c2-utopia/lib/Adafruit_BNO055-1.6.3/Adafruit_BNO055.cpp

868 lines
26 KiB
C++

/*!
* @file Adafruit_BNO055.cpp
*
* @mainpage Adafruit BNO055 Orientation Sensor
*
* @section intro_sec Introduction
*
* This is a library for the BNO055 orientation sensor
*
* Designed specifically to work with the Adafruit BNO055 9-DOF Breakout.
*
* Pick one up today in the adafruit shop!
* ------> https://www.adafruit.com/product/2472
*
* These sensors use I2C to communicate, 2 pins are required to interface.
*
* Adafruit invests time and resources providing this open source code,
* please support Adafruit andopen-source hardware by purchasing products
* from Adafruit!
*
* @section author Author
*
* K.Townsend (Adafruit Industries)
*
* @section license License
*
* MIT license, all text above must be included in any redistribution
*/
#include "Arduino.h"
#include <limits.h>
#include <math.h>
#include "Adafruit_BNO055.h"
/*!
* @brief Instantiates a new Adafruit_BNO055 class
* @param sensorID
* sensor ID
* @param address
* i2c address
* @param theWire
* Wire object
*/
Adafruit_BNO055::Adafruit_BNO055(int32_t sensorID, uint8_t address,
TwoWire *theWire) {
// BNO055 clock stretches for 500us or more!
#ifdef ESP8266
theWire->setClockStretchLimit(1000); // Allow for 1000us of clock stretching
#endif
_sensorID = sensorID;
i2c_dev = new Adafruit_I2CDevice(address, theWire);
}
/*!
* @brief Sets up the HW
* @param mode
* mode values
* [OPERATION_MODE_CONFIG,
* OPERATION_MODE_ACCONLY,
* OPERATION_MODE_MAGONLY,
* OPERATION_MODE_GYRONLY,
* OPERATION_MODE_ACCMAG,
* OPERATION_MODE_ACCGYRO,
* OPERATION_MODE_MAGGYRO,
* OPERATION_MODE_AMG,
* OPERATION_MODE_IMUPLUS,
* OPERATION_MODE_COMPASS,
* OPERATION_MODE_M4G,
* OPERATION_MODE_NDOF_FMC_OFF,
* OPERATION_MODE_NDOF]
* @return true if process is successful
*/
bool Adafruit_BNO055::begin(adafruit_bno055_opmode_t mode) {
// Start without a detection
i2c_dev->begin(false);
#if defined(TARGET_RP2040)
// philhower core seems to work with this speed?
i2c_dev->setSpeed(50000);
#endif
// can take 850 ms to boot!
int timeout = 850; // in ms
while (timeout > 0) {
if (i2c_dev->begin()) {
break;
}
// wasnt detected... we'll retry!
delay(10);
timeout -= 10;
}
if (timeout <= 0)
return false;
/* Make sure we have the right device */
uint8_t id = read8(BNO055_CHIP_ID_ADDR);
if (id != BNO055_ID) {
delay(1000); // hold on for boot
id = read8(BNO055_CHIP_ID_ADDR);
if (id != BNO055_ID) {
return false; // still not? ok bail
}
}
/* Switch to config mode (just in case since this is the default) */
setMode(OPERATION_MODE_CONFIG);
/* Reset */
write8(BNO055_SYS_TRIGGER_ADDR, 0x20);
/* Delay incrased to 30ms due to power issues https://tinyurl.com/y375z699 */
delay(30);
while (read8(BNO055_CHIP_ID_ADDR) != BNO055_ID) {
delay(10);
}
delay(50);
/* Set to normal power mode */
write8(BNO055_PWR_MODE_ADDR, POWER_MODE_NORMAL);
delay(10);
write8(BNO055_PAGE_ID_ADDR, 0);
/* Set the output units */
/*
uint8_t unitsel = (0 << 7) | // Orientation = Android
(0 << 4) | // Temperature = Celsius
(0 << 2) | // Euler = Degrees
(1 << 1) | // Gyro = Rads
(0 << 0); // Accelerometer = m/s^2
write8(BNO055_UNIT_SEL_ADDR, unitsel);
*/
/* Configure axis mapping (see section 3.4) */
/*
write8(BNO055_AXIS_MAP_CONFIG_ADDR, REMAP_CONFIG_P2); // P0-P7, Default is P1
delay(10);
write8(BNO055_AXIS_MAP_SIGN_ADDR, REMAP_SIGN_P2); // P0-P7, Default is P1
delay(10);
*/
write8(BNO055_SYS_TRIGGER_ADDR, 0x0);
delay(10);
/* Set the requested operating mode (see section 3.3) */
setMode(mode);
delay(20);
return true;
}
/*!
* @brief Puts the chip in the specified operating mode
* @param mode
* mode values
* [OPERATION_MODE_CONFIG,
* OPERATION_MODE_ACCONLY,
* OPERATION_MODE_MAGONLY,
* OPERATION_MODE_GYRONLY,
* OPERATION_MODE_ACCMAG,
* OPERATION_MODE_ACCGYRO,
* OPERATION_MODE_MAGGYRO,
* OPERATION_MODE_AMG,
* OPERATION_MODE_IMUPLUS,
* OPERATION_MODE_COMPASS,
* OPERATION_MODE_M4G,
* OPERATION_MODE_NDOF_FMC_OFF,
* OPERATION_MODE_NDOF]
*/
void Adafruit_BNO055::setMode(adafruit_bno055_opmode_t mode) {
_mode = mode;
write8(BNO055_OPR_MODE_ADDR, _mode);
delay(30);
}
/*!
* @brief Gets the current operating mode of the chip
* @return operating_mode in integer which can be mapped in Section 3.3
* for example: a return of 12 (0X0C) => NDOF
*/
adafruit_bno055_opmode_t Adafruit_BNO055::getMode() {
return (adafruit_bno055_opmode_t)read8(BNO055_OPR_MODE_ADDR);
}
/*!
* @brief Changes the chip's axis remap
* @param remapcode
* remap code possible values
* [REMAP_CONFIG_P0
* REMAP_CONFIG_P1 (default)
* REMAP_CONFIG_P2
* REMAP_CONFIG_P3
* REMAP_CONFIG_P4
* REMAP_CONFIG_P5
* REMAP_CONFIG_P6
* REMAP_CONFIG_P7]
*/
void Adafruit_BNO055::setAxisRemap(
adafruit_bno055_axis_remap_config_t remapcode) {
adafruit_bno055_opmode_t modeback = _mode;
setMode(OPERATION_MODE_CONFIG);
delay(25);
write8(BNO055_AXIS_MAP_CONFIG_ADDR, remapcode);
delay(10);
/* Set the requested operating mode (see section 3.3) */
setMode(modeback);
delay(20);
}
/*!
* @brief Changes the chip's axis signs
* @param remapsign
* remap sign possible values
* [REMAP_SIGN_P0
* REMAP_SIGN_P1 (default)
* REMAP_SIGN_P2
* REMAP_SIGN_P3
* REMAP_SIGN_P4
* REMAP_SIGN_P5
* REMAP_SIGN_P6
* REMAP_SIGN_P7]
*/
void Adafruit_BNO055::setAxisSign(adafruit_bno055_axis_remap_sign_t remapsign) {
adafruit_bno055_opmode_t modeback = _mode;
setMode(OPERATION_MODE_CONFIG);
delay(25);
write8(BNO055_AXIS_MAP_SIGN_ADDR, remapsign);
delay(10);
/* Set the requested operating mode (see section 3.3) */
setMode(modeback);
delay(20);
}
/*!
* @brief Use the external 32.768KHz crystal
* @param usextal
* use external crystal boolean
*/
void Adafruit_BNO055::setExtCrystalUse(boolean usextal) {
adafruit_bno055_opmode_t modeback = _mode;
/* Switch to config mode (just in case since this is the default) */
setMode(OPERATION_MODE_CONFIG);
delay(25);
write8(BNO055_PAGE_ID_ADDR, 0);
if (usextal) {
write8(BNO055_SYS_TRIGGER_ADDR, 0x80);
} else {
write8(BNO055_SYS_TRIGGER_ADDR, 0x00);
}
delay(10);
/* Set the requested operating mode (see section 3.3) */
setMode(modeback);
delay(20);
}
/*!
* @brief Gets the latest system status info
* @param system_status
* system status info
* @param self_test_result
* self test result
* @param system_error
* system error info
*/
void Adafruit_BNO055::getSystemStatus(uint8_t *system_status,
uint8_t *self_test_result,
uint8_t *system_error) {
write8(BNO055_PAGE_ID_ADDR, 0);
/* System Status (see section 4.3.58)
0 = Idle
1 = System Error
2 = Initializing Peripherals
3 = System Iniitalization
4 = Executing Self-Test
5 = Sensor fusio algorithm running
6 = System running without fusion algorithms
*/
if (system_status != 0)
*system_status = read8(BNO055_SYS_STAT_ADDR);
/* Self Test Results
1 = test passed, 0 = test failed
Bit 0 = Accelerometer self test
Bit 1 = Magnetometer self test
Bit 2 = Gyroscope self test
Bit 3 = MCU self test
0x0F = all good!
*/
if (self_test_result != 0)
*self_test_result = read8(BNO055_SELFTEST_RESULT_ADDR);
/* System Error (see section 4.3.59)
0 = No error
1 = Peripheral initialization error
2 = System initialization error
3 = Self test result failed
4 = Register map value out of range
5 = Register map address out of range
6 = Register map write error
7 = BNO low power mode not available for selected operat ion mode
8 = Accelerometer power mode not available
9 = Fusion algorithm configuration error
A = Sensor configuration error
*/
if (system_error != 0)
*system_error = read8(BNO055_SYS_ERR_ADDR);
delay(200);
}
/*!
* @brief Gets the chip revision numbers
* @param info
* revision info
*/
void Adafruit_BNO055::getRevInfo(adafruit_bno055_rev_info_t *info) {
uint8_t a, b;
memset(info, 0, sizeof(adafruit_bno055_rev_info_t));
/* Check the accelerometer revision */
info->accel_rev = read8(BNO055_ACCEL_REV_ID_ADDR);
/* Check the magnetometer revision */
info->mag_rev = read8(BNO055_MAG_REV_ID_ADDR);
/* Check the gyroscope revision */
info->gyro_rev = read8(BNO055_GYRO_REV_ID_ADDR);
/* Check the SW revision */
info->bl_rev = read8(BNO055_BL_REV_ID_ADDR);
a = read8(BNO055_SW_REV_ID_LSB_ADDR);
b = read8(BNO055_SW_REV_ID_MSB_ADDR);
info->sw_rev = (((uint16_t)b) << 8) | ((uint16_t)a);
}
/*!
* @brief Gets current calibration state. Each value should be a uint8_t
* pointer and it will be set to 0 if not calibrated and 3 if
* fully calibrated.
* See section 34.3.54
* @param sys
* Current system calibration status, depends on status of all sensors,
* read-only
* @param gyro
* Current calibration status of Gyroscope, read-only
* @param accel
* Current calibration status of Accelerometer, read-only
* @param mag
* Current calibration status of Magnetometer, read-only
*/
void Adafruit_BNO055::getCalibration(uint8_t *sys, uint8_t *gyro,
uint8_t *accel, uint8_t *mag) {
uint8_t calData = read8(BNO055_CALIB_STAT_ADDR);
if (sys != NULL) {
*sys = (calData >> 6) & 0x03;
}
if (gyro != NULL) {
*gyro = (calData >> 4) & 0x03;
}
if (accel != NULL) {
*accel = (calData >> 2) & 0x03;
}
if (mag != NULL) {
*mag = calData & 0x03;
}
}
/*!
* @brief Gets the temperature in degrees celsius
* @return temperature in degrees celsius
*/
int8_t Adafruit_BNO055::getTemp() {
int8_t temp = (int8_t)(read8(BNO055_TEMP_ADDR));
return temp;
}
/*!
* @brief Gets a vector reading from the specified source
* @param vector_type
* possible vector type values
* [VECTOR_ACCELEROMETER
* VECTOR_MAGNETOMETER
* VECTOR_GYROSCOPE
* VECTOR_EULER
* VECTOR_LINEARACCEL
* VECTOR_GRAVITY]
* @return vector from specified source
*/
imu::Vector<3> Adafruit_BNO055::getVector(adafruit_vector_type_t vector_type) {
imu::Vector<3> xyz;
uint8_t buffer[6];
memset(buffer, 0, 6);
int16_t x, y, z;
x = y = z = 0;
/* Read vector data (6 bytes) */
readLen((adafruit_bno055_reg_t)vector_type, buffer, 6);
x = ((int16_t)buffer[0]) | (((int16_t)buffer[1]) << 8);
y = ((int16_t)buffer[2]) | (((int16_t)buffer[3]) << 8);
z = ((int16_t)buffer[4]) | (((int16_t)buffer[5]) << 8);
/*!
* Convert the value to an appropriate range (section 3.6.4)
* and assign the value to the Vector type
*/
switch (vector_type) {
case VECTOR_MAGNETOMETER:
/* 1uT = 16 LSB */
xyz[0] = ((double)x) / 16.0;
xyz[1] = ((double)y) / 16.0;
xyz[2] = ((double)z) / 16.0;
break;
case VECTOR_GYROSCOPE:
/* 1dps = 16 LSB */
xyz[0] = ((double)x) / 16.0;
xyz[1] = ((double)y) / 16.0;
xyz[2] = ((double)z) / 16.0;
break;
case VECTOR_EULER:
/* 1 degree = 16 LSB */
xyz[0] = ((double)x) / 16.0;
xyz[1] = ((double)y) / 16.0;
xyz[2] = ((double)z) / 16.0;
break;
case VECTOR_ACCELEROMETER:
/* 1m/s^2 = 100 LSB */
xyz[0] = ((double)x) / 100.0;
xyz[1] = ((double)y) / 100.0;
xyz[2] = ((double)z) / 100.0;
break;
case VECTOR_LINEARACCEL:
/* 1m/s^2 = 100 LSB */
xyz[0] = ((double)x) / 100.0;
xyz[1] = ((double)y) / 100.0;
xyz[2] = ((double)z) / 100.0;
break;
case VECTOR_GRAVITY:
/* 1m/s^2 = 100 LSB */
xyz[0] = ((double)x) / 100.0;
xyz[1] = ((double)y) / 100.0;
xyz[2] = ((double)z) / 100.0;
break;
}
return xyz;
}
/*!
* @brief Gets a quaternion reading from the specified source
* @return quaternion reading
*/
imu::Quaternion Adafruit_BNO055::getQuat() {
uint8_t buffer[8];
memset(buffer, 0, 8);
int16_t x, y, z, w;
x = y = z = w = 0;
/* Read quat data (8 bytes) */
readLen(BNO055_QUATERNION_DATA_W_LSB_ADDR, buffer, 8);
w = (((uint16_t)buffer[1]) << 8) | ((uint16_t)buffer[0]);
x = (((uint16_t)buffer[3]) << 8) | ((uint16_t)buffer[2]);
y = (((uint16_t)buffer[5]) << 8) | ((uint16_t)buffer[4]);
z = (((uint16_t)buffer[7]) << 8) | ((uint16_t)buffer[6]);
/*!
* Assign to Quaternion
* See
* https://cdn-shop.adafruit.com/datasheets/BST_BNO055_DS000_12.pdf
* 3.6.5.5 Orientation (Quaternion)
*/
const double scale = (1.0 / (1 << 14));
imu::Quaternion quat(scale * w, scale * x, scale * y, scale * z);
return quat;
}
/*!
* @brief Provides the sensor_t data for this sensor
* @param sensor
* Sensor description
*/
void Adafruit_BNO055::getSensor(sensor_t *sensor) {
/* Clear the sensor_t object */
memset(sensor, 0, sizeof(sensor_t));
/* Insert the sensor name in the fixed length char array */
strncpy(sensor->name, "BNO055", sizeof(sensor->name) - 1);
sensor->name[sizeof(sensor->name) - 1] = 0;
sensor->version = 1;
sensor->sensor_id = _sensorID;
sensor->type = SENSOR_TYPE_ORIENTATION;
sensor->min_delay = 0;
sensor->max_value = 0.0F;
sensor->min_value = 0.0F;
sensor->resolution = 0.01F;
}
/*!
* @brief Reads the sensor and returns the data as a sensors_event_t
* @param event
* Event description
* @return always returns true
*/
bool Adafruit_BNO055::getEvent(sensors_event_t *event) {
/* Clear the event */
memset(event, 0, sizeof(sensors_event_t));
event->version = sizeof(sensors_event_t);
event->sensor_id = _sensorID;
event->type = SENSOR_TYPE_ORIENTATION;
event->timestamp = millis();
/* Get a Euler angle sample for orientation */
imu::Vector<3> euler = getVector(Adafruit_BNO055::VECTOR_EULER);
event->orientation.x = euler.x();
event->orientation.y = euler.y();
event->orientation.z = euler.z();
return true;
}
/*!
* @brief Reads the sensor and returns the data as a sensors_event_t
* @param event
* Event description
* @param vec_type
* specify the type of reading
* @return always returns true
*/
bool Adafruit_BNO055::getEvent(sensors_event_t *event,
adafruit_vector_type_t vec_type) {
/* Clear the event */
memset(event, 0, sizeof(sensors_event_t));
event->version = sizeof(sensors_event_t);
event->sensor_id = _sensorID;
event->timestamp = millis();
// read the data according to vec_type
imu::Vector<3> vec;
if (vec_type == Adafruit_BNO055::VECTOR_LINEARACCEL) {
event->type = SENSOR_TYPE_LINEAR_ACCELERATION;
vec = getVector(Adafruit_BNO055::VECTOR_LINEARACCEL);
event->acceleration.x = vec.x();
event->acceleration.y = vec.y();
event->acceleration.z = vec.z();
} else if (vec_type == Adafruit_BNO055::VECTOR_ACCELEROMETER) {
event->type = SENSOR_TYPE_ACCELEROMETER;
vec = getVector(Adafruit_BNO055::VECTOR_ACCELEROMETER);
event->acceleration.x = vec.x();
event->acceleration.y = vec.y();
event->acceleration.z = vec.z();
} else if (vec_type == Adafruit_BNO055::VECTOR_GRAVITY) {
event->type = SENSOR_TYPE_GRAVITY;
vec = getVector(Adafruit_BNO055::VECTOR_GRAVITY);
event->acceleration.x = vec.x();
event->acceleration.y = vec.y();
event->acceleration.z = vec.z();
} else if (vec_type == Adafruit_BNO055::VECTOR_EULER) {
event->type = SENSOR_TYPE_ORIENTATION;
vec = getVector(Adafruit_BNO055::VECTOR_EULER);
event->orientation.x = vec.x();
event->orientation.y = vec.y();
event->orientation.z = vec.z();
} else if (vec_type == Adafruit_BNO055::VECTOR_GYROSCOPE) {
event->type = SENSOR_TYPE_GYROSCOPE;
vec = getVector(Adafruit_BNO055::VECTOR_GYROSCOPE);
event->gyro.x = vec.x() * SENSORS_DPS_TO_RADS;
event->gyro.y = vec.y() * SENSORS_DPS_TO_RADS;
event->gyro.z = vec.z() * SENSORS_DPS_TO_RADS;
} else if (vec_type == Adafruit_BNO055::VECTOR_MAGNETOMETER) {
event->type = SENSOR_TYPE_MAGNETIC_FIELD;
vec = getVector(Adafruit_BNO055::VECTOR_MAGNETOMETER);
event->magnetic.x = vec.x();
event->magnetic.y = vec.y();
event->magnetic.z = vec.z();
}
return true;
}
/*!
* @brief Reads the sensor's offset registers into a byte array
* @param calibData
* Calibration offset (buffer size should be 22)
* @return true if read is successful
*/
bool Adafruit_BNO055::getSensorOffsets(uint8_t *calibData) {
if (isFullyCalibrated()) {
adafruit_bno055_opmode_t lastMode = _mode;
setMode(OPERATION_MODE_CONFIG);
readLen(ACCEL_OFFSET_X_LSB_ADDR, calibData, NUM_BNO055_OFFSET_REGISTERS);
setMode(lastMode);
return true;
}
return false;
}
/*!
* @brief Reads the sensor's offset registers into an offset struct
* @param offsets_type
* type of offsets
* @return true if read is successful
*/
bool Adafruit_BNO055::getSensorOffsets(
adafruit_bno055_offsets_t &offsets_type) {
if (isFullyCalibrated()) {
adafruit_bno055_opmode_t lastMode = _mode;
setMode(OPERATION_MODE_CONFIG);
delay(25);
/* Accel offset range depends on the G-range:
+/-2g = +/- 2000 mg
+/-4g = +/- 4000 mg
+/-8g = +/- 8000 mg
+/-1§g = +/- 16000 mg */
offsets_type.accel_offset_x = (read8(ACCEL_OFFSET_X_MSB_ADDR) << 8) |
(read8(ACCEL_OFFSET_X_LSB_ADDR));
offsets_type.accel_offset_y = (read8(ACCEL_OFFSET_Y_MSB_ADDR) << 8) |
(read8(ACCEL_OFFSET_Y_LSB_ADDR));
offsets_type.accel_offset_z = (read8(ACCEL_OFFSET_Z_MSB_ADDR) << 8) |
(read8(ACCEL_OFFSET_Z_LSB_ADDR));
/* Magnetometer offset range = +/- 6400 LSB where 1uT = 16 LSB */
offsets_type.mag_offset_x =
(read8(MAG_OFFSET_X_MSB_ADDR) << 8) | (read8(MAG_OFFSET_X_LSB_ADDR));
offsets_type.mag_offset_y =
(read8(MAG_OFFSET_Y_MSB_ADDR) << 8) | (read8(MAG_OFFSET_Y_LSB_ADDR));
offsets_type.mag_offset_z =
(read8(MAG_OFFSET_Z_MSB_ADDR) << 8) | (read8(MAG_OFFSET_Z_LSB_ADDR));
/* Gyro offset range depends on the DPS range:
2000 dps = +/- 32000 LSB
1000 dps = +/- 16000 LSB
500 dps = +/- 8000 LSB
250 dps = +/- 4000 LSB
125 dps = +/- 2000 LSB
... where 1 DPS = 16 LSB */
offsets_type.gyro_offset_x =
(read8(GYRO_OFFSET_X_MSB_ADDR) << 8) | (read8(GYRO_OFFSET_X_LSB_ADDR));
offsets_type.gyro_offset_y =
(read8(GYRO_OFFSET_Y_MSB_ADDR) << 8) | (read8(GYRO_OFFSET_Y_LSB_ADDR));
offsets_type.gyro_offset_z =
(read8(GYRO_OFFSET_Z_MSB_ADDR) << 8) | (read8(GYRO_OFFSET_Z_LSB_ADDR));
/* Accelerometer radius = +/- 1000 LSB */
offsets_type.accel_radius =
(read8(ACCEL_RADIUS_MSB_ADDR) << 8) | (read8(ACCEL_RADIUS_LSB_ADDR));
/* Magnetometer radius = +/- 960 LSB */
offsets_type.mag_radius =
(read8(MAG_RADIUS_MSB_ADDR) << 8) | (read8(MAG_RADIUS_LSB_ADDR));
setMode(lastMode);
return true;
}
return false;
}
/*!
* @brief Writes an array of calibration values to the sensor's offset
* @param calibData
* calibration data
*/
void Adafruit_BNO055::setSensorOffsets(const uint8_t *calibData) {
adafruit_bno055_opmode_t lastMode = _mode;
setMode(OPERATION_MODE_CONFIG);
delay(25);
/* Note: Configuration will take place only when user writes to the last
byte of each config data pair (ex. ACCEL_OFFSET_Z_MSB_ADDR, etc.).
Therefore the last byte must be written whenever the user wants to
changes the configuration. */
/* A writeLen() would make this much cleaner */
write8(ACCEL_OFFSET_X_LSB_ADDR, calibData[0]);
write8(ACCEL_OFFSET_X_MSB_ADDR, calibData[1]);
write8(ACCEL_OFFSET_Y_LSB_ADDR, calibData[2]);
write8(ACCEL_OFFSET_Y_MSB_ADDR, calibData[3]);
write8(ACCEL_OFFSET_Z_LSB_ADDR, calibData[4]);
write8(ACCEL_OFFSET_Z_MSB_ADDR, calibData[5]);
write8(MAG_OFFSET_X_LSB_ADDR, calibData[6]);
write8(MAG_OFFSET_X_MSB_ADDR, calibData[7]);
write8(MAG_OFFSET_Y_LSB_ADDR, calibData[8]);
write8(MAG_OFFSET_Y_MSB_ADDR, calibData[9]);
write8(MAG_OFFSET_Z_LSB_ADDR, calibData[10]);
write8(MAG_OFFSET_Z_MSB_ADDR, calibData[11]);
write8(GYRO_OFFSET_X_LSB_ADDR, calibData[12]);
write8(GYRO_OFFSET_X_MSB_ADDR, calibData[13]);
write8(GYRO_OFFSET_Y_LSB_ADDR, calibData[14]);
write8(GYRO_OFFSET_Y_MSB_ADDR, calibData[15]);
write8(GYRO_OFFSET_Z_LSB_ADDR, calibData[16]);
write8(GYRO_OFFSET_Z_MSB_ADDR, calibData[17]);
write8(ACCEL_RADIUS_LSB_ADDR, calibData[18]);
write8(ACCEL_RADIUS_MSB_ADDR, calibData[19]);
write8(MAG_RADIUS_LSB_ADDR, calibData[20]);
write8(MAG_RADIUS_MSB_ADDR, calibData[21]);
setMode(lastMode);
}
/*!
* @brief Writes to the sensor's offset registers from an offset struct
* @param offsets_type
* accel_offset_x = acceleration offset x
* accel_offset_y = acceleration offset y
* accel_offset_z = acceleration offset z
*
* mag_offset_x = magnetometer offset x
* mag_offset_y = magnetometer offset y
* mag_offset_z = magnetometer offset z
*
* gyro_offset_x = gyroscrope offset x
* gyro_offset_y = gyroscrope offset y
* gyro_offset_z = gyroscrope offset z
*/
void Adafruit_BNO055::setSensorOffsets(
const adafruit_bno055_offsets_t &offsets_type) {
adafruit_bno055_opmode_t lastMode = _mode;
setMode(OPERATION_MODE_CONFIG);
delay(25);
/* Note: Configuration will take place only when user writes to the last
byte of each config data pair (ex. ACCEL_OFFSET_Z_MSB_ADDR, etc.).
Therefore the last byte must be written whenever the user wants to
changes the configuration. */
write8(ACCEL_OFFSET_X_LSB_ADDR, (offsets_type.accel_offset_x) & 0x0FF);
write8(ACCEL_OFFSET_X_MSB_ADDR, (offsets_type.accel_offset_x >> 8) & 0x0FF);
write8(ACCEL_OFFSET_Y_LSB_ADDR, (offsets_type.accel_offset_y) & 0x0FF);
write8(ACCEL_OFFSET_Y_MSB_ADDR, (offsets_type.accel_offset_y >> 8) & 0x0FF);
write8(ACCEL_OFFSET_Z_LSB_ADDR, (offsets_type.accel_offset_z) & 0x0FF);
write8(ACCEL_OFFSET_Z_MSB_ADDR, (offsets_type.accel_offset_z >> 8) & 0x0FF);
write8(MAG_OFFSET_X_LSB_ADDR, (offsets_type.mag_offset_x) & 0x0FF);
write8(MAG_OFFSET_X_MSB_ADDR, (offsets_type.mag_offset_x >> 8) & 0x0FF);
write8(MAG_OFFSET_Y_LSB_ADDR, (offsets_type.mag_offset_y) & 0x0FF);
write8(MAG_OFFSET_Y_MSB_ADDR, (offsets_type.mag_offset_y >> 8) & 0x0FF);
write8(MAG_OFFSET_Z_LSB_ADDR, (offsets_type.mag_offset_z) & 0x0FF);
write8(MAG_OFFSET_Z_MSB_ADDR, (offsets_type.mag_offset_z >> 8) & 0x0FF);
write8(GYRO_OFFSET_X_LSB_ADDR, (offsets_type.gyro_offset_x) & 0x0FF);
write8(GYRO_OFFSET_X_MSB_ADDR, (offsets_type.gyro_offset_x >> 8) & 0x0FF);
write8(GYRO_OFFSET_Y_LSB_ADDR, (offsets_type.gyro_offset_y) & 0x0FF);
write8(GYRO_OFFSET_Y_MSB_ADDR, (offsets_type.gyro_offset_y >> 8) & 0x0FF);
write8(GYRO_OFFSET_Z_LSB_ADDR, (offsets_type.gyro_offset_z) & 0x0FF);
write8(GYRO_OFFSET_Z_MSB_ADDR, (offsets_type.gyro_offset_z >> 8) & 0x0FF);
write8(ACCEL_RADIUS_LSB_ADDR, (offsets_type.accel_radius) & 0x0FF);
write8(ACCEL_RADIUS_MSB_ADDR, (offsets_type.accel_radius >> 8) & 0x0FF);
write8(MAG_RADIUS_LSB_ADDR, (offsets_type.mag_radius) & 0x0FF);
write8(MAG_RADIUS_MSB_ADDR, (offsets_type.mag_radius >> 8) & 0x0FF);
setMode(lastMode);
}
/*!
* @brief Checks of all cal status values are set to 3 (fully calibrated)
* @return status of calibration
*/
bool Adafruit_BNO055::isFullyCalibrated() {
uint8_t system, gyro, accel, mag;
getCalibration(&system, &gyro, &accel, &mag);
switch (_mode) {
case OPERATION_MODE_ACCONLY:
return (accel == 3);
case OPERATION_MODE_MAGONLY:
return (mag == 3);
case OPERATION_MODE_GYRONLY:
case OPERATION_MODE_M4G: /* No magnetometer calibration required. */
return (gyro == 3);
case OPERATION_MODE_ACCMAG:
case OPERATION_MODE_COMPASS:
return (accel == 3 && mag == 3);
case OPERATION_MODE_ACCGYRO:
case OPERATION_MODE_IMUPLUS:
return (accel == 3 && gyro == 3);
case OPERATION_MODE_MAGGYRO:
return (mag == 3 && gyro == 3);
default:
return (system == 3 && gyro == 3 && accel == 3 && mag == 3);
}
}
/*!
* @brief Enter Suspend mode (i.e., sleep)
*/
void Adafruit_BNO055::enterSuspendMode() {
adafruit_bno055_opmode_t modeback = _mode;
/* Switch to config mode (just in case since this is the default) */
setMode(OPERATION_MODE_CONFIG);
delay(25);
write8(BNO055_PWR_MODE_ADDR, 0x02);
/* Set the requested operating mode (see section 3.3) */
setMode(modeback);
delay(20);
}
/*!
* @brief Enter Normal mode (i.e., wake)
*/
void Adafruit_BNO055::enterNormalMode() {
adafruit_bno055_opmode_t modeback = _mode;
/* Switch to config mode (just in case since this is the default) */
setMode(OPERATION_MODE_CONFIG);
delay(25);
write8(BNO055_PWR_MODE_ADDR, 0x00);
/* Set the requested operating mode (see section 3.3) */
setMode(modeback);
delay(20);
}
/*!
* @brief Writes an 8 bit value over I2C
*/
bool Adafruit_BNO055::write8(adafruit_bno055_reg_t reg, byte value) {
uint8_t buffer[2] = {(uint8_t)reg, (uint8_t)value};
return i2c_dev->write(buffer, 2);
}
/*!
* @brief Reads an 8 bit value over I2C
*/
byte Adafruit_BNO055::read8(adafruit_bno055_reg_t reg) {
uint8_t buffer[1] = {reg};
i2c_dev->write_then_read(buffer, 1, buffer, 1);
return (byte)buffer[0];
}
/*!
* @brief Reads the specified number of bytes over I2C
*/
bool Adafruit_BNO055::readLen(adafruit_bno055_reg_t reg, byte *buffer,
uint8_t len) {
uint8_t reg_buf[1] = {(uint8_t)reg};
return i2c_dev->write_then_read(reg_buf, 1, buffer, len);
}