qmk-dactyl-manuform-a/keyboards/work_louder/rgb_functions.c

217 lines
6.7 KiB
C

/* Copyright 2021 Drashna Jael're
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include QMK_KEYBOARD_H
#include "rgb_functions.h"
#ifdef RGBLIGHT_ENABLE
# include "ws2812.h"
# include <avr/interrupt.h>
# include <avr/io.h>
# include <util/delay.h>
# define pinmask(pin) (_BV((pin)&0xF))
/*
* Forward declare internal functions
*
* The functions take a byte-array and send to the data output as WS2812 bitstream.
* The length is the number of bytes to send - three per LED.
*/
static inline void ws2812_sendarray_mask(uint8_t *data, uint16_t datlen, uint8_t masklo, uint8_t maskhi);
/*
This routine writes an array of bytes with RGB values to the Dataout pin
using the fast 800kHz clockless WS2811/2812 protocol.
*/
// Timing in ns
# define w_zeropulse 350
# define w_onepulse 900
# define w_totalperiod 1250
// Fixed cycles used by the inner loop
# define w_fixedlow 2
# define w_fixedhigh 4
# define w_fixedtotal 8
// Insert NOPs to match the timing, if possible
# define w_zerocycles (((F_CPU / 1000) * w_zeropulse) / 1000000)
# define w_onecycles (((F_CPU / 1000) * w_onepulse + 500000) / 1000000)
# define w_totalcycles (((F_CPU / 1000) * w_totalperiod + 500000) / 1000000)
// w1_nops - nops between rising edge and falling edge - low
# if w_zerocycles >= w_fixedlow
# define w1_nops (w_zerocycles - w_fixedlow)
# else
# define w1_nops 0
# endif
// w2_nops - nops between fe low and fe high
# if w_onecycles >= (w_fixedhigh + w1_nops)
# define w2_nops (w_onecycles - w_fixedhigh - w1_nops)
# else
# define w2_nops 0
# endif
// w3_nops - nops to complete loop
# if w_totalcycles >= (w_fixedtotal + w1_nops + w2_nops)
# define w3_nops (w_totalcycles - w_fixedtotal - w1_nops - w2_nops)
# else
# define w3_nops 0
# endif
// The only critical timing parameter is the minimum pulse length of the "0"
// Warn or throw error if this timing can not be met with current F_CPU settings.
# define w_lowtime ((w1_nops + w_fixedlow) * 1000000) / (F_CPU / 1000)
# if w_lowtime > 550
# error "Light_ws2812: Sorry, the clock speed is too low. Did you set F_CPU correctly?"
# elif w_lowtime > 450
# warning "Light_ws2812: The timing is critical and may only work on WS2812B, not on WS2812(S)."
# warning "Please consider a higher clockspeed, if possible"
# endif
# define w_nop1 "nop \n\t"
# define w_nop2 "rjmp .+0 \n\t"
# define w_nop4 w_nop2 w_nop2
# define w_nop8 w_nop4 w_nop4
# define w_nop16 w_nop8 w_nop8
static inline void ws2812_sendarray_mask(uint8_t *data, uint16_t datlen, uint8_t masklo, uint8_t maskhi) {
uint8_t curbyte, ctr, sreg_prev;
sreg_prev = SREG;
cli();
while (datlen--) {
curbyte = (*data++);
asm volatile(" ldi %0,8 \n\t"
"loop%=: \n\t"
" out %2,%3 \n\t" // '1' [01] '0' [01] - re
# if (w1_nops & 1)
w_nop1
# endif
# if (w1_nops & 2)
w_nop2
# endif
# if (w1_nops & 4)
w_nop4
# endif
# if (w1_nops & 8)
w_nop8
# endif
# if (w1_nops & 16)
w_nop16
# endif
" sbrs %1,7 \n\t" // '1' [03] '0' [02]
" out %2,%4 \n\t" // '1' [--] '0' [03] - fe-low
" lsl %1 \n\t" // '1' [04] '0' [04]
# if (w2_nops & 1)
w_nop1
# endif
# if (w2_nops & 2)
w_nop2
# endif
# if (w2_nops & 4)
w_nop4
# endif
# if (w2_nops & 8)
w_nop8
# endif
# if (w2_nops & 16)
w_nop16
# endif
" out %2,%4 \n\t" // '1' [+1] '0' [+1] - fe-high
# if (w3_nops & 1)
w_nop1
# endif
# if (w3_nops & 2)
w_nop2
# endif
# if (w3_nops & 4)
w_nop4
# endif
# if (w3_nops & 8)
w_nop8
# endif
# if (w3_nops & 16)
w_nop16
# endif
" dec %0 \n\t" // '1' [+2] '0' [+2]
" brne loop%=\n\t" // '1' [+3] '0' [+4]
: "=&d"(ctr)
: "r"(curbyte), "I"(_SFR_IO_ADDR(PORTx_ADDRESS(RGBLIGHT_DI_PIN))), "r"(maskhi), "r"(masklo));
}
SREG = sreg_prev;
}
void rgblight_call_driver(LED_TYPE *start_led, uint8_t num_leds) {
DDRx_ADDRESS(RGBLIGHT_DI_PIN) |= pinmask(RGBLIGHT_DI_PIN);
uint8_t masklo = ~(pinmask(RGBLIGHT_DI_PIN)) & PORTx_ADDRESS(RGBLIGHT_DI_PIN);
uint8_t maskhi = pinmask(RGBLIGHT_DI_PIN) | PORTx_ADDRESS(RGBLIGHT_DI_PIN);
ws2812_sendarray_mask((uint8_t *)start_led, num_leds * sizeof(LED_TYPE), masklo, maskhi);
_delay_us(WS2812_TRST_US);
}
#endif
#ifdef RGB_MATRIX_ENABLE
bool process_record_kb(uint16_t keycode, keyrecord_t *record) {
if (!process_record_user(keycode, record)) { return false; }
if (record->event.pressed) {
switch(keycode) {
case RGB_MATRIX_TOGGLE: // toggle rgb matrix
rgb_matrix_toggle();
return false;
case RGB_MATRIX_MODE_INC:
rgb_matrix_step();
return false;
case RGB_MATRIX_MODE_DEC:
rgb_matrix_step_reverse();
return false;
case RGB_MATRIX_HUE_INC:
rgb_matrix_increase_hue();
return false;
case RGB_MATRIX_HUE_DEC:
rgb_matrix_decrease_hue();
return false;
case RGB_MATRIX_SAT_INC:
rgb_matrix_increase_sat();
return false;
case RGB_MATRIX_SAT_DEC:
rgb_matrix_decrease_sat();
return false;
case RGB_MATRIX_VAL_INC:
rgb_matrix_increase_val();
return false;
case RGB_MATRIX_VAL_DEC:
rgb_matrix_decrease_val();
return false;
default:
break;
}
}
return true;
}
#endif