pifcamp-2021/osc32bt/osc32bt.ino

262 lines
7.9 KiB
Arduino
Raw Normal View History

2022-02-16 17:00:06 +01:00
// ESP32 Dev Module
#include "Wire.h"
#include "MPU6050_6Axis_MotionApps20.h"
#include "BluetoothSerial.h"
#include <SLIPEncodedSerial.h>
#include "SLIPEncodedBluetoothSerial.h"
2022-02-16 17:00:06 +01:00
#if !defined(CONFIG_BT_ENABLED) || !defined(CONFIG_BLUEDROID_ENABLED)
#error Bluetooth is not enabled! Please run `make menuconfig` to and enable it
#endif
#include <OSCMessage.h>
2022-02-16 17:00:06 +01:00
BluetoothSerial SerialBT;
SLIPEncodedBluetoothSerial SLIPBTSerial(SerialBT);
SLIPEncodedSerial SLIPSerial(Serial);
2022-02-16 17:00:06 +01:00
MPU6050 mpu;
// uncomment "OUTPUT_READABLE_QUATERNION" if you want to see the actual
// quaternion components in a [w, x, y, z] format (not best for parsing
// on a remote host such as Processing or something though)
#define OUTPUT_READABLE_QUATERNION
// uncomment "OUTPUT_READABLE_EULER" if you want to see Euler angles
// (in degrees) calculated from the quaternions coming from the FIFO.
// Note that Euler angles suffer from gimbal lock (for more info, see
// http://en.wikipedia.org/wiki/Gimbal_lock)
//#define OUTPUT_READABLE_EULER
// uncomment "OUTPUT_READABLE_YAWPITCHROLL" if you want to see the yaw/
// pitch/roll angles (in degrees) calculated from the quaternions coming
// from the FIFO. Note this also requires gravity vector calculations.
// Also note that yaw/pitch/roll angles suffer from gimbal lock (for
// more info, see: http://en.wikipedia.org/wiki/Gimbal_lock)
#define OUTPUT_READABLE_YAWPITCHROLL
// uncomment "OUTPUT_READABLE_REALACCEL" if you want to see acceleration
// components with gravity removed. This acceleration reference frame is
// not compensated for orientation, so +X is always +X according to the
// sensor, just without the effects of gravity. If you want acceleration
// compensated for orientation, us OUTPUT_READABLE_WORLDACCEL instead.
//#define OUTPUT_READABLE_REALACCEL
// uncomment "OUTPUT_READABLE_WORLDACCEL" if you want to see acceleration
// components with gravity removed and adjusted for the world frame of
// reference (yaw is relative to initial orientation, since no magnetometer
// is present in this case). Could be quite handy in some cases.
#define OUTPUT_READABLE_WORLDACCEL
// MPU control/status vars
bool dmpReady = false; // set true if DMP init was successful
uint8_t mpuIntStatus; // holds actual interrupt status byte from MPU
uint8_t devStatus; // return status after each device operation (0 = success, !0 = error)
uint16_t packetSize; // expected DMP packet size (default is 42 bytes)
uint16_t fifoCount; // count of all bytes currently in FIFO
uint8_t fifoBuffer[64]; // FIFO storage buffer
// orientation/motion vars
Quaternion q; // [w, x, y, z] quaternion container
VectorInt16 aa; // [x, y, z] accel sensor measurements
VectorInt16 gy; // [x, y, z] gyro sensor measurements
VectorInt16 aaReal; // [x, y, z] gravity-free accel sensor measurements
VectorInt16 aaWorld; // [x, y, z] world-frame accel sensor measurements
VectorFloat gravity; // [x, y, z] gravity vector
float euler[3]; // [psi, theta, phi] Euler angle container
float ypr[3]; // [yaw, pitch, roll] yaw/pitch/roll container and gravity vector
// Sem dobimo vrednosti
int16_t AcX,AcY,AcZ;
float GyX, GyY, GyZ;
// Keys
byte keys[] = {16, 17, 5, 18};
byte pressed[] = {0, 0, 0, 0};
byte KEYLEN = 4;
OSCMessage msg("/accel/");
OSCMessage gmsg("/gyro/");
2022-02-16 17:00:06 +01:00
OSCMessage emsg("/error/");
OSCMessage kmsg("/keys/");
OSCMessage qmsg("/quaternion/");
void setup() {
Wire.begin();
Wire.setClock(400000); // 400kHz I2C clock. Comment this line if having compilation difficulties
// Keys
for(int i = 0; i < KEYLEN; i++) {
pinMode(keys[i], INPUT_PULLUP);
}
Serial.begin(115200); // set this as high as you can reliably run on your platform
SerialBT.begin("wavey wind");
// Motion processor init
2022-02-16 17:00:06 +01:00
mpu.initialize();
mpu.setFullScaleGyroRange(MPU6050_GYRO_FS_250);
mpu.setFullScaleAccelRange(MPU6050_ACCEL_FS_2);
// DMP init
devStatus = mpu.dmpInitialize();
// supply your own gyro offsets here, scaled for min sensitivity
// !!! Run Zero IMU to get readings
/* First proto (right hand, black&blue)
2022-02-16 17:00:06 +01:00
mpu.setXGyroOffset(76);
mpu.setYGyroOffset(68);
mpu.setZGyroOffset(10);
mpu.setXAccelOffset(-3527);
mpu.setYAccelOffset(-913);
mpu.setZAccelOffset(1027);
*/
/* Second proto, translucent / white */
mpu.setXGyroOffset(-3650);
mpu.setYGyroOffset(-2531);
mpu.setZGyroOffset(1131);
mpu.setXAccelOffset(162);
mpu.setYAccelOffset(-16);
mpu.setZAccelOffset(-12);
2022-02-16 17:00:06 +01:00
// make sure it worked (returns 0 if so)
if (devStatus == 0) {
// Calibration Time: generate offsets and calibrate our MPU6050
mpu.CalibrateAccel(6);
mpu.CalibrateGyro(6);
//Serial.println();
//mpu.PrintActiveOffsets();
// turn on the DMP, now that it's ready
//Serial.println(F("Enabling DMP..."));
mpu.setDMPEnabled(true);
// set our DMP Ready flag so the main loop() function knows it's okay to use it
//Serial.println(F("DMP ready! Waiting for first interrupt..."));
dmpReady = true;
// get expected DMP packet size for later comparison
packetSize = mpu.dmpGetFIFOPacketSize();
} else {
Serial.println("DMP Initialization failed (code " + String(devStatus) + ")");
2022-02-16 17:00:06 +01:00
// ERROR!
// 1 = initial memory load failed
// 2 = DMP configuration updates failed
// (if it's going to break, usually the code will be 1)
}
}
void loop() {
// if programming failed, don't try to do anything
if (!dmpReady) return;
// read a packet from FIFO
if (mpu.dmpGetCurrentFIFOPacket(fifoBuffer)) { // Get the Latest packet
#ifdef OUTPUT_READABLE_QUATERNION
// display quaternion values in easy matrix form: w x y z
mpu.dmpGetQuaternion(&q, fifoBuffer);
//oscmsg = qOSC(q.w, q.x, q.y, q.z);
2022-02-16 17:00:06 +01:00
qmsg.add(q.w);
qmsg.add(q.x);
qmsg.add(q.y);
qmsg.add(q.z);
SLIPBTSerial.beginPacket();
qmsg.send(SLIPBTSerial);
SLIPBTSerial.endPacket();
2022-02-16 17:00:06 +01:00
SLIPSerial.beginPacket();
qmsg.send(SLIPSerial);
SLIPSerial.endPacket();
2022-02-16 17:00:06 +01:00
qmsg.empty();
#endif
#ifdef OUTPUT_READABLE_EULER
// display Euler angles in degrees
mpu.dmpGetQuaternion(&q, fifoBuffer);
mpu.dmpGetEuler(euler, &q);
GyX = euler[0];
GyY = euler[1];
GyZ = euler[2];
#endif
#ifdef OUTPUT_READABLE_YAWPITCHROLL
// display Euler angles in degrees
mpu.dmpGetQuaternion(&q, fifoBuffer);
mpu.dmpGetGravity(&gravity, &q);
mpu.dmpGetYawPitchRoll(ypr, &q, &gravity);
GyX = ypr[0];
GyY = ypr[1];
GyZ = ypr[2];
#endif
#ifdef OUTPUT_READABLE_REALACCEL
// display real acceleration, adjusted to remove gravity
mpu.dmpGetQuaternion(&q, fifoBuffer);
mpu.dmpGetAccel(&aa, fifoBuffer);
mpu.dmpGetGravity(&gravity, &q);
mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);
AcX = aaReal.x;
AcY = aaReal.y;
AcZ = aaReal.z;
#endif
#ifdef OUTPUT_READABLE_WORLDACCEL
// display initial world-frame acceleration, adjusted to remove gravity
// and rotated based on known orientation from quaternion
mpu.dmpGetQuaternion(&q, fifoBuffer);
mpu.dmpGetAccel(&aa, fifoBuffer);
mpu.dmpGetGravity(&gravity, &q);
mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);
mpu.dmpGetLinearAccelInWorld(&aaWorld, &aaReal, &q);
AcX = aaWorld.x;
AcY = aaWorld.y;
AcZ = aaWorld.z;
#endif
// Send (accel) over serial
2022-02-16 17:00:06 +01:00
msg.add(AcX);
msg.add(AcY);
msg.add(AcZ);
2022-02-16 17:00:06 +01:00
SLIPSerial.beginPacket();
msg.send(SLIPSerial);
SLIPSerial.endPacket();
SLIPBTSerial.beginPacket();
msg.send(SLIPBTSerial);
SLIPBTSerial.endPacket();
msg.empty();
2022-02-16 17:00:06 +01:00
// Send keys
for(int i = 0; i < KEYLEN; i++) {
pressed[i] = !digitalRead(keys[i]);
kmsg.add(pressed[i]);
}
2022-02-16 17:00:06 +01:00
SLIPSerial.beginPacket();
kmsg.send(SLIPSerial);
SLIPSerial.endPacket();
SLIPBTSerial.beginPacket();
kmsg.send(SLIPBTSerial);
SLIPBTSerial.endPacket();
2022-02-16 17:00:06 +01:00
kmsg.empty();
}
}