD;
@ -156,36 +211,119 @@ void loop()
deltat = fusion.deltatUpdate(); //this have to be done before calling the fusion update
//choose only one of these two:
//fusion.MahonyUpdate(gx, gy, gz, ax, ay, az, deltat); //mahony is suggested if there isn't the mag and the mcu is slow
fusion.MadgwickUpdate(gx, gy, gz, ax, ay, az, mx, my, mz, deltat); //else use the magwick, it is slower but more accurate
fusion.MadgwickUpdate(gx, gy, gz, ax, ay, az, -mx, my, mz, deltat); //else use the magwick, it is slower but more accurate
pitch = fusion.getPitch();
roll = fusion.getRoll(); //you could also use getRollRadians() ecc
yaw = fusion.getYaw();
if (isConnected && (tm - t0) > 6)
{
t0 = tm;
switch (midis) {
case 0:
maccx = fmap(ax,-4.0,4.0, 0.0,127.0);
MIDI.sendControlChange(0 + hand, maccx, midichannel);
break;
case 1:
maccy = fmap(ay,-4.0,4.0, 0.0,127.0);
MIDI.sendControlChange(1 + hand, maccy, midichannel);
break;
case 2:
maccz = fmap(az,-4.0,4.0, 0.0,127.0);
MIDI.sendControlChange(2 + hand, maccz, midichannel);
break;
case 3:
mgyrox = map(gx, -2000*DEG_TO_RAD, 2000*DEG_TO_RAD, 0.0, 127.0);
MIDI.sendControlChange(3 + hand, mgyrox, midichannel);
break;
case 4:
mgyroy = map(gy, -2000*DEG_TO_RAD, 2000*DEG_TO_RAD, 0.0, 127.0);
MIDI.sendControlChange(4 + hand, mgyroy, midichannel);
break;
case 5:
mgyroz = map(gz, -2000*DEG_TO_RAD, 2000*DEG_TO_RAD, 0.0, 127.0);
MIDI.sendControlChange(5 + hand, mgyroz, midichannel);
break;
case 6:
accmag = sqrt(ax*ax+ay*ay+az*az);
// accmag = map(accmag, 0, 1000, 0,127);
mroll = fmap(roll,-180,180,0,127);
mpitch = fmap(pitch,-90,90,0,127);
myaw = fmap(yaw,0,360,0,127);
MIDI.sendControlChange(6 + hand, accmag * 100, midichannel);
break;
case 7:
mmagx = fmap(mx, 0,60, 0,127);
MIDI.sendControlChange(7 + hand, mmagx, midichannel);
break;
case 8:
mmagy = fmap(my, 0,60, 0,127);
MIDI.sendControlChange(8 + hand, mmagy, midichannel);
break;
case 9:
mmagz = fmap(mz, 0,60, 0,127);
MIDI.sendControlChange(9 + hand, mmagz, midichannel);
break;
case 10:
roll = fusion.getRoll(); //you could also use getRollRadians() ecc
mroll = fmap(roll,-180,180,0,127);
MIDI.sendControlChange(10 + hand, mroll, midichannel);
break;
case 11:
pitch = fusion.getPitch();
mpitch = fmap(pitch,-90,90,0,127);
MIDI.sendControlChange(11 + hand, mpitch, midichannel);
break;
case 12:
MIDI.sendControlChange(12 + hand, myaw, midichannel);
yaw = fusion.getYaw();
myaw = fmap(yaw,0,360,0,127);
break;
case 13:
roll = fusion.getRoll(); //you could also use getRollRadians() ecc
mroll = fmap(roll,-180,180,0,127);
MIDI.sendControlChange(13 + hand, lowbits(mroll), midichannel);
break;
case 14:
pitch = fusion.getPitch();
mpitch = fmap(pitch,-90,90,0,127);
MIDI.sendControlChange(14 + hand, lowbits(mpitch), midichannel);
break;
case 15:
MIDI.sendControlChange(15 + hand, lowbits(myaw), midichannel);
yaw = fusion.getYaw();
myaw = fmap(yaw,0,360,0,127);
break;
}
maccx = fmap(ax,-4.0,4.0, 0.0,127.0);
maccy = fmap(ay,-4.0,4.0, 0.0,127.0);
maccz = fmap(az,-4.0,4.0, 0.0,127.0);
//mgyrox = gyrox/2000 * 64 + 64;
//mgyroy = gyroy/2000 * 64 + 64;
//mgyroz = gyroz/2000 * 64 + 64;
mgyrox = map(gx, -2000,2000, 0.0, 127.0);
mgyroy = map(gy, -2000,2000, 0.0, 127.0);
mgyroz = map(gz, -2000,2000, 0.0, 127.0);
// mz = max(10, abs(z) * 1000);
mmagx = fmap(mx, 0,60, 0,127);
mmagy = fmap(my, 0,60, 0,127);
mmagz = fmap(mz, 0,60, 0,127);
maxx = max(magx, maxx);
maxy = max(magy, maxy);
maxz = max(magz, maxz);
// maxx = max(magx, maxx);
// maxy = max(magy, maxy);
// maxz = max(magz, maxz);
// Serial.print(mx);
// Serial.print('\t');
@ -194,30 +332,9 @@ void loop()
// Serial.print('\t');
// Serial.println(z);
// Serial.println();
}
MIDI.read();
if (isConnected && (millis() - t0) > 10)
{
t0 = millis();
// MIDI.sendNoteOn (my, mx, 1); // note 60, velocity 100 on channel 1
MIDI.sendControlChange(0 + hand, maccx, midichannel);
MIDI.sendControlChange(1 + hand, maccy, midichannel);
MIDI.sendControlChange(2 + hand, maccz, midichannel);
MIDI.sendControlChange(3 + hand, mgyrox, midichannel);
MIDI.sendControlChange(4 + hand, mgyroy, midichannel);
MIDI.sendControlChange(5 + hand, mgyroz, midichannel);
MIDI.sendControlChange(6, accmag * 100, midichannel);
MIDI.sendControlChange(7 + hand, mmagx, midichannel);
MIDI.sendControlChange(8 + hand, mmagy, midichannel);
MIDI.sendControlChange(9 + hand, mmagz, midichannel);
MIDI.sendControlChange(10 + hand, mroll, midichannel);
MIDI.sendControlChange(11 + hand, mpitch, midichannel);
MIDI.sendControlChange(12 + hand, myaw, midichannel);
// Serial.print(mmagx);
// Serial.print('\t');
// Serial.print(mmagy);
@ -228,5 +345,25 @@ void loop()
// Serial.println("ping");
// delay(mz);
// MIDI.sendNoteOff(my, mx, 1);
midis=(midis+1)%16;
if (midis==0) {
Serial.print("MIDI sending took (ms): ");
Serial.println(tm-midimillis);
midimillis=tm;
}
}
}
}